Section Page

1. Imtroduction 1

2. The character set i 17

3. Input and output 24

4. String handling 37

5. On-line and off-line printing 54

6. Reporting errors 67

7. Arithmetic with scaled numbers 95

8. Algebraic and transcendental functions 120

9. Packed data 153
10. Dynamic memory allocation 158
11. Memory layout i 175
12. The command codes i, 186
13. The hash table 200
14. Token lists 214
15. Data structures for variables 228
16. Saving and restoring equivalents 250
17. Data structures for paths 255
18. Choosing control points L. 269
19. Generating discrete movesc.. ... 303
20. Edge structures 323
21. Subdivision into octants 386
22. Filling a contouroiiiiiiiiiiiii 460
23. Polygonal pens 469
24. Filling an envelope i 490
25. Elliptical pensc. i 524
26. Direction and intersection times 538
27. Online graphic output 564
28. Dynamic linear equations 585
29. Dynamic nonlinear equations 618
30. Introduction to the syntactic routines 624
31. Input stacks and states il L 627
32. Maintaining the input stacks 647
33. Getting the next token i 658
34. Scanning macro definitions oL 683
35. Expanding the next token 706
36. Conditional processingcc.iiiireninenn.. 738
37. Tterations 752
38. Filenames i 766
39. Introduction to the parsing routines 796
40. Parsing primary expressions 823
41. Parsing secondary and higher expressions 862
42. Doing the operations 893
43. Statements and commands 989
44, Commandsottt 1020
45. Font metric data i 1087
46. Generic font file format o 1142
47. Shipping characters out 1149
48. Dumping and undumping the tables 1183
49. The main programc..coeuiiiminnennnenn .. 1202
50. Debugging 1212
51. System-dependent changes 1214
52, Index ... 1215

3
10
13
18
24
29
37
47
57
59
65
69
82
88
93

103
105
110
123
132
157
188
191
201
214
222
232
239
253
255
256
263
266
274
281
292
296
301
310
322
334
346
376
387
404
425
430
439
445
451
452
453

g METAFONT PART 1: INTRODUCTION 3

1. Introduction. This is METAFONT, a font compiler intended to produce typefaces of high quality.
The Pascal program that follows is the definition of METAFONTS84, a standard version of METAFONT that
is designed to be highly portable so that identical output will be obtainable on a great variety of computers.
The conventions of METAFONTS84 are the same as those of TEX82.

The main purpose of the following program is to explain the algorithms of METAFONT as clearly as
possible. As a result, the program will not necessarily be very efficient when a particular Pascal compiler has
translated it into a particular machine language. However, the program has been written so that it can be
tuned to run efficiently in a wide variety of operating environments by making comparatively few changes.
Such flexibility is possible because the documentation that follows is written in the WEB language, which is at
a higher level than Pascal; the preprocessing step that converts WEB to Pascal is able to introduce most of the
necessary refinements. Semi-automatic translation to other languages is also feasible, because the program
below does not make extensive use of features that are peculiar to Pascal.

A large piece of software like METAFONT has inherent complexity that cannot be reduced below a certain
level of difficulty, although each individual part is fairly simple by itself. The WEB language is intended to
make the algorithms as readable as possible, by reflecting the way the individual program pieces fit together
and by providing the cross-references that connect different parts. Detailed comments about what is going
on, and about why things were done in certain ways, have been liberally sprinkled throughout the program.
These comments explain features of the implementation, but they rarely attempt to explain the METAFONT
language itself, since the reader is supposed to be familiar with The METAFONT book.

2. The present implementation has a long ancestry, beginning in the spring of 1977, when its author wrote
a prototype set of subroutines and macros that were used to develop the first Computer Modern fonts.
This original proto-METAFONT required the user to recompile a SAIL program whenever any character
was changed, because it was not a “language” for font design; the language was SAIL. After several hundred
characters had been designed in that way, the author developed an interpretable language called METAFONT,
in which it was possible to express the Computer Modern programs less cryptically. A complete METAFONT
processor was designed and coded by the author in 1979. This program, written in SAIL, was adapted for
use with a variety of typesetting equipment and display terminals by Leo Guibas, Lyle Ramshaw, and David
Fuchs. Major improvements to the design of Computer Modern fonts were made in the spring of 1982, after
which it became clear that a new language would better express the needs of letterform designers. Therefore
an entirely new METAFONT language and system were developed in 1984; the present system retains the
name and some of the spirit of METAFONT79, but all of the details have changed.

No doubt there still is plenty of room for improvement, but the author is firmly committed to keeping
METAFONT84 “frozen” from now on; stability and reliability are to be its main virtues.

On the other hand, the WEB description can be extended without changing the core of METAFONTS84 itself,
and the program has been designed so that such extensions are not extremely difficult to make. The banner
string defined here should be changed whenever METAFONT undergoes any modifications, so that it will be
clear which version of METAFONT might be the guilty party when a problem arises.

If this program is changed, the resulting system should not be called ‘METAFONT’; the official name
‘METAFONT’ by itself is reserved for software systems that are fully compatible with each other. A special
test suite called the “TRAP test” is available for helping to determine whether an implementation deserves to
be known as ‘METAFONT’ [cf. Stanford Computer Science report CS1095, January 1986].

define banner = "Thisis METAFONT, Version,,2.718281° { printed when METAFONT starts }

4 PART 1: INTRODUCTION METAFONT §3

3. Different Pascals have slightly different conventions, and the present program expresses METAFONT in
terms of the Pascal that was available to the author in 1984. Constructions that apply to this particular
compiler, which we shall call Pascal-H, should help the reader see how to make an appropriate interface for
other systems if necessary. (Pascal-H is Charles Hedrick’s modification of a compiler for the DECsystem-10
that was originally developed at the University of Hamburg; cf. SOFTWARE—Practice & Experience 6
(1976), 29-42. The METAFONT program below is intended to be adaptable, without extensive changes, to
most other versions of Pascal, so it does not fully use the admirable features of Pascal-H. Indeed, a conscious
effort has been made here to avoid using several idiosyncratic features of standard Pascal itself, so that most
of the code can be translated mechanically into other high-level languages. For example, the ‘with’ and
‘new’ features are not used, nor are pointer types, set types, or enumerated scalar types; there are no ‘var’
parameters, except in the case of files or in the system-dependent paini_row procedure; there are no tag
fields on variant records; there are no real variables; no procedures are declared local to other procedures.)

The portions of this program that involve system-dependent code, where changes might be necessary
because of differences between Pascal compilers and/or differences between operating systems, can be
identified by looking at the sections whose numbers are listed under ‘system dependencies’ in the index.
Furthermore, the index entries for ‘dirty Pascal’ list all places where the restrictions of Pascal have not been
followed perfectly, for one reason or another.

4. The program begins with a normal Pascal program heading, whose components will be filled in later,
using the conventions of WEB. For example, the portion of the program called ‘(Global variables 13)’ below
will be replaced by a sequence of variable declarations that starts in §13 of this documentation. In this way,
we are able to define each individual global variable when we are prepared to understand what it means; we
do not have to define all of the globals at once. Cross references in §13, where it says “See also sections 20,
26, ...,” also make it possible to look at the set of all global variables, if desired. Similar remarks apply to
the other portions of the program heading.

Actually the heading shown here is not quite normal: The program line does not mention any output
file, because Pascal-H would ask the METAFONT user to specify a file name if output were specified here.

define mtype = t@&y0&pO&e { this is a WEB coding trick: }
format mitype = type {‘mtype’ will be equivalent to ‘type’ }
format type = true {but ‘type’ will not be treated as a reserved word }

(Compiler directives 9)
program MF; {all file names are defined dynamically }
label (Labels in the outer block 6)
const (Constants in the outer block 11)
mtype (Types in the outer block 18)
var (Global variables 13)

procedure initialize; {this procedure gets things started properly }
var (Local variables for initialization 19)
begin (Set initial values of key variables 21)
end;

(Basic printing procedures 57)
(Error handling procedures 73)

5. The overall METAFONT program begins with the heading just shown, after which comes a bunch of
procedure declarations and function declarations. Finally we will get to the main program, which begins
with the comment ‘start_here’. If you want to skip down to the main program now, you can look up
‘start_here’ in the index. But the author suggests that the best way to understand this program is to
follow pretty much the order of METAFONT’s components as they appear in the WEB description you are
now reading, since the present ordering is intended to combine the advantages of the “bottom up” and “top
down” approaches to the problem of understanding a somewhat complicated system.

86 METAFONT PART 1: INTRODUCTION 5

6. Three labels must be declared in the main program, so we give them symbolic names.

define start_.of- MF =1 {go here when METAFONT’s variables are initialized }
define end_of-MF = 9998 { go here to close files and terminate gracefully }
define final_end = 9999 {this label marks the ending of the program }

(Labels in the outer block 6) =
start_of MF, end_of-MF, final_end; {key control points }

This code is used in section 4.

7. Some of the code below is intended to be used only when diagnosing the strange behavior that sometimes
occurs when METAFONT is being installed or when system wizards are fooling around with METAFONT
without quite knowing what they are doing. Such code will not normally be compiled; it is delimited by the
codewords ‘debug...gubed’, with apologies to people who wish to preserve the purity of English.

Similarly, there is some conditional code delimited by ‘stat ...tats’ that is intended for use when statistics
are to be kept about METAFONT’s memory usage. The stat ... tats code also implements special diagnostic
information that is printed when tracingedges > 1.

define debug = @{ {change this to ‘debug =’ when debugging }
define gubed = @} {change this to ‘gubed =’ when debugging }
format debug = begin

format gubed = end

define stat = @{ {change this to ‘stat =’ when gathering usage statistics }
define tats = @} {change this to ‘tats =’ when gathering usage statistics }
format stat = begin
format tats = end

8. This program has two important variations: (1) There is a long and slow version called INIMF, which
does the extra calculations needed to initialize METAFONT’s internal tables; and (2) there is a shorter and
faster production version, which cuts the initialization to a bare minimum. Parts of the program that are
needed in (1) but not in (2) are delimited by the codewords ‘init . .. tini’.

define init = {change this to ‘init = @{’ in the production version }
define tini = {change this to ‘tini = @}’ in the production version }
format init = begin

format tini = end

9. If the first character of a Pascal comment is a dollar sign, Pascal-H treats the comment as a list of
“compiler directives” that will affect the translation of this program into machine language. The directives
shown below specify full checking and inclusion of the Pascal debugger when METAFONT is being debugged,
but they cause range checking and other redundant code to be eliminated when the production system is
being generated. Arithmetic overflow will be detected in all cases.

(Compiler directives 9) =
e{e&$C—, A+, D—0} {no range check, catch arithmetic overflow, no debug overhead }
debug @{@x$C+, D+@} gubed {but turn everything on when debugging }

This code is used in section 4.

6 PART 1: INTRODUCTION METAFONT 810

10. This METAFONT implementation conforms to the rules of the Pascal User Manual published by Jensen
and Wirth in 1975, except where system-dependent code is necessary to make a useful system program, and
except in another respect where such conformity would unnecessarily obscure the meaning and clutter up
the code: We assume that case statements may include a default case that applies if no matching label is
found. Thus, we shall use constructions like

case x of

1: (code for x =1);

3: (code for z = 3);

othercases (code for z # 1 and x # 3)
endcases

since most Pascal compilers have plugged this hole in the language by incorporating some sort of default
mechanism. For example, the Pascal-H compiler allows ‘others:” as a default label, and other Pascals allow
syntaxes like ‘else’ or ‘otherwise’ or ‘otherwise:’, etc. The definitions of othercases and endcases should
be changed to agree with local conventions. Note that no semicolon appears before endcases in this program,
so the definition of endcases should include a semicolon if the compiler wants one. (Of course, if no default
mechanism is available, the case statements of METAFONT will have to be laboriously extended by listing
all remaining cases. People who are stuck with such Pascals have, in fact, done this, successfully but not
happily!)

define othercases = others: { default for cases not listed explicitly }

define endcases = end {follows the default case in an extended case statement }

format othercases = else

format endcases = end

§11 METAFONT PART 1: INTRODUCTION 7

11. The following parameters can be changed at compile time to extend or reduce METAFONT’s capacity.
They may have different values in INIMF and in production versions of METAFONT.

(Constants in the outer block 11) =

mem_maz = 30000; {greatest index in METAFONT’s internal mem array; must be strictly less than
maz_halfword; must be equal to mem_top in INIMF, otherwise > mem_top }

maz_internal = 100; { maximum number of internal quantities }

buf_size = 500; { maximum number of characters simultaneously present in current lines of open files;
must not exceed maz_halfword }

error_line = 72; { width of context lines on terminal error messages }

half-error_line = 42; { width of first lines of contexts in terminal error messages; should be between 30
and error_line — 15}

maz_print_line = 79; {width of longest text lines output; should be at least 60 }

screen_width = 768; {number of pixels in each row of screen display }

screen_depth = 1024; {number of pixels in each column of screen display }

stack_size = 30; { maximum number of simultaneous input sources }

maz_strings = 2000; { maximum number of strings; must not exceed maz_halfword }

string_vacancies = 8000; { the minimum number of characters that should be available for the user’s
identifier names and strings, after METAFONT’S own error messages are stored }

pool_size = 32000; {maximum number of characters in strings, including all error messages and
help texts, and the names of all identifiers; must exceed string_vacancies by the total length of
METAFONT’s own strings, which is currently about 22000 }

move_size = 5000; { space for storing moves in a single octant }

maz_wiggle = 300; {number of autorounded points per cycle }

gf-buf-size = 800; {size of the output buffer, must be a multiple of 8 }

file_name_size = 40; {file names shouldn’t be longer than this }

pOOLTLCLm@ = "MFbases:MF.POOL_uuuuuuunuounoouuunouounn s
{ string of length file_name_size; tells where the string pool appears }

path_size = 300; { maximum number of knots between breakpoints of a path }

bistack_size = 785; {size of stack for bisection algorithms; should probably be left at this value }

header_size = 100; { maximum number of TFM header words, times 4 }

lig_table_size = 5000;
{ maximum number of ligature/kern steps, must be at least 255 and at most 32510 }

maz_kerns = 500; { maximum number of distinct kern amounts }

maz_font_dimen = 50; {maximum number of fontdimen parameters }

This code is used in section 4.

12. Like the preceding parameters, the following quantities can be changed at compile time to extend or
reduce METAFONT’s capacity. But if they are changed, it is necessary to rerun the initialization program
INIMF to generate new tables for the production METAFONT program. One can’t simply make helter-skelter
changes to the following constants, since certain rather complex initialization numbers are computed from
them. They are defined here using WEB macros, instead of being put into Pascal’s const list, in order to
emphasize this distinction.

define mem_min =0 {smallest index in the mem array, must not be less than min_halfword }
define mem_top = 30000 {largest index in the mem array dumped by INIMF; must be substantially
larger than mem_min and not greater than mem_maz }
define hash_size = 2100
{ maximum number of symbolic tokens, must be less than maz_halfword — 3 x param_size }
define hash_prime = 1777 { a prime number equal to about 85% of hash_size }
define max_in_open = 6
{ maximum number of input files and error insertions that can be going on simultaneously }
define param_size = 150 { maximum number of simultaneous macro parameters }

8 PART 1: INTRODUCTION METAFONT 813

13. In case somebody has inadvertently made bad settings of the “constants,” METAFONT checks them
using a global variable called bad.
This is the first of many sections of METAFONT where global variables are defined.

(Global variables 13) =

bad: integer; {is some “constant” wrong? }

See also sections 20, 25, 29, 31, 38, 42, 50, 54, 68, 71, 74, 91, 97, 129, 137, 144, 148, 159, 160, 161, 166, 178, 190, 196, 198, 200,
201, 225, 230, 250, 267, 279, 283, 298, 308, 309, 327, 371, 379, 389, 395, 403, 427, 430, 448, 455, 461, 464, 507, 552, 555,
557, 566, 569, 572, 579, 585, 592, 624, 628, 631, 633, 634, 659, 680, 699, 738, 752, 767, 768, 775, 782, 785, 791, 796, 813,
821, 954, 1077, 1084, 1087, 1096, 1119, 1125, 1130, 1149, 1152, 1162, 1183, 1188, and 1203.

This code is used in section 4.

14. Later on we will say ‘if mem_maz > maz_halfword then bad < 10, or something similar. (We can’t
do that until maz_halfword has been defined.)

(Check the “constant” values for consistency 14) =
bad + 0;
if (half-error_line < 30) V (half-error_line > error_line — 15) then bad + 1;
if maz_print_line < 60 then bad < 2;
if gf buf_size mod 8 # 0 then bad < 3;
if mem_min 4+ 1100 > mem_top then bad < 4;
if hash_prime > hash_size then bad + 5;
if header_size mod 4 # 0 then bad < 6;
if (lig_table_size < 255) V (lig_table_size > 32510) then bad « 7;
See also sections 154, 204, 214, 310, 553, and 777.

This code is used in section 1204.

15. Labels are given symbolic names by the following definitions, so that occasional goto statements
will be meaningful. We insert the label ‘exit’ just before the ‘end’ of a procedure in which we have used
the ‘return’ statement defined below; the label ‘restart’ is occasionally used at the very beginning of a
procedure; and the label ‘reswitch’ is occasionally used just prior to a case statement in which some cases
change the conditions and we wish to branch to the newly applicable case. Loops that are set up with the
loop construction defined below are commonly exited by going to ‘done’ or to ‘found’ or to ‘not_found’, and
they are sometimes repeated by going to ‘continue’. If two or more parts of a subroutine start differently
but end up the same, the shared code may be gathered together at ‘common_ending’.

Incidentally, this program never declares a label that isn’t actually used, because some fussy Pascal
compilers will complain about redundant labels.

define exit = 10 {go here to leave a procedure }

define restart =20 {go here to start a procedure again }

define reswitch =21 {go here to start a case statement again }

define continue =22 {go here to resume a loop }

define done =30 {go here to exit a loop }

define donel =31 {like done, when there is more than one loop }

define done2 =32 {for exiting the second loop in a long block }

define doned = 33 {for exiting the third loop in a very long block }

define done4 =34 {for exiting the fourth loop in an extremely long block }
define done5 =35 {for exiting the fifth loop in an immense block }

define done6 =36 {for exiting the sixth loop in a block }

define found =40 {go here when you've found it }

define found! =41 {like found, when there’s more than one per routine }
define found2 =42 {like found, when there’s more than two per routine }
define not_found =45 {go here when you’ve found nothing }

define common_ending = 50 {go here when you want to merge with another branch }

816 METAFONT PART 1: INTRODUCTION

16. Here are some macros for common programming idioms.

define incr(#) =# <+ #+ 1 {increase a variable by unity }

define decr(#) =# « #—1 {decrease a variable by unity }

define negate(#) = # < —# { change the sign of a variable }

define double(#) = # < #+# {multiply a variable by two }

define loop = while true do {repeat over and over until a goto happens }
format loop = zclause {WEB’s xclause acts like ‘while true do’ }

define do_nothing = {empty statement }

define return = goto exit { terminate a procedure call }

format return = nil {WEB will henceforth say return instead of return }

10 PART 2: THE CHARACTER SET METAFONT §17

17. The character set. In order to make METAFONT readily portable to a wide variety of computers,
all of its input text is converted to an internal eight-bit code that includes standard ASCII, the “American
Standard Code for Information Interchange.” This conversion is done immediately when each character is
read in. Conversely, characters are converted from ASCII to the user’s external representation just before
they are output to a text file.

Such an internal code is relevant to users of METAFONT only with respect to the char and ASCII
operations, and the comparison of strings.

18. Characters of text that have been converted to METAFONT’s internal form are said to be of type
ASCII_code, which is a subrange of the integers.

(Types in the outer block 18) =
ASCII_code =0 ..255; {eight-bit numbers }
See also sections 24, 37, 101, 105, 106, 156, 186, 565, 571, 627, and 1151.

This code is used in section 4.

19. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common,
so it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital
and small letters in a convenient way, especially in a program for font design; so the present specification of
METAFONT has been written under the assumption that the Pascal compiler and run-time system permit the
use of text files with more than 64 distinguishable characters. More precisely, we assume that the character
set contains at least the letters and symbols associated with ASCII codes 40 through “176; all of these
characters are now available on most computer terminals.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to
decide what to call the associated data type. Some Pascals use the original name char for the characters in
text files, even though there now are more than 64 such characters, while other Pascals consider char to be
a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name tezt_char to stand for the data type of
the characters that are converted to and from ASCII_code when they are input and output. We shall also
assume that text_char consists of the elements chr(first_text_char) through chr(last_text_char), inclusive.
The following definitions should be adjusted if necessary.

define texrt_char = char {the data type of characters in text files }

define first_text_char =0 {ordinal number of the smallest element of text_char }

define last_text_char = 255 {ordinal number of the largest element of text_char }

(Local variables for initialization 19) =
i: integer;
See also section 130.

This code is used in section 4.

20. The METAFONT processor converts between ASCII code and the user’s external character set by means
of arrays zord and xzchr that are analogous to Pascal’s ord and chr functions.

(Global variables 13) +=

zord: array [text_char] of ASCII code; {specifies conversion of input characters }

xchr: array [ASCII_code] of text_char; {specifies conversion of output characters }

§21 METAFONT PART 2: THE CHARACTER SET 11

21. Since we are assuming that our Pascal system is able to read and write the visible characters of
standard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize the standard part of the zchr array properly, without needing any system-dependent
changes. On the other hand, it is possible to implement METAFONT with less complete character sets, and
in such cases it will be necessary to change something here.

(Set initial values of key variables 21) =

xchr[40] <= “u7; xchr[41] < V75 xchr[42] < "‘; xchr[48] <= “#7; zchr[’{4] + “$;
zchr[45] < “h"; xchr[46] <+ &’, zehr[47]) < =777
zchr['50] <+ ~ (75 xzchr[51] + ") 75 xchr[52] + “*7; xchr['55’] — T+ mehr[54] « 7,7
xzchr[’55] <= “=7; xchr[’56] « ~.7; xchr[57) «+ /7
xzchr[’60] <— “07; zchr[61] « 1 i xchr[62] < "27; xchr[63] < "37; xchr[64] «+ "47;
xchr['65] <— "57; xchr[66] < "67; xchr[67] < 77,
xchr[10] <= "87; wchr["71] <= "97; xchr[72] <= ~:7; xchr[13] "5 xchr[74] < <7
xchr|15] <= “=7; xchr[16] + ">7; xchr[77]) + "77;
xzchr[’100] < “@7; xchr[’101] + "A”; xchr[’102] + "B"; xchr['103] < "C~; zchr['104] + D~;
xzchr[’105] < "E”; xchr[’106] + "F~; xzchr[107] + "G~;
xchr['110] <— "H"; xchr['111] « "I7; xchr[112] < ~J7; xchr['113] < "K~; zchr['11}] + "L~;
xchr[’115] <= "M7; xchr['116] < "N7; xchr[117] < "07;
xchr[120] <= "P7; xchr[’121] < "Q7; xchr[’122] <= "R"; xchr['123] < "87; xchr|['124] + "T~;
xzchr|'125] <+ “U”; zchr['126] + V75 xchr[127] + "W~
xchr['130] <= "X~ xchr['131] « "Y"; xchr[182] < "Z7; xchr['133] < "[; zchr['134] + "\~;
xchr['135] < “17; xchr['136] « ~~7; xchr[137] «+ ~_7;
xchr['140] <= =~ 7 wchr['141] < "a”; xchr[142] < "b"; xchr['143] < "¢~ zchr['1{4] + "d~;
zchr['145] < “e7; xchr[146] < "£7; xchr['147]) <+ "g~;
xzchr['150] <~ “h”; xchr['151] + "i7; axchr[152] + “j7; xchr['153] + "k~; zchr['154] + "1°;
xzchr[’155] < "m”; xchr[’156] + "n”; xchr[’157] + "o7;
xchr[’160] <— "p~; xchr['161] «— "q"; xchr[162] < "t xchr['163] < "s~; zchr['164] + "t~;
xchr[’165] <— “u”; xchr[’166] < "v7; xchr[167] « "w’;
xchr['170] <= "x7; xchr['171] <= "y~; xchr[172] < "z xchr['173] <= {75 zchr['174] + "|;
xchr[175) <= "}, xchr['176] < "~ 7;

See also sections 22, 23, 69, 72, 75, 92, 98, 131, 138, 179, 191, 199, 202, 231, 251, 396, 428, 449, 456, 462, 570, 573, 593, 739,

753, 776, 797, 822, 1078, 1085, 1097, 1150, 1153, and 1184.

This code is used in section 4.

22. The ASCII code is “standard” only to a certain extent, since many computer installations have found
it advantageous to have ready access to more than 94 printing characters. If METAFONT is being used on
a garden-variety Pascal for which only standard ASCII codes will appear in the input and output files, it
doesn’t really matter what codes are specified in zchr[0 .. "37], but the safest policy is to blank everything
out by using the code shown below.

However, other settings of zchr will make METAFONT more friendly on computers that have an extended
character set, so that users can type things like ‘#’ instead of ‘<>’. People with extended character sets can
assign codes arbitrarily, giving an zchr equivalent to whatever characters the users of METAFONT are allowed
to have in their input files. Appropriate changes to METAFONT’s char_class table should then be made.
(Unlike TEX, each installation of METAFONT has a fixed assignment of category codes, called the char_class.)
Such changes make portability of programs more difficult, so they should be introduced cautiously if at all.

(Set initial values of key variables 21) +=
for i <~ 0to 37 do zchrli] < "u7;
for i «+ 177 to "377 do zchr[i] + "u";

12 PART 2: THE CHARACTER SET METAFONT 623

23. The following system-independent code makes the zord array contain a suitable inverse to the infor-
mation in xzchr. Note that if zchr[i] = xchr[j] where i < j < “177, the value of zord[zchr[i]] will turn out
to be j or more; hence, standard ASCII code numbers will be used instead of codes below 40 in case there
is a coincidence.

(Set initial values of key variables 21) +=
for i « first_text_char to last_text_char do zord|chr(i)] «+ "177;
for i < 200 to 377 do word[zchrli]] < i;
for i + 0to 176 do zord[zchrli]] + i;

624 METAFONT PART 3: INPUT AND OUTPUT 13

24. Input and output. The bane of portability is the fact that different operating systems treat input
and output quite differently, perhaps because computer scientists have not given sufficient attention to this
problem. People have felt somehow that input and output are not part of “real” programming. Well, it is
true that some kinds of programming are more fun than others. With existing input/output conventions
being so diverse and so messy, the only sources of joy in such parts of the code are the rare occasions when
one can find a way to make the program a little less bad than it might have been. We have two choices,
either to attack I/O now and get it over with, or to postpone I/O until near the end. Neither prospect is
very attractive, so let’s get it over with.

The basic operations we need to do are (1) inputting and outputting of text, to or from a file or the user’s
terminal; (2) inputting and outputting of eight-bit bytes, to or from a file; (3) instructing the operating system
to initiate (“open”) or to terminate (“close”) input or output from a specified file; (4) testing whether the
end of an input file has been reached; (5) display of bits on the user’s screen. The bit-display operation will
be discussed in a later section; we shall deal here only with more traditional kinds of I/O.

METAFONT needs to deal with two kinds of files. We shall use the term alpha_file for a file that contains
textual data, and the term byte_file for a file that contains eight-bit binary information. These two types
turn out to be the same on many computers, but sometimes there is a significant distinction, so we shall
be careful to distinguish between them. Standard protocols for transferring such files from computer to
computer, via high-speed networks, are now becoming available to more and more communities of users.

The program actually makes use also of a third kind of file, called a word_file, when dumping and reloading
base information for its own initialization. We shall define a word file later; but it will be possible for us to
specify simple operations on word files before they are defined.

(Types in the outer block 18) +=
eight_bits = 0 .. 255; { unsigned one-byte quantity }
alpha_file = packed file of text_char; {files that contain textual data }
byte_file = packed file of eight_bits; {files that contain binary data }

25. Most of what we need to do with respect to input and output can be handled by the I/O facilities
that are standard in Pascal, i.e., the routines called get, put, eof, and so on. But standard Pascal does
not allow file variables to be associated with file names that are determined at run time, so it cannot be
used to implement METAFONT; some sort of extension to Pascal’s ordinary reset and rewrite is crucial for
our purposes. We shall assume that name_of_file is a variable of an appropriate type such that the Pascal
run-time system being used to implement METAFONT can open a file whose external name is specified by
name_of_file.

(Global variables 13) +=
name_of-file: packed array [l .. file_name_size] of char;
{ on some systems this may be a record variable }
name_length: 0 .. file_name_size;
{ this many characters are actually relevant in name_of_file (the rest are blank) }

14 PART 3: INPUT AND OUTPUT METAFONT §26

26. The Pascal-H compiler with which the present version of METAFONT was prepared has extended the
rules of Pascal in a very convenient way. To open file f, we can write

reset(f,name, "/07) for input;
rewrite(f, name, "/07) for output.

The ‘name’ parameter, which is of type ‘packed array [(any)] of text_char’, stands for the name of the
external file that is being opened for input or output. Blank spaces that might appear in name are ignored.
The ‘/0’ parameter tells the operating system not to issue its own error messages if something goes wrong.
If a file of the specified name cannot be found, or if such a file cannot be opened for some other reason (e.g.,
someone may already be trying to write the same file), we will have erstat (f) # 0 after an unsuccessful reset
or rewrite. This allows METAFONT to undertake appropriate corrective action.
METAFONT’s file-opening procedures return false if no file identified by name_of_file could be opened.

define reset_OK (#) = erstat(#) =0
define rewrite_OK (#) = erstat(#) =0

function a_open_in(var f : alpha_file): boolean; {open a text file for input }
begin reset (f, name_of_file, /07); a_open_in <+ reset_OK (f);
end;

function a_open_out (var f : alpha_file): boolean; {open a text file for output }
begin rewrite(f, name_of_file, /07); a_open_out <+ rewrite_.OK (f);
end;

function b_open_out(var f : byte_file): boolean; {open a binary file for output }
begin rewrite(f, name_of-file, “/07); b_open_out < rewrite_.OK (f);
end;

function w_open_in(var f : word_file): boolean; {open a word file for input }
begin reset (f, name_of-file, “/07); w_open_in <+ reset_OK (f);
end;

function w_open_out(var f : word_file): boolean; {open a word file for output }
begin rewrite(f, name_of_file, /07); w_open_out + rewrite_OK (f);
end;

27. Files can be closed with the Pascal-H routine ‘close (f)’, which should be used when all input or output
with respect to f has been completed. This makes f available to be opened again, if desired; and if f was
used for output, the close operation makes the corresponding external file appear on the user’s area, ready
to be read.

procedure a_close(var f : alpha_file); {close a text file }
begin close(f);
end;

procedure b_close(var f : byte_file); {close a binary file }
begin close(f);
end;

procedure w_close(var f : word_file); {close a word file }
begin close(f);
end;

28. Binary input and output are done with Pascal’s ordinary get and put procedures, so we don’t have to
make any other special arrangements for binary I/0. Text output is also easy to do with standard Pascal
routines. The treatment of text input is more difficult, however, because of the necessary translation to
ASCII_code values. METAFONT’s conventions should be efficient, and they should blend nicely with the
user’s operating environment.

§29 METAFONT PART 3: INPUT AND OUTPUT 15

29. Input from text files is read one line at a time, using a routine called input_In. This function is defined
in terms of global variables called buffer, first, and last that will be described in detail later; for now, it
suffices for us to know that buffer is an array of ASCII_code values, and that first and last are indices into
this array representing the beginning and ending of a line of text.

(Global variables 13) +=

buffer: array [0 .. buf_size] of ASCII code; {lines of characters being read }
first: 0 .. buf size; {the first unused position in buffer }

last: 0 .. buf-size; {end of the line just input to buffer }

maz-buf_stack: 0 .. buf-size; {largest index used in buffer }

30. The input_In function brings the next line of input from the specified field into available positions of
the buffer array and returns the value true, unless the file has already been entirely read, in which case it
returns false and sets last < first. In general, the ASCII_code numbers that represent the next line of the
file are input into buffer[first], buffer|first + 1], ..., buffer[last — 1]; and the global variable last is set equal
to first plus the length of the line. Trailing blanks are removed from the line; thus, either last = first (in
which case the line was entirely blank) or buffer[last — 1] # ",".

An overflow error is given, however, if the normal actions of input_In would make last > buf_size; this is
done so that other parts of METAFONT can safely look at the contents of buffer[last + 1] without overstepping
the bounds of the buffer array. Upon entry to input_ln, the condition first < buf_size will always hold, so
that there is always room for an “empty” line.

The variable maz_buf_stack, which is used to keep track of how large the buf size parameter must be to
accommodate the present job, is also kept up to date by input_in.

If the bypass_eoln parameter is true, input_ln will do a get before looking at the first character of the line;
this skips over an eoln that was in f1. The procedure does not do a get when it reaches the end of the line;
therefore it can be used to acquire input from the user’s terminal as well as from ordinary text files.

Standard Pascal says that a file should have eoln immediately before eof , but METAFONT needs only a
weaker restriction: If eof occurs in the middle of a line, the system function eoln should return a true result
(even though f1 will be undefined).

function input_in(var f : alpha_file; bypass_eoln : boolean): boolean;
{inputs the next line or returns false }
var last_nonblank: 0 .. buf-size; { last with trailing blanks removed }
begin if bypass_eoln then
if —eof (f) then get(f); {input the first character of the line into f71}
last + first; {cf. Matthew 19:30 }
if eof (f) then input_ln « false
else begin last_nonblank <+ first;
while —eoln(f) do
begin if last > maz_buf_stack then
begin maz_buf_stack < last + 1;
if maz_buf stack = buf_size then {Report overflow of the input buffer, and abort 34);
end;
buffer|last] < zord[f1]; get(f); incr(last);
if buffer[last — 1] # "" then last_nonblank « last;
end;
last < last_nonblank; input_ln < true;
end;
end;

16 PART 3: INPUT AND OUTPUT METAFONT §31

31. The user’s terminal acts essentially like other files of text, except that it is used both for input and
for output. When the terminal is considered an input file, the file variable is called term_in, and when it is
considered an output file the file variable is term_out.

(Global variables 13) +=
term_in: alpha_file; {the terminal as an input file }
term_out: alpha_file; {the terminal as an output file }

32. Here is how to open the terminal files in Pascal-H. The ‘/I’ switch suppresses the first get.

define ¢_open_in = reset(term_in, "TTY: ", °/0/1°) {open the terminal for text input }
define t_open_out = rewrite(term_out, "TTY: ", °/0°) {open the terminal for text output }

33. Sometimes it is necessary to synchronize the input/output mixture that happens on the user’s terminal,
and three system-dependent procedures are used for this purpose. The first of these, update_terminal, is
called when we want to make sure that everything we have output to the terminal so far has actually left the
computer’s internal buffers and been sent. The second, clear_terminal, is called when we wish to cancel any
input that the user may have typed ahead (since we are about to issue an unexpected error message). The
third, wake_up_terminal, is supposed to revive the terminal if the user has disabled it by some instruction
to the operating system. The following macros show how these operations can be specified in Pascal-H:

define update_terminal = break (term_out) {empty the terminal output buffer }
define clear_terminal = break_in(term_in, true) {clear the terminal input buffer }
define wake_up_terminal = do_nothing { cancel the user’s cancellation of output }

34. We need a special routine to read the first line of METAFONT input from the user’s terminal. This
line is different because it is read before we have opened the transcript file; there is sort of a “chicken and
egg” problem here. If the user types ‘input cmr10’ on the first line, or if some macro invoked by that line
does such an input, the transcript file will be named ‘cmr10.1log’; but if no input commands are performed
during the first line of terminal input, the transcript file will acquire its default name ‘mfput.log’. (The
transcript file will not contain error messages generated by the first line before the first input command.)

The first line is even more special if we are lucky enough to have an operating system that treats METRA-
FONT differently from a run-of-the-mill Pascal object program. It’s nice to let the user start running a
METAFONT job by typing a command line like ‘MF cmr10’; in such a case, METAFONT will operate as if the
first line of input were ‘cmr10’, i.e., the first line will consist of the remainder of the command line, after the
part that invoked METAFONT.

The first line is special also because it may be read before METAFONT has input a base file. In such cases,
normal error messages cannot yet be given. The following code uses concepts that will be explained later.
(If the Pascal compiler does not support non-local goto, the statement ‘goto final_end’ should be replaced
by something that quietly terminates the program.)

(Report overflow of the input buffer, and abort 34) =
if base_ident = 0 then
begin write_In(term_out, "Buffer size exceeded! "); goto final_end;
end
else begin cur_input.loc_field + first; cur_input.limit_field < last — 1;
overflow ("buffer,size", buf_size);
end

This code is used in section 30.

635 METAFONT PART 3: INPUT AND OUTPUT 17

35. Different systems have different ways to get started. But regardless of what conventions are adopted,
the routine that initializes the terminal should satisfy the following specifications:

1) It should open file term_in for input from the terminal. (The file term_out will already be open for
output to the terminal.)

2) If the user has given a command line, this line should be considered the first line of terminal input.
Otherwise the user should be prompted with ‘**’, and the first line of input should be whatever is
typed in response.

3) The first line of input, which might or might not be a command line, should appear in locations first
to last — 1 of the buffer array.

4) The global variable loc should be set so that the character to be read next by METAFONT is in
buffer[loc]. This character should not be blank, and we should have loc < last.

(It may be necessary to prompt the user several times before a non-blank line comes in. The prompt is ‘**’
instead of the later ‘x’ because the meaning is slightly different: ‘input’ need not be typed immediately
after ‘xx*.)

define loc = cur_input.loc_field {location of first unread character in buffer }

36. The following program does the required initialization without retrieving a possible command line. It
should be clear how to modify this routine to deal with command lines, if the system permits them.

function nit_terminal: boolean; { gets the terminal input started }
label exit;
begin t_open_in;
loop begin wake_up_terminal; write(term_out, “**"); update_terminal;
if —input_ln(term_in, true) then {this shouldn’t happen }
begin write_In(term_out); write(term_out, "' End of file on the terminal... why?~);
init_terminal < false; return;
end;
loc + first;
while (loc < last) A (buffer[loc] = "u") do incr(loc);
if loc < last then
begin nit_terminal < true; return; {return unless the line was all blank }
end;
wriL‘e,ln(term,out7 "Please type the name 0f jyour input file. ’);
end;
erit: end;

18 PART 4: STRING HANDLING METAFONT §37

37. String handling. Symbolic token names and diagnostic messages are variable-length strings of
eight-bit characters. Since Pascal does not have a well-developed string mechanism, METAFONT does all of
its string processing by homegrown methods.

Elaborate facilities for dynamic strings are not needed, so all of the necessary operations can be handled
with a simple data structure. The array str_pool contains all of the (eight-bit) ASCII codes in all of the strings,
and the array str_start contains indices of the starting points of each string. Strings are referred to by integer
numbers, so that string number s comprises the characters str_pool[j] for str_start[s] < j < str_start[s + 1].
Additional integer variables pool_ptr and str_ptr indicate the number of entries used so far in str_pool and
str_start, respectively; locations str_pool [pool_ptr| and str_start[str_ptr] are ready for the next string to be
allocated.

String numbers 0 to 255 are reserved for strings that correspond to single ASCII characters. This is in
accordance with the conventions of WEB, which converts single-character strings into the ASCII code number
of the single character involved, while it converts other strings into integers and builds a string pool file.
Thus, when the string constant "." appears in the program below, WEB converts it into the integer 46,
which is the ASCII code for a period, while WEB will convert a string like "hello" into some integer greater
than 255. String number 46 will presumably be the single character ‘.”; but some ASCII codes have no
standard visible representation, and METAFONT may need to be able to print an arbitrary ASCII character,
so the first 256 strings are used to specify exactly what should be printed for each of the 256 possibilities.

Elements of the str_pool array must be ASCII codes that can actually be printed; i.e., they must have an
xchr equivalent in the local character set. (This restriction applies only to preloaded strings, not to those
generated dynamically by the user.)

Some Pascal compilers won’t pack integers into a single byte unless the integers lie in the range —128 .. 127.
To accommodate such systems we access the string pool only via macros that can easily be redefined.

define si(#) =# {convert from ASCII code to packed-ASCII_code }
define so(#) =# {convert from packed_ASCII_code to ASCII_code }

(Types in the outer block 18) +=
pool_pointer = 0 .. pool_size; {for variables that point into str_pool }
stronumber = 0 .. maz_strings; {for variables that point into str_start }
packed_ASCII_code =0 .. 255; {elements of str_pool array }

38. (Global variables 13) +=

str_pool: packed array [pool_pointer] of packed_ASCII_code; {the characters}
str_start: array [str-number] of pool_pointer; {the starting pointers }
pool_ptr: pool_pointer; {first unused position in str_pool }

str_ptr: str_number; {number of the current string being created }
init_pool_ptr: pool_pointer; {the starting value of pool_ptr }

init_str_ptr: str_number; {the starting value of str_ptr }

maxz_pool_ptr: pool_pointer; {the maximum so far of pool_ptr }

maz_str_ptr: str_number; {the maximum so far of str_ptr }

39. Several of the elementary string operations are performed using WEB macros instead of Pascal pro-
cedures, because many of the operations are done quite frequently and we want to avoid the overhead of
procedure calls. For example, here is a simple macro that computes the length of a string.

define length (#) = (str_start[# + 1] — str_start[#]) {the number of characters in string number # }

40. The length of the current string is called cur_length:
define cur_length = (pool_ptr — str_start[str_ptr])

§41 METAFONT PART 4: STRING HANDLING 19

41. Strings are created by appending character codes to str_pool. The append_char macro, defined here,
does not check to see if the value of pool_ptr has gotten too high; this test is supposed to be made before
append_char is used.

To test if there is room to append ! more characters to str_pool, we shall write str_room (l), which aborts
METAFONT and gives an apologetic error message if there isn’t enough room.

define append_char(#) = {put ASCII code # at the end of str_pool }
begin str_pool [pool_ptr] < si(#); incr(pool_ptr);
end
define str_room(#) = {make sure that the pool hasn’t overflowed }
begin if pool_ptr + # > max_pool_ptr then
begin if pool_ptr 4+ # > pool_size then overflow("pool size", pool_size — init_pool_ptr);
maz_pool_ptr < pool_ptr + #;
end;
end

42. METAFONT’s string expressions are implemented in a brute-force way: Every new string or substring
that is needed is simply copied into the string pool.

Such a scheme can be justified because string expressions aren’t a big deal in METAFONT applications;
strings rarely need to be saved from one statement to the next. But it would waste space needlessly if we
didn’t try to reclaim the space of strings that are going to be used only once.

Therefore a simple reference count mechanism is provided: If there are no references to a certain string
from elsewhere in the program, and if there are no references to any strings created subsequent to it, then
the string space will be reclaimed.

The number of references to string number s will be str_ref [s]. The special value str_ref [s] = max_str_ref =
127 is used to denote an unknown positive number of references; such strings will never be recycled. If a
string is ever referred to more than 126 times, simultaneously, we put it in this category. Hence a single byte
suffices to store each str_ref.

define maz_str_ref = 127 { “infinite” number of references }
define add_str_ref (#) =
begin if str_ref [#] < max_str_ref then incr(str_ref [#]);
end

(Global variables 13) +=
str_ref: array [str_number] of 0 .. maz_str_ref;

43. Here’s what we do when a string reference disappears:

define delete_str_ref (#) =
begin if str_ref [#] < max_str_ref then
if str_ref [#] > 1 then decr(str_ref [#]) else flush_string (#);
end

(Declare the procedure called flush_string 43) =
procedure flush_string (s : str_number);
begin if s < str_ptr — 1 then str_ref[s] < 0
else repeat decr(str_ptr);
until str_ref [strptr — 1] # 0;
pool_ptr « str_start [str_ptr];
end;

This code is used in section 73.

20 PART 4: STRING HANDLING METAFONT §44

44. Once a sequence of characters has been appended to str_pool, it officially becomes a string when the
function make_string is called. This function returns the identification number of the new string as its value.

function make_string: str_number; {current string enters the pool }
begin if str_ptr = maz_str_ptr then
begin if str_ptr = maz_strings then overflow ("number of strings", maz_strings — init_str_ptr);
incr (maz_str_ptr);
end;
str_ref [str_ptr] < 1; incr(str_ptr); str_start[str_ptr] < pool_ptr; make_string < str_ptr — 1;
end;

45. The following subroutine compares string s with another string of the same length that appears in
buffer starting at position k; the result is true if and only if the strings are equal.

function str_eq_buf (s : stronumber; k : integer): boolean; {test equality of strings }
label not_found; {loop exit }
var j: pool_pointer; {running index }
result: boolean; {result of comparison }
begin j « str_start[s];
while j < str_start[s + 1] do
begin if so(str_pool[j]) # buffer[k] then
begin result < false; goto not_found;
end;
incr(j); incr(k);
end;
result < true;
not_found: str_eq_buf < result;
end;

46. Here is a similar routine, but it compares two strings in the string pool, and it does not assume that
they have the same length. If the first string is lexicographically greater than, less than, or equal to the
second, the result is respectively positive, negative, or zero.

function str_vs_str(s,t : str-number): integer; {test equality of strings }
label exit;
var j, k: pool_pointer; {running indices }
Is, It: integer; {lengths}
I: integer; {length remaining to test }
begin ls < length(s); It < length(t);
if [s < It then [< Is else | <+ It;
J « str_start[s]; k < str_start|t];
while [> 0 do
begin if str_pool[j] # str_pool[k] then
begin str_vs_str < str_pool[j] — str_pool[k]; return;
end;
incr(4); incr(k); decr(l);
end;
str_vs_str < ls — It;
exit: end;

847 METAFONT PART 4: STRING HANDLING 21

47. The initial values of str_pool, str_start, pool_ptr, and str_ptr are computed by the INIMF program,
based in part on the information that WEB has output while processing METAFONT.

init function get_strings_started: boolean;
{ initializes the string pool, but returns false if something goes wrong }
label done, exit;
var k,l: 0..255; {small indices or counters }
m,n: text_char; {characters input from pool_file }
g: stronumber; {garbage }
a: integer; {accumulator for check sum }
¢: boolean; {check sum has been checked }
begin pool_ptr < 0; str_ptr < 0; maz_pool_ptr < 0; maz_str_ptr < 0; str_start[0] < 0;
(Make the first 256 strings 48);
(Read the other strings from the MF.POOL file and return true, or give an error message and return
false 51);
exit: end;
tini

48. define app_lc_hex (#) =1 + #;
if [< 10 then append_char(l + "0") else append_char(l — 10 + "a")

(Make the first 256 strings 48) =
for k£ <+ 0 to 255 do

begin if ({ Character k cannot be printed 49)) then
begin append_char("~"); append_char(""");
if k < "100 then append_char(k + "100)
else if k < 200 then append_char(k — "100)

else begin app_lc_hez (k div 16); app_lc_hex (k mod 16);
end;

end

else append_char (k);

g < make_string; str_ref [g] < maz_str_ref;

end

This code is used in section 47.

49. The first 128 strings will contain 95 standard ASCII characters, and the other 33 characters will be
printed in three-symbol form like ‘“~A’ unless a system-dependent change is made here. Installations that
have an extended character set, where for example zchr[32] = “#°, would like string ‘32 to be the single
character “32 instead of the three characters 136, 136, '132 (~~Z). On the other hand, even people with
an extended character set will want to represent string ‘15 by ~~M, since ‘15 is ASCII’s “carriage return”
code; the idea is to produce visible strings instead of tabs or line-feeds or carriage-returns or bell-rings or
characters that are treated anomalously in text files.

Unprintable characters of codes 128-255 are, similarly, rendered ~~80—""ff.

The boolean expression defined here should be true unless METAFONT internal code number k corresponds
to a non-troublesome visible symbol in the local character set. If character k cannot be printed, and k < 200,
then character k+ 100 or k— "100 must be printable; moreover, ASCII codes [60 .. 71,156, ‘141 .. "1/6]
must be printable.

(Character k cannot be printed 49) =
(k < llull) \Vi (k > ||~||)

This code is used in section 48.

22 PART 4: STRING HANDLING METAFONT 850

50. When the WEB system program called TANGLE processes the MF.WEB description that you are now
reading, it outputs the Pascal program MF.PAS and also a string pool file called MF.POOL. The INIMF
program reads the latter file, where each string appears as a two-digit decimal length followed by the string
itself, and the information is recorded in METAFONT’s string memory.

(Global variables 13) +=
init pool_file: alpha_file; {the string-pool file output by TANGLE }
tini

51. define bad_pool (#) =
begin wake_up_terminal; write_ln(term_out,#); a_close(pool_file); get_strings_started < false;
return;
end

(Read the other strings from the MF.POOL file and return true, or give an error message and return
false 51) =

name_of-file < pool_-name; {we needn’t set name_length }

if a_open_in(pool_file) then
begin ¢ < false;
repeat (Read one string, but return false if the string memory space is getting too tight for

comfort 52);

until c;
a-close(pool_file); get_strings_started <+ true;
end

else bad_pool(~' I can” "t read MF.POOL. ")

This code is used in section 47.

52. (Read one string, but return false if the string memory space is getting too tight for comfort 52) =
begin if eof (pool_file) then bad_pool(~ ' MF.POOL has no,check, sum. ");
read (pool_file, m,n); {read two digits of string length }
if m = "%~ then (Check the pool check sum 53)
else begin if (zord[m] < "0") V (zord[m] > "9") V (zord[n] < "0") V (zord[n] > "9") then
bad_pool (~ ' MF.POOL_line doesn” "t begin with two,digits.");
l + zord[m] * 10 + zord[n] — "0" x 11; { compute the length }
if pool_ptr + | + string_vacancies > pool_size then bad_pool(~! You have to,increase POOLSIZE. ");
for k<~ 1to!l do
begin if eoln(pool_file) then m «+ "~ else read(pool_file, m);
append_char (zord[m]);
end;
read_In(pool_file); g < make_string; str_ref[g] + max_str_ref;
end;
end

This code is used in section 51.

853 METAFONT PART 4: STRING HANDLING 23

53. The WEB operation @$ denotes the value that should be at the end of this MF.POOL file; any other value
means that the wrong pool file has been loaded.

(Check the pool check sum 53) =
begin a < 0; k + 1;
loop begin if (zord[n] < "0") V (zord[n] > "9") then
bad_pool (~ ' MF.POOL check sum_doesn” "t have nine digits.");
a < 10 x a + zord[n] — "0";
if £ =9 then goto done;
incr (k); read (pool_file,n);
end;
done: if a # @$ then bad_pool(”! MF.POOL doesn” "t match; TANGLE me again.");
c < true;
end

This code is used in section 52.

24 PART 5: ON-LINE AND OFF-LINE PRINTING METAFONT 854

54. On-line and off-line printing. Messages that are sent to a user’s terminal and to the transcript-
log file are produced by several ‘print’ procedures. These procedures will direct their output to a variety of
places, based on the setting of the global variable selector, which has the following possible values:

term_and_log, the normal setting, prints on the terminal and on the transcript file.

log_only, prints only on the transcript file.

term_only, prints only on the terminal.

no_print, doesn’t print at all. This is used only in rare cases before the transcript file is open.

pseudo, puts output into a cyclic buffer that is used by the show_context routine; when we get to that routine
we shall discuss the reasoning behind this curious mode.

new_string, appends the output to the current string in the string pool.

The symbolic names ‘term_and_log’, etc., have been assigned numeric codes that satisfy the convenient
relations no_print + 1 = term_only, no_print 4+ 2 = log_only, term_only + 2 = log_only + 1 = term_and_log.

Three additional global variables, tally and term_offset and file_offset, record the number of characters
that have been printed since they were most recently cleared to zero. We use tally to record the length of
(possibly very long) stretches of printing; term_offset and file_offset, on the other hand, keep track of how
many characters have appeared so far on the current line that has been output to the terminal or to the
transcript file, respectively.

define no_print =0 { selector setting that makes data disappear }
define term_only =1 {printing is destined for the terminal only }
define log_only =2 {printing is destined for the transcript file only }
define term_and_log =3 {normal selector setting }

define pseudo = 4 {special selector setting for show_context }
define new_string =5 { printing is deflected to the string pool }
define maz_selector =5 { highest selector setting }

(Global variables 13) +=

log_file: alpha_file; {transcript of METAFONT session }

selector: 0 .. max_selector; {where to print a message }

dig: array [0..22] of 0..15; {digits in a number being output }

tally: integer; {the number of characters recently printed }

term_offset: 0 .. max_print_line; {the number of characters on the current terminal line }
file_offset: 0 .. maz_print_line; {the number of characters on the current file line }
trick_buf: array [0 .. error_line] of ASCII_code; { circular buffer for pseudoprinting }
trick_count: integer; {threshold for pseudoprinting, explained later }

first_count: integer; {another variable for pseudoprinting }

55. (Initialize the output routines 55) =
selector < term_only; tally < 0; term_offset < 0; file_offset < 0;
See also sections 61, 783, and 792.

This code is used in section 1204.

56. Macro abbreviations for output to the terminal and to the log file are defined here for convenience.
Some systems need special conventions for terminal output, and it is possible to adhere to those conventions
by changing wterm, wterm_In, and wterm_cr here.

define wterm (#) = write(term_out, #)
define wterm_in(#) = write_ln(term_out , #)
define wterm_cr = write_ln(term_out)
define wlog (#) = write(log_file, #)

define wlog_in(#) = write_ln (log_file, #)
define wlog_cr = write_In(log_file)

857 METAFONT PART 5: ON-LINE AND OFF-LINE PRINTING 25

57. To end a line of text output, we call print_in.

(Basic printing procedures 57) =
procedure print_ln; { prints an end-of-line }
begin case selector of
term_and_log: begin wterm_cr; wlog_cr; term_offset < 0; file_offset + 0;

end;

log_only: begin wlog_cr; file_offset < 0;
end;

term_only: begin wterm_cr; term_offset < 0;
end;

no_print, pseudo , new_string: do_nothing;
end; {there are no other cases }
end; {note that tally is not affected }
See also sections 58, 59, 60, 62, 63, 64, 103, 104, 187, 195, 197, and 773.

This code is used in section 4.

58. The print_char procedure sends one character to the desired destination, using the zchr array to map
it into an external character compatible with input_ln. All printing comes through print_ln or print_char.

(Basic printing procedures 57) +=
procedure print_char(s: ASCII_code); { prints a single character }
begin case selector of
term_and_log: begin wterm (zchr(s]); wlog(xzchr(s]); incr(term_offset); incr(file-offset);
if term_offset = max_print_line then
begin wterm_cr; term_offset < 0;
end;
if file_offset = max_print_line then
begin wlog_cr; file_offset < 0;
end;
end;
log_only: begin wlog(xzchr|s]); incr(file_offset);
if file_offset = maz_print_line then print_ln;
end;
term_only: begin wterm (xchr|s]); incr(term_offset);
if term_offset = max_print_line then print_in;
end;
no_print: do_nothing;
pseudo: if tally < trick_count then trick_buf [tally mod error_line] < s;
new_string: begin if pool_ptr < pool_size then append_char(s);
end; {we drop characters if the string space is full }
end; {there are no other cases }
incr (tally);
end;

)

26 PART 5: ON-LINE AND OFF-LINE PRINTING METAFONT 859

59. An entire string is output by calling print. Note that if we are outputting the single standard ASCII
character c, we could call print("c"), since "c" = 99 is the number of a single-character string, as explained
above. But print_char("c") is quicker, so METAFONT goes directly to the print_char routine when it knows
that this is safe. (The present implementation assumes that it is always safe to print a visible ASCII
character.)
(Basic printing procedures 57) +=
procedure print (s : integer); {prints string s}
var j: pool_pointer; {current character code position }
begin if (s < 0)V (s > str_ptr) then s+ "???"; {this can’t happen }
if (s < 256) A (selector > pseudo) then print_char(s)
else begin j < str_start[s];
while j < str_start[s + 1] do
begin print_char(so(str_pool[j])); incr(j);
end;
end;
end;
60. Sometimes it’s necessary to print a string whose characters may not be visible ASCII codes. In that
case slow_print is used.

(Basic printing procedures 57) +=
procedure slow_print (s : integer); { prints string s }
var j: pool_pointer; {current character code position }
begin if (s < 0)V (s > str_ptr) then s+ "???"; {this can’t happen }
if (s < 256) A (selector > pseudo) then print_char(s)
else begin j + str_start[s];
while j < str_start[s + 1] do
begin print (so(str_pool[j])); incr(j);
end;
end;
end;
61. Here is the very first thing that METAFONT prints: a headline that identifies the version number and
base name. The term_offset variable is temporarily incorrect, but the discrepancy is not serious since we
assume that the banner and base identifier together will occupy at most maz_print_line character positions.

(Initialize the output routines 55) +=
wterm (banner);
if base_ident = 0 then wterm_In(|, (no base_ preloaded) 7)
else begin slow_print (base_ident); print_ln;
end;
update_terminal;

62. The procedure print_nl is like print, but it makes sure that the string appears at the beginning of a
new line.
(Basic printing procedures 57) +=
procedure print_nl(s : str-number); { prints string s at beginning of line }
begin if ((term_offset > 0) A (odd (selector))) V ((file_offset > 0) A (selector > log_only)) then print_ln;
print(s);
end;

563 METAFONT PART 5: ON-LINE AND OFF-LINE PRINTING 27

63. An array of digits in the range 0 .. 9 is printed by print_the_digs.

(Basic printing procedures 57) +=
procedure print_the_digs (k : eight_bits); {prints dig[k —1]... dig[0] }
begin while £ > 0 do
begin decr(k); print_char("0" + dig[k]);
end;
end;

64. The following procedure, which prints out the decimal representation of a given integer n, has been
written carefully so that it works properly if n = 0 or if (—n) would cause overflow. It does not apply mod or
div to negative arguments, since such operations are not implemented consistently by all Pascal compilers.

(Basic printing procedures 57) +=
procedure print_int(n : integer); { prints an integer in decimal form }
var k: 0..23; {index to current digit; we assume that n < 10?3}
m: integer; {used to negate n in possibly dangerous cases }
begin k£ + 0;
if n < 0 then
begin print_char("-");
if n > —100000000 then negate(n)
else begin m + —1 —n; n < mdiv 10; m + (mmod 10) + 1; k + 1;
if m < 10 then dig[0] < m
else begin dig[0] + 0; incr(n);
end;
end;
end;
repeat dig[k] < n mod 10; n < ndiv 10; incr(k);
until n = 0;
print_the_digs (k);
end;

65. METAFONT also makes use of a trivial procedure to print two digits. The following subroutine is
usually called with a parameter in the range 0 < n < 99.
procedure print_dd(n : integer); {prints two least significant digits }

begin n < abs(n) mod 100; print_char("0" + (n div 10)); print_char("0" + (n mod 10));

end;

28 PART 5: ON-LINE AND OFF-LINE PRINTING METAFONT 866

66. Here is a procedure that asks the user to type a line of input, assuming that the selector setting is
either term_only or term_and_log. The input is placed into locations first through last — 1 of the buffer
array, and echoed on the transcript file if appropriate.
This procedure is never called when interaction < scroll_mode.
define prompt_input (#) =
begin wake_up_terminal; print(#); term_input;
end {prints a string and gets a line of input }
procedure term_input; {gets a line from the terminal }
var k: 0 .. buf_size; {index into buffer }
begin update_terminal; {now the user sees the prompt for sure }
if —input_in(term_in, true) then fatal_error("End of file on the terminall!");
term_offset < 0; {the user’s line ended with (return) }
decr(selector); { prepare to echo the input }
if last # first then
for k « first to last — 1 do print (buffer[k]);
print_In; buffer[last] + "%"; incr(selector); {restore previous status }
end;

§67 METAFONT PART 6: REPORTING ERRORS 29

67. Reporting errors. When something anomalous is detected, METAFONT typically does something

like this:
print_err ("Something anomalous has been detected");

help8 ("This_ is the first line of my offer to help.")
("This_is_ the second line. I m_ trying to")

("explain, the best_ way for you to_proceed.");

error;

A two-line help message would be given using help2, etc.; these informal helps should use simple vocabulary
that complements the words used in the official error message that was printed. (Outside the U.S.A., the
help messages should preferably be translated into the local vernacular. Each line of help is at most 60
characters long, in the present implementation, so that maz_print_line will not be exceeded.)

The print_err procedure supplies a ‘!’ before the official message, and makes sure that the terminal is
awake if a stop is going to occur. The error procedure supplies a ‘.’ after the official message, then it shows
the location of the error; and if interaction = error_stop_mode, it also enters into a dialog with the user,

during which time the help message may be printed.

68. The global variable interaction has four settings, representing increasing amounts of user interaction:

define batch-mode =0 {omits all stops and omits terminal output }
define nonstop-mode =1 {omits all stops }
define scroll_mode =2 {omits error stops }
define error_stop-mode = 3 {stops at every opportunity to interact }
define print_err(#) =
begin if interaction = error_stop_mode then wake_up_terminal;
print_nl ("1"); print (#);
end
(Global variables 13) +=
interaction: batch-mode .. error_stop-mode; {current level of interaction }

69. (Set initial values of key variables 21) +=
interaction <— error_stop_mode;

70. METAFONT is careful not to call error when the print selector setting might be unusual. The only
possible values of selector at the time of error messages are

no_print (when interaction = batch-mode and log_file not yet open);
term_only (when interaction > batch_mode and log_file not yet open);
log_only (when interaction = batch_mode and log_file is open);
term_and_log (when interaction > batch-mode and log_file is open).

(Initialize the print selector based on interaction 70) =
if interaction = batch-mode then selector <— no_print else selector < term_only
This code is used in sections 1023 and 1211.

30 PART 6: REPORTING ERRORS METAFONT §71

71. A global variable deletions_allowed is set false if the get_next routine is active when error is called;
this ensures that get_next will never be called recursively.

The global variable history records the worst level of error that has been detected. It has four possible
values: spotless, warning_issued, error_message_issued, and fatal_error_stop.

Another global variable, error_count, is increased by one when an error occurs without an interactive
dialog, and it is reset to zero at the end of every statement. If error_count reaches 100, METAFONT decides
that there is no point in continuing further.

define spotless =0 { history value when nothing has been amiss yet }

define warning_issued =1 { history value when begin_diagnostic has been called }
define error_message_issued = 2 { history value when error has been called }
define fatal_error_stop =3 { history value when termination was premature }

(Global variables 13) +=

deletions_allowed: boolean; {is it safe for error to call get_next? }

history: spotless .. fatal_error_stop; {has the source input been clean so far? }
error_count: —1 ..100; {the number of scrolled errors since the last statement ended }

72. The value of history is initially fatal_error_stop, but it will be changed to spotless if METAFONT
survives the initialization process.

(Set initial values of key variables 21) +=
deletions_allowed <+ true; error_count < 0; { history is initialized elsewhere }

73. Since errors can be detected almost anywhere in METAFONT, we want to declare the error procedures
near the beginning of the program. But the error procedures in turn use some other procedures, which need
to be declared forward before we get to error itself.

It is possible for error to be called recursively if some error arises when get_nezt is being used to delete a
token, and/or if some fatal error occurs while METAFONT is trying to fix a non-fatal one. But such recursion
is never more than two levels deep.

(Error handling procedures 73) =

procedure normalize_selector; forward;

procedure get_next; forward;

procedure term_input; forward;

procedure show_context; forward;

procedure begin_file_reading; forward;

procedure open_log_file; forward;

procedure close_files_and_terminate; forward;

procedure clear_for_error_prompt; forward;

debug procedure debug_help; forward; gubed
(Declare the procedure called flush_string 43)

See also sections 76, 77, 88, 89, and 90.

This code is used in section 4.

874 METAFONT

PART 6: REPORTING ERRORS

31

74. Individual lines of help are recorded in the array help_line, which contains entries in positions 0 ..
(help_ptr — 1). They should be printed in reverse order, i.e., with help_line[0] appearing last.

define hlp! (#)
define hip2 (#

(help_line[0] + #; end

(help_line[1] « #; hip1

define hlp3 (#) = help_line[2] < #; hip2
define hlp/ (#) = help_line[3] < #; hip3
((4]

[

~—_— — — —

define hip5 (# help_line 4] < #; hlp4
define hlp6 (#) = help_line[5] « #; hlp5

define help0 = help_ptr + 0 { sometimes there might be no help }

define helpl = begin help_ptr < 1; hip1

define help2 = begin help_ptr < 2; hip2

define help3 = begin help_ptr <+ 3; hip3

define help4 = begin help_ptr < 4; hip/

define help5 = begin help_ptr < 5; hlp5

define help6 = begin help_ptr < 6; hlp6
(Global variables 13) +=

{ use this with one help line }

{ use this with two help lines }
{ use this with three help lines }
{ use this with four help lines }
{ use this with five help lines }
{'use this with six help lines }

help_line: array [0 .. 5] of str_number; {helps for the next error }
help_ptr: 0 ..6; {the number of help lines present }

use_err_help: boolean; {should the err_help string be shown? }
err_help: str_number; {a string set up by errhelp }

75. (Set initial values of key variables 21) +=
help_ptr < 0; use_err_help < false; err_help + 0;

76. The jump_out procedure just cuts across all active procedure levels and goes to end_of MF'. This is the
only nontrivial goto statement in the whole program. It is used when there is no recovery from a particular

€error.

Some Pascal compilers do not implement non-local goto statements. In such cases the body of jump_out
should simply be ‘close_files_and_terminate;’ followed by a call on some system procedure that quietly

terminates the program.
(Error handling procedures 73) 4+=
procedure jump_out;

begin goto end_of MF;

end;

32 PART 6: REPORTING ERRORS METAFONT 8§77

77. Here now is the general error routine.

(Error handling procedures 73) +=
procedure error; {completes the job of error reporting }
label continue, exit;
var ¢: ASCII code; {what the user types }
s1,s2,s3: integer; {used to save global variables when deleting tokens }
j: pool_pointer; {character position being printed }
begin if history < error-message_issued then history < error_message_issued;
print_char("."); show_context;
if interaction = error_stop-mode then (Get user’s advice and return 78);
incr (error_count);
if error_count = 100 then
begin print_nl(" (That makes 100 errors; please_ try again.)"); history < fatal_error_stop;
Jump_out;
end;
(Put help message on the transcript file 86);
erit: end;

78. (Get user’s advice and return 78) =
loop begin continue: clear_for_error_prompt; prompt_input("?,");
if last = first then return,;
¢ < buffer[first];

if ¢> "a" then c+ ¢+ "A" — "a"; {convert to uppercase }
(Interpret code ¢ and return if done 79);
end

This code is used in section 77.

79. It is desirable to provide an ‘E’ option here that gives the user an easy way to return from METAFONT
to the system editor, with the offending line ready to be edited. But such an extension requires some system
wizardry, so the present implementation simply types out the name of the file that should be edited and the
relevant line number.

There is a secret ‘D’ option available when the debugging routines haven’t been commented out.

(Interpret code ¢ and return if done 79) =
case c of
NN MLN NN NZN MM wpN g w7 g g, if deletions_allowed then
(Delete ¢ — "0" tokens and goto continue 83);
debug "D": begin debug_help; goto continue; end; gubed
"E": if file_ptr > 0 then
begin print_nl("You want_to edit file "); slow_print(input_stack[file_ptr].name_field);
print("uatyline"); print_int(line);
interaction <— scroll_mode; jump_out;
end;
"H": (Print the help information and goto continue 84);
"I": (Introduce new material from the terminal and return 82);
"Q","R","S": {Change the interaction level and return 81);
"X": begin interaction < scroll_mode; jump_out;
end;
othercases do_nothing
endcases;
(Print the menu of available options 80)

This code is used in section 78.

880 METAFONT PART 6: REPORTING ERRORS 33

80. (Print the menu of available options 80) =
begin print("Typeu<return>|_,to._lproceed, uSutoyscroll future ,error messages, ");
print_nl ("R to run without stopping, Q to run quietly,");
print_nl("I_to insert something, ");
if file_ptr > 0 then print("E to edit your file,");
if deletions_allowed then
pm’nt,nl(" 1y0ry. . .por 9 toyignore the next1,to 9 tokens of input, ");
print_nl ("H_for help, X to,quit.");
end

This code is used in section 79.

81. Here the author of METAFONT apologizes for making use of the numerical relation between "Q", "R",
"S" and the desired interaction settings batch_-mode, nonstop_mode, scroll_mode.

(Change the interaction level and return 81) =

begin error_count < 0; interaction < batch-mode + ¢ — "Q"; print("0K,_entering,,");
case c of
"Q": begin print("batchmode"); decr(selector);

end;

"R": print("nonstopmode");

"S": print("scrollmode");

end; {there are no other cases }

print("..."); print_ln; update_terminal; return;
end

This code is used in section 79.

82. When the following code is executed, buffer|[(first +1) .. (last — 1)] may contain the material inserted
by the user; otherwise another prompt will be given. In order to understand this part of the program fully,
you need to be familiar with METAFONT’s input stacks.

(Introduce new material from the terminal and return 82) =
begin begin_file_reading; {enter a new syntactic level for terminal input }
if last > first + 1 then
begin loc < first + 1; buffer|first] < ",";

end
else begin prompt_input ("insert>"); loc < first;
end;
first < last + 1; cur_input.limit_field < last; return;
end

This code is used in section 79.

34 PART 6: REPORTING ERRORS

83. We allow deletion of up to 99 tokens at a time.

(Delete ¢ — "0" tokens and goto continue 83) =
begin s! < cur_cmd; s2 < cur_mod; s3 < cur_sym; OK_to_interrupt < false;
if (last > first + 1) A (buffer(first + 1] > "0") A (buffer[first + 1] < "9") then
¢+ c* 10 + buffer[first + 1] — "0" x 11
else c<c—"0";
while ¢ > 0 do
begin get_next; {one-level recursive call of error is possible }
(Decrease the string reference count, if the current token is a string 743);
decr(c);
end;
cur_cmd < s1; cur-mod < s2; cur_sym < s3; OK_to_interrupt < true;
help2 ("I have just deleted some text, as_ you asked.")

("You._lcan._lnow._ldelete_,more,uoruinsert ,uor_whatever. "); show_context; goto continue;

end

This code is used in section 79.

84. (Print the help information and goto continue 84) =
begin if use_err_help then
begin (Print the string err_help, possibly on several lines 85);
use_err_help < false;
end

§33

else begin if help_ptr = 0 then help2("Sorry, I don t_know how to_help in this situation.")

("Maybe_you,should, try asking a human?");

repeat decr (help_ptr); print(help_line[help_ptr]); print_ln;

until help_ptr = 0;

end;
help4 ("Sorry, I already gave_ what help I could...")
("Maybe_you,should, try asking a human?")
("An error might have occurred before I noticed any problems.")
("~ "Ifall else, fails, read the instructions.” ");
goto continue;
end

This code is used in section 79.

85. (Print the string err_help, possibly on several lines 85)

J « str_start[err_help];
while j < str_start[err_help + 1] do

begin if str_pool[j] # si("%") then print(so(str_pool[j]))

else if j + 1 = str_start[err_help + 1] then print_In

else if str_pool[j + 1] # si("%") then print_in
else begin incr(j); print_char("%");
end;
incr (j);
end

This code is used in sections 84 and 86.

886 METAFONT PART 6: REPORTING ERRORS 35

86. (Put help message on the transcript file 86) =
if interaction > batch-mode then decr(selector); {avoid terminal output }
if use_err_help then
begin print_nl(""); (Print the string err_help, possibly on several lines 85);
end
else while help_ptr > 0 do
begin decr (help_ptr); print_nl(help_line[help_ptr]);
end;
print_ln;
if interaction > batch-mode then incr(selector); {re-enable terminal output }
print_In

This code is used in section 77.

87. In anomalous cases, the print selector might be in an unknown state; the following subroutine is called
to fix things just enough to keep running a bit longer.

procedure normalize_selector;
begin if log_opened then selector < term_and_log
else selector < term_only;
if job_name = 0 then open_log_file;
if interaction = batch-mode then decr (selector);
end;

88. The following procedure prints METAFONT’s last words before dying.

define succumb =
begin if interaction = error_stop_mode then interaction < scroll_mode;
{ no more interaction }
if log_opened then error;
debug if interaction > batch-mode then debug_help; gubed
history < fatal_error_stop; jump_out; {irrecoverable error }
end

(Error handling procedures 73) 4+=

procedure fatal_error(s : str_number); {prints s, and that’s it }
begin normalize_selector;
print_err ("Emergency_stop"); helpl(s); succumb;
end;

89. Here is the most dreaded error message.

(Error handling procedures 73) 4=
procedure overflow (s : str-number; n : integer); {stop due to finiteness }
begin normalize_selector; print_err ("METAFONT capacity_ exceeded, sorry,["); print(s);
print_char ("="); print_int(n); print_char("1");
help2 ("1f you, really absolutely need more capacity,")
("youy,can ask a wizard to enlarge me."); succumb;
end;

36 PART 6: REPORTING ERRORS METAFONT 890

90. The program might sometime run completely amok, at which point there is no choice but to stop. If
no previous error has been detected, that’s bad news; a message is printed that is really intended for the
METAFONT maintenance person instead of the user (unless the user has been particularly diabolical). The
index entries for ‘this can’t happen’ may help to pinpoint the problem.

(Error handling procedures 73) 4+=
procedure confusion (s : str_number); { consistency check violated; s tells where }
begin normalize_selector;
if history < error_message_issued then
begin print_err("This can "t happen, ("); print(s); print_char(")");
help1 ("I m_ broken. Please show this to_ someone who can, fix can fix");
end
else begin print_err ("I cant go on meeting you like this");
help2 ("One 0f jyour faux pas seems to_ have wounded me deeply...")
("in_,fact ,ul ‘m_barely conscious. Please fix ity and try again. ");
end;
succumb;
end;
91. Users occasionally want to interrupt METAFONT while it’s running. If the Pascal runtime system
allows this, one can implement a routine that sets the global variable interrupt to some nonzero value when
such an interrupt is signalled. Otherwise there is probably at least a way to make interrupt nonzero using
the Pascal debugger.

define check_interrupt =
begin if interrupt # 0 then pause_for_instructions;
end

(Global variables 13) +=
interrupt: integer; {should METAFONT pause for instructions? }
OK_to_interrupt: boolean; {should interrupts be observed? }

92. (Set initial values of key variables 21) +=
interrupt < 0; OK_to_interrupt < true;

93. When an interrupt has been detected, the program goes into its highest interaction level and lets the
user have the full flexibility of the error routine. METAFONT checks for interrupts only at times when it is
safe to do this.

procedure pause_for_instructions;
begin if OK_to_interrupt then
begin interaction < error_stop_mode;
if (selector = log_only) V (selector = no_print) then incr(selector);
print_err("Interruption"); help3("You rang?")
("Tryuto_,insertusomeuinstructions._,for_,meu(e .g., I, show x"), ")
("unless you,just want to,quit by typing, X ."); deletions_allowed < false; error;
deletions_allowed < true; interrupt < 0;
end;
end;
94. Many of METAFONT’s error messages state that a missing token has been inserted behind the scenes.
We can save string space and program space by putting this common code into a subroutine.

procedure missing_err (s : str-number);
begin print_err("Missing,,"); print(s); print(" “Lhas been inserted");
end;

895 METAFONT PART 7: ARITHMETIC WITH SCALED NUMBERS 37

95. Arithmetic with scaled numbers. The principal computations performed by METAFONT are
done entirely in terms of integers less than 23! in magnitude; thus, the arithmetic specified in this program
can be carried out in exactly the same way on a wide variety of computers, including some small ones.

But Pascal does not define the div operation in the case of negative dividends; for example, the result
of (=2xn —1)div2is —(n+ 1) on some computers and —n on others. There are two principal types of
arithmetic: “translation-preserving,” in which the identity (a 4+ g % b) div b = (a div b) + ¢ is valid; and
“negation-preserving,” in which (—a)divb = —(adivd). This leads to two METAFONTS, which can produce
different results, although the differences should be negligible when the language is being used properly. The
TEX processor has been defined carefully so that both varieties of arithmetic will produce identical output,
but it would be too inefficient to constrain METAFONT in a similar way.

define el_gordo = ‘17777777777 {23! — 1, the largest value that METAFONT likes }
96. One of METAFONT’s most common operations is the calculation of L“T'H’J, the midpoint of two given
integers a and b. The only decent way to do this in Pascal is to write ‘(a + b) div 2’; but on most machines
it is far more efficient to calculate ‘(a + b) right shifted one bit’.

Therefore the midpoint operation will always be denoted by ‘half (a + b)’ in this program. If METAFONT
is being implemented with languages that permit binary shifting, the half macro should be changed to make
this operation as efficient as possible.

define half (#) = (#) div 2

97. A single computation might use several subroutine calls, and it is desirable to avoid producing multiple
error messages in case of arithmetic overflow. So the routines below set the global variable arith_error to
true instead of reporting errors directly to the user.

(Global variables 13) +=
arith_error: boolean; {has arithmetic overflow occurred recently? }

98. (Set initial values of key variables 21) +=
arith_error < false;

99. At crucial points the program will say check_arith, to test if an arithmetic error has been detected.

define check_arith =
begin if arith_error then clear_arith;
end

procedure clear_arith;
begin print_err("Arithmetic overflow");
help4 ("Uh, oh. A little while ago one_ of the quantities_ that I was")
(" computing ,got too large, so Il ‘m afraid your answers will be ")
(" somewhat askew. ,You 1l probably, have to,adopt different ")
("tacticsunext._ltime._,But._|Iushall._ltryl_,toucarry._,on._lanyway. "); error; arith_error < false;
end;

38 PART 7: ARITHMETIC WITH SCALED NUMBERS METAFONT §100

100. Addition is not always checked to make sure that it doesn’t overflow, but in places where overflow
isn’t too unlikely the slow_add routine is used.
function slow_add(z,y : integer): integer;
begin if z > 0 then
if y < el_gordo — x then slow_add < x +y
else begin arith_error < true; slow_add < el_gordo;
end
else if —y < el_gordo + x then slow_add < x +y
else begin arith_error < true; slow_add < —el_gordo;
end;
end;
101. Fixed-point arithmetic is done on scaled integers that are multiples of 2716, In other words, a binary
point is assumed to be sixteen bit positions from the right end of a binary computer word.

define quarter_unit = 40000 {2'*, represents 0.250000 }

define half unit = ‘100000 { 2%, represents 0.50000 }

define three_quarter_unit = ‘140000 {3 -2, represents 0.75000 }
define unity = ‘200000 {2, represents 1.00000 }

define two = 400000 {27, represents 2.00000 }

define three = 600000 {2'7 4 2'6, represents 3.00000 }

(Types in the outer block 18) +=
scaled = integer; {this type is used for scaled integers }
small_number = 0 .. 63; {this type is self-explanatory }

102. The following function is used to create a scaled integer from a given decimal fraction (.dods ... dg—1),
where 0 < k < 17. The digit d; is given in dig|[i], and the calculation produces a correctly rounded result.

function round_decimals (k : small_number): scaled; {converts a decimal fraction }
var a: integer; {the accumulator }
begin a + 0;
while £ > 0 do
begin decr(k); a + (a + dig[k] * two) div 10;
end;
round_decimals < half (a + 1);
end;

)

8103 METAFONT PART 7: ARITHMETIC WITH SCALED NUMBERS 39

103. Conversely, here is a procedure analogous to print_int. If the output of this procedure is subsequently
read by METAFONT and converted by the round_decimals routine above, it turns out that the original value
will be reproduced exactly. A decimal point is printed only if the value is not an integer. If there is more
than one way to print the result with the optimum number of digits following the decimal point, the closest
possible value is given.

The invariant relation in the repeat loop is that a sequence of decimal digits yet to be printed will yield
the original number if and only if they form a fraction f in the range s —§ < 10-2'6f < 5. We can stop if
and only if f = 0 satisfies this condition; the loop will terminate before s can possibly become zero.

(Basic printing procedures 57) +=
procedure print_scaled (s : scaled); {prints scaled real, rounded to five digits }
var delta: scaled; {amount of allowable inaccuracy }
begin if s < 0 then
begin print_char("-"); negate(s); {print the sign, if negative }
end;
print_int (s div unity); { print the integer part }
s < 10 * (s mod unity) + 5;
if s # 5 then
begin delta < 10; print_char(".");
repeat if delta > unity then s < s+ 100000 — (delta div 2); {round the final digit }
print_char ("0" + (s div unity)); s + 10 * (s mod unity); delta + delta * 10;
until s < delta;
end;
end;

104. We often want to print two scaled quantities in parentheses, separated by a comma.

(Basic printing procedures 57) +=

procedure print_two(z,y : scaled); {prints ‘(x,y)’ }
begin print_char("("); print_scaled (z); print_char(","); print_scaled(y); print_char(")");
end;

105. The scaled quantities in METAFONT programs are generally supposed to be less than 2'2 in absolute
value, so METAFONT does much of its internal arithmetic with 28 significant bits of precision. A fraction
denotes a scaled integer whose binary point is assumed to be 28 bit positions from the right.

define fraction_half = ‘1000000000 {227, represents 0.50000000 }
define fraction_one = 2000000000 {22, represents 1.00000000 }
define fraction_two = 4000000000 {22°, represents 2.00000000 }
define fraction_three = ‘6000000000 {3 - 228, represents 3.00000000 }
define fraction_four = ‘10000000000 {23°, represents 4.00000000 }

(Types in the outer block 18) +=
fraction = integer; {this type is used for scaled fractions }

106. In fact, the two sorts of scaling discussed above aren’t quite sufficient; METAFONT has yet another,
used internally to keep track of angles in units of 272° degrees.

define forty_five_deg = 264000000 {45 -2%°, represents 45° }

define ninety_deg = ‘550000000 {90 - 22°, represents 90° }

define one_eighty_deg = ‘1320000000 {180 - 22°, represents 180° }

define three_sizty_deg = 2640000000 {360 - 22°, represents 360° }

(Types in the outer block 18) 4+=
angle = integer; {this type is used for scaled angles }

40 PART 7: ARITHMETIC WITH SCALED NUMBERS METAFONT §107

107. The make_fraction routine produces the fraction equivalent of p/q, given integers p and g; it computes
the integer f = L228p/q—|—%J , when p and q are positive. If p and ¢ are both of the same scaled type t, the “type
relation” make_fraction(t,t) = fraction is valid; and it’s also possible to use the subroutine “backwards,”
using the relation make_fraction (¢, fraction) = t between scaled types.

If the result would have magnitude 23! or more, make_fraction sets arith_error < true. Most of META-
FONT’s internal computations have been designed to avoid this sort of error.

Notice that if 64-bit integer arithmetic were available, we could simply compute ((22?*p+q)div(2xq). But
when we are restricted to Pascal’s 32-bit arithmetic we must either resort to multiple-precision maneuvering
or use a simple but slow iteration. The multiple-precision technique would be about three times faster than
the code adopted here, but it would be comparatively long and tricky, involving about sixteen additional
multiplications and divisions.

This operation is part of METAFONT’s “inner loop”; indeed, it will consume nearly 10% of the running
time (exclusive of input and output) if the code below is left unchanged. A machine-dependent recoding will
therefore make METAFONT run faster. The present implementation is highly portable, but slow; it avoids
multiplication and division except in the initial stage. System wizards should be careful to replace it with a
routine that is guaranteed to produce identical results in all cases.

As noted below, a few more routines should also be replaced by machine-dependent code, for efficiency. But
when a procedure is not part of the “inner loop,” such changes aren’t advisable; simplicity and robustness
are preferable to trickery, unless the cost is too high.

function make_fraction(p, q : integer): fraction;
var f: integer; {the fraction bits, with a leading 1 bit }
n: integer; {the integer part of |p/q| }
negative: boolean; {should the result be negated? }
be_careful: integer; {disables certain compiler optimizations }
begin if p > 0 then negative < false
else begin negate (p); negative + true;
end;
if ¢ <0 then
begin debug if ¢ = 0 then confusion("/"); gubed
negate(q); negative <— —negative;
end;
n < pdivg; p <+ pmod g;
if n > 8 then
begin arith_error < true;
if negative then make_fraction < —el_gordo else make_fraction < el_gordo;
end
else begin n < (n — 1) * fraction_one; (Compute f = [228(1+p/q) + 3] 108);
if negative then make_fraction < —(f + n) else make_fraction + f + n;
end;
end;

8108 METAFONT PART 7: ARITHMETIC WITH SCALED NUMBERS 41

108. The repeat loop here preserves the following invariant relations between f, p, and ¢: (1) 0 < p < g;
(ii) fqg+p = 2¥(q + po), where k is an integer and py is the original value of p.

Notice that the computation specifies (p—¢q)+p instead of (p+p) —q, because the latter could overflow. Let
us hope that optimizing compilers do not miss this point; a special variable be_careful is used to emphasize
the necessary order of computation. Optimizing compilers should keep be_careful in a register, not store it
in memory.

(Compute f = |22(1+p/q) + 3] 108) =

f< L

repeat be_careful < p — q; p < be_careful + p;

if p>0then f« f+f+1
else begin double(f); p < p+ ¢;
end;

until f > fraction_one;

be_careful < p — q;

if be_careful +p > 0 then incr(f)

This code is used in section 107.

109. The dual of make_fraction is take_fraction, which multiplies a given integer ¢ by a fraction f. When
the operands are positive, it computes p = |qf/2% + %J, a symmetric function of ¢ and f.

This routine is even more “inner loopy” than make_fraction; the present implementation consumes almost
20% of METAFONT’s computation time during typical jobs, so a machine-language or 64-bit substitute is
advisable.
function take_fraction(q : integer; f : fraction): integer;

var p: integer; {the fraction so far }

negative: boolean; {should the result be negated? }
n: integer; {additional multiple of ¢}
be_careful: integer; {disables certain compiler optimizations }

begin (Reduce to the case that f >0 and ¢ > 0 110);

if f < fraction_one then n + 0

else begin n « f div fraction_one; f <+ fmod fraction_one;

if ¢ < el_gordo divn then n <+ nx*q

else begin arith_error < true; n < el_gordo;
end;

end;

[« f + fraction_one; (Compute p = [qf/2% + 3] —q 111);

be_careful < n — el_gordo;

if be_careful + p > 0 then

begin arith_error < true; n < el_gordo — p;
end;

if negative then take_fraction < —(n + p)

else take_fraction < n + p;

end;

110. (Reduce to the case that f > 0and ¢ >0 110) =
if f > 0 then negative < false
else begin negate(f); negative + true;
end;
if ¢ < 0 then
begin negate(q); negative < —negative;
end;

This code is used in sections 109 and 112.

42 PART 7: ARITHMETIC WITH SCALED NUMBERS METAFONT 8111

111. The invariant relations in this case are (i) [(¢f 4+ p)/2"] = [¢fo/2®® + |, where k is an integer and
fo is the original value of f; (ii) 2% < f < 2k+1.
(Compute p = |qf/2%8 + %J —q111) =
p < fraction_half; {that’s 227; the invariants hold now with k = 28 }
if q < fraction_four then
repeat if odd(f) then p < half (p + q) else p <+ half (p);
f < half (f);
until f=1
else repeat if odd(f) then p < p+ half (¢ — p) else p « half (p);
f half (£);
until f=1

This code is used in section 109.

112. When we want to multiply something by a scaled quantity, we use a scheme analogous to take_fraction
but with a different scaling. Given positive operands, take_scaled computes the quantity p = |qf/2'¢ + %J

Once again it is a good idea to use 64-bit arithmetic if possible; otherwise take_scaled will use more than
2% of the running time when the Computer Modern fonts are being generated.

function take_scaled (q : integer; f : scaled): integer;
var p: integer; {the fraction so far }
negative: boolean; {should the result be negated? }
n: integer; {additional multiple of ¢}
be_careful: integer; {disables certain compiler optimizations }
begin (Reduce to the case that f > 0 and ¢ > 0 110);
if f < unity then n <+ 0
else begin n < f div unity; f < f mod unity;
if ¢ < el_gordo divn then n < nxq
else begin arith_error < true; n < el_gordo;
end;
end;
[+ f+ unity; (Compute p = |qf/2' + %j —q 113);
be_careful < n — el_gordo;
if be_careful + p > 0 then
begin arith_error < true; n < el_gordo — p;
end;
if negative then take_scaled < —(n + p)
else take_scaled < n + p;
end;

113. (Compute p = |qf/2'0+ 1] — ¢ 113) =
p < halfunit; {that’s 2'%; the invariants hold now with k = 16 }
if q < fraction_four then
repeat if odd(f) then p < half (p + q) else p « half (p);
f < half (f);
until f=1
else repeat if odd(f) then p < p+ half (¢ — p) else p « half (p);
[half (f);
until f=1

This code is used in section 112.

8114 METAFONT PART 7: ARITHMETIC WITH SCALED NUMBERS 43

114. For completeness, there’s also make_scaled, which computes a quotient as a scaled number instead
of as a fraction. In other words, the result is |2'%p/q + %J, if the operands are positive. (This procedure is
not used especially often, so it is not part of METAFONT’s inner loop.)

function make_scaled (p, q : integer): scaled;
var f: integer; {the fraction bits, with a leading 1 bit }
n: integer; {the integer part of |p/q| }
negative: boolean; {should the result be negated? }
be_careful: integer; {disables certain compiler optimizations }
begin if p > 0 then negative < false
else begin negate (p); negative + true;
end;
if ¢ <0 then
begin debug if ¢ = 0 then confusion("/");
gubed
negate(q); negative < —negative;
end;
n < pdiv ¢; p + pmod g;
if n > 100000 then
begin arith_error < true;
if negative then make_scaled < —el_gordo else make_scaled < el_gordo;
end
else begin n « (n — 1) * unity; (Compute f = [2'5(1+p/q) + 1] 115);
if negative then make_scaled < —(f 4+ n) else make_scaled < f + n;
end;
end;

115. (Compute f = [216(1+p/q) + 1] 115) =
<L
repeat be_careful < p — q; p < be_careful + p;
if p>0then f« f+f+1
else begin double(f); p < p+ ¢;
end;
until f > unity;
be_careful < p — q;
if be_careful +p > 0 then incr(f)

This code is used in section 114.

44 PART 7: ARITHMETIC WITH SCALED NUMBERS METAFONT §116

116. Here is a typical example of how the routines above can be used. It computes the function

7712+ V2 (sinf — % sin ¢)(sin ¢ — - sin6)(cos 6 — cos ¢))
3(14+2(v5—1)cosf+ 3(3—5)cosg)

1

)

where 7 is a scaled “tension” parameter. This is METAFONT’s magic fudge factor for placing the first control
point of a curve that starts at an angle 6 and ends at an angle ¢ from the straight path. (Actually, if the
stated quantity exceeds 4, METAFONT reduces it to 4.)

The trigonometric quantity to be multiplied by v/2 is less than v/2. (It’s a sum of eight terms whose
absolute values can be bounded using relations such as sinfcosf < %) Thus the numerator is positive;
and since the tension 7 is constrained to be at least %7 the numerator is less than %. The denominator
is nonnegative and at most 6. Hence the fixed-point calculations below are guaranteed to stay within the
bounds of a 32-bit computer word.

The angles 6 and ¢ are given implicitly in terms of fraction arguments st, ct, sf, and cf, representing
sin @, cos 8, sin ¢, and cos ¢, respectively.
function velocity (st, ct, sf, cf : fraction; t : scaled): fraction;

var acc,num, denom: integer; {registers for intermediate calculations }

begin acc < take_fraction(st — (sf div 16), sf — (st div 16)); acc < take_fraction(acc, ct — cf);

num < fraction_two + take_fraction (acc,379625062); {225/2 ~ 379625062.497 }

denom < fraction_three + take_fraction (ct,497706707) + take_fraction(cf ,307599661);

{3.227.(v/5 — 1) ~ 497706706.78 and 3 - 2%7 - (3 — \/5) ~ 307599661.22 }

if t # unity then num < make_scaled (num,t); { make_scaled (fraction, scaled) = fraction }

if num div 4 > denom then wvelocity < fraction_four

else velocity + make_fraction(num, denom);

end;

117. The following somewhat different subroutine tests rigorously if ab is greater than, equal to, or less
than cd, given integers (a,b,c,d). In most cases a quick decision is reached. The result is +1, 0, or —1 in
the three respective cases.

define return_sign(#) =
begin ab_vs_cd < #; return;
end
function ab_vs_cd(a,b,c,d : integer): integer;
label ezit;
var q,r: integer; {temporary registers }
begin { Reduce to the case that a,¢ > 0, b,d > 0 118);
loop begin ¢ + adiv d; r < cdiv b;
if ¢ # r then
if ¢ > r then return_sign(1) else return_sign(—1);
q + amod d; r + c¢mod b;
if r =0 then
if ¢ =0 then return_sign(0) else return_sign(1);
if ¢ =0 then return_sign(—1);
a$b; b q; c+d; d<+r;
end; {nowa>d>0andc>b>0}
erit: end;

8118 METAFONT PART 7: ARITHMETIC WITH SCALED NUMBERS

118. (Reduce to the case that a,c >0, b,d >0 118) =
if a < 0 then
begin negate(a); negate(b);
end;
if ¢ < 0 then
begin negate(c); negate(d);
end;
if d <0 then
begin if b > 0 then
if ((a=0)V(b=0)A((c=0)V(d=0)) then return_sign(0)
else return_sign(1);
if d =0 then
if a = 0 then return_sign(0) else return_sign(—1);
g+ a; a$c c+q;, g —b; b+ —d; d+ q;
end
else if b < 0 then
begin if b < 0 then
if a > 0 then return_sign(—1);
if ¢ =0 then return_sign(0)
else return_sign(—1);
end

This code is used in section 117.

45

46 PART 7: ARITHMETIC WITH SCALED NUMBERS METAFONT 8119

119. We conclude this set of elementary routines with some simple rounding and truncation operations
that are coded in a machine-independent fashion. The routines are slightly complicated because we want
them to work without overflow whenever —23! < z < 231,

function floor_scaled (z : scaled): scaled; {2'%|z/2'¢]}
var be_careful: integer; {temporary register }
begin if > 0 then floor_scaled <+ x — (x mod unity)
else begin be_careful < x + 1; floor_scaled < x + ((—be_careful) mod unity) + 1 — unity;
end;
end;

function floor_unscaled (x : scaled): integer; {|x/2'¢]}
var be_careful: integer; {temporary register }
begin if z > 0 then floor_unscaled <+ x div unity
else begin be_careful < x + 1; floor_unscaled < —(1 + ((—be_careful) div unity));
end;
end;
function round_unscaled (z : scaled): integer; {|z/2'¢+ 5]}
var be_careful: integer; {temporary register }
begin if x > half_unit then round_-unscaled < 1+ ((z — half-unit) div unity)
else if = > —half-unit then round_unscaled < 0
else begin be_careful < x + 1; round_unscaled < —(1 + ((—be_careful — half-unit) div unity));
end;

)

end;

function round_fraction(x : fraction): scaled; {|z/2'?+ .5]}
var be_careful: integer; {temporary register }
begin if = > 2048 then round_fraction <— 1+ ((x — 2048) div 4096)
else if © > —2048 then round_fraction < 0
else begin be_careful < x + 1; round_fraction < —(1 + ((—be_careful — 2048) div 4096));
end;
end;

)

§120 METAFONT PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS 47

120. Algebraic and transcendental functions. METAFONT computes all of the necessary special
functions from scratch, without relying on real arithmetic or system subroutines for sines, cosines, etc.

121. To get the square root of a scaled number x, we want to calculate s = |28/ + 1. If z > 0, this is
the unique integer such that 2'6z — s < 52 < 2162 + 5. The following subroutine determines s by an iterative
method that maintains the invariant relations z = 246-2%25 mod 239, 0 < Yy = L216_2k;voj —s2+5<qg=2s,
where g is the initial value of . The value of y might, however, be zero at the start of the first iteration.

function square_rt(x : scaled): scaled;
var k: small_number; {iteration control counter }
y,q: integer; {registers for intermediate calculations }
begin if <0 then (Handle square root of zero or negative argument 122)
else begin k + 23; q < 2;
while z < fraction_two do {i.e., while z < 2%}
begin decr(k); z <z +z+ z + x;
end;
if x < fraction_four then y < 0
else begin x < x — fraction_four; y + 1;
end;
repeat (Decrease k by 1, maintaining the invariant relations between z, y, and g 123);
until £ = 0;
square_rt < half (q);
end;
end;

122. (Handle square root of zero or negative argument 122) =

begin if z < 0 then
begin print_err("Square rootof,"); print_scaled(x); print(" has been replaced by 0");
help2 ("Sincequdon “tutake square roots 0f negative numbers, ")
("I m,zeroing this one. Proceed, with fingers crossed."); error;
end;

square_rt < 0;

end

This code is used in section 121.

123. (Decrease k by 1, maintaining the invariant relations between z, y, and ¢ 123) =
double(x); double(y);
if 2 > fraction_four then {note that fraction_four = 230}
begin z < x — fraction_four; incr(y);
end;
double(x); y < y+y—q; double(q);
if x > fraction_four then
begin z < x — fraction_four; incr(y);
end;
if y > g then
beginy < y—q; ¢+ q+2;
end
else if y <0 then
begin g < q¢—2; y + y+ ¢
end;
decr (k)

This code is used in section 121.

48 PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS METAFONT 8124

124. Pythagorean addition \/a? + b? is implemented by an elegant iterative scheme due to Cleve Moler
and Donald Morrison [IBM Journal of Research and Development 27 (1983), 577-581]. It modifies a and b
in such a way that their Pythagorean sum remains invariant, while the smaller argument decreases.
function pyth_add(a,b : integer): integer;
label done;
var r: fraction; {register used to transform a and b}
big: boolean; {is the result dangerously near 2317}
begin a < abs(a); b < abs(b);
if a < b then
begin r <+ b; b+ a; a + T
end; {now0<b<a}
if b > 0 then
begin if a < fraction_two then big < false
else begin a < adiv 4; b+ bdiv 4; big < true;
end; {we reduced the precision to avoid arithmetic overflow }
{Replace a by an approximation to \/a? + b2 125);
if big then
if a < fraction_two then a <+ a+a+a+a
else begin arith_error < true; a < el_gordo;
end;
end;
pyth_add + a;
end;

125. The key idea here is to reflect the vector (a,b) about the line through (a,b/2).

{Replace a by an approximation to y/a? + b2 125) =
loop begin r + make_fraction(b,a); r < take_fraction(r,r); {now r ~b*/a®}
if r =0 then goto done;
r < make_fraction (r, fraction_four 4+ r); a < a + take_fraction(a + a,r); b < take_fraction(b,r);
end;
done:

This code is used in section 124.

126. Here is a similar algorithm for y/a2 — b2. It converges slowly when b is near a, but otherwise it works
fine.
function pyth_sub(a,b : integer): integer;
label done;
var r: fraction; {register used to transform a and b}
big: boolean; {is the input dangerously near 2317}
begin a < abs(a); b < abs(b);
if a <b then (Handle erroneous pyth_sub and set a < 0 128)
else begin if a < fraction_four then big < false
else begin a < half (a); b+ half (b); big < true;
end;

)

(Replace a by an approximation to y/a? — b? 127);
if big then a < a + a;
end;

pyth_sub + a;

end;

)

8127 METAFONT PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS

127. (Replace a by an approximation to \/a? — b 127) =
loop begin r + make_fraction(b,a); r < take_fraction(r,r); {now r ~b*/a®}
if » = 0 then goto done;
r < make_fraction (r, fraction_four — r); a < a — take_fraction(a + a,r); b < take_fraction(b,r);
end;
done:

This code is used in section 126.

128. (Handle erroneous pyth_sub and set a < 0 128) =

begin if a < b then
begin print_err ("Pythagorean subtraction,"); print_scaled(a); print("+-+"); print_scaled (b);
print (" has_ been replaced by, 0");
help2 ("Since._lL_,don “tutakesquare roots of negative numbers, ")
("I ‘m,zeroing this jone. Proceed, with ,fingers crossed. "); error;
end;

a < 0;

end

This code is used in section 126.

49

129. The subroutines for logarithm and exponential involve two tables. The first is simple: two_to_the[k]
equals 2¥. The second involves a bit more calculation, which the author claims to have done correctly:

spec_log[k] is 227 times In(1/(1 —27%)) =27% 4 1272k 4 1273 4 ... ‘rounded to the nearest integer.
(Global variables 13) +=

two_to_the: array [0 .. 30] of integer; {powers of two }

spec_log: array [1 .. 28] of integer; {special logarithms }

130. (Local variables for initialization 19) +=
k: integer; {all-purpose loop index }

131. (Set initial values of key variables 21) +=
two_to_the[0] < 1;
for k < 1to 30 do two_to_the[k] < 2 * two_to_the[k — 1];
spec_log[1] « 93032640; spec_log[2] < 38612034; spec_log[3] < 17922280; spec_log[4] + 8662214;
spec_log[5] + 4261238; spec_log[6] < 2113709; spec_log[7] <— 1052693; spec_log[8] + 525315;
spec_log[9] + 262400; spec_log[10] < 131136; spec_log[11] < 65552; spec_log[12] < 32772;
spec-log[13] < 16385;
for k + 14 to 27 do spec_log[k] <+ two_to_the[27 — k];
spec_log[28] + 1;

50 PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS METAFONT 8132

132. Here is the routine that calculates 28 times the natural logarithm of a scaled quantity; it is an integer
approximation to 224 In(z/2'%), when x is a given positive integer.

The method is based on exercise 1.2.2-25 in The Art of Computer Programming: During the main iteration
we have 1 < 27302 < 1/(1—2'%), and the logarithm of 23°x remains to be added to an accumulator register
called y. Three auxiliary bits of accuracy are retained in y during the calculation, and sixteen auxiliary bits
to extend y are kept in z during the initial argument reduction. (We add 100 - 216 = 6553600 to z and
subtract 100 from y so that z will not become negative; also, the actual amount subtracted from y is 96,
not 100, because we want to add 4 for rounding before the final division by 8.)

function m_log(x : scaled): scaled;
var y, z: integer; {auxiliary registers }
k: integer; {iteration counter }
begin if © <0 then (Handle non-positive logarithm 134)
else begin y <+ 1302456956 + 4 — 100; {14 x 2271n2 ~ 1302456956.421063 }
2+ 27595 + 6553600; {and 216 x .421063 ~ 27595 }
while z < fraction_four do
begin double(x); y < y — 93032639; z < z — 48782;
end; {227 In 2 ~ 93032639.74436163 and 26 x .74436163 ~ 48782 }
y < y+ (zdiv unity); k < 2;
while z > fraction_four + 4 do
(Increase k until x can be multiplied by a factor of 27%, and adjust y accordingly 133);
m_log < y div §;
end;
end;

133. (Increase k until can be multiplied by a factor of 27%, and adjust y accordingly 133) =
begin z <+ ((z — 1) div two_to_the[k]) +1; {z = [z/2¥]}
while = < fraction_four 4+ z do
begin z < half (z + 1); k + k+ 1;
end;
y y+ spec_log[k]; x + x — z;
end

This code is used in section 132.

134. (Handle non-positive logarithm 134) =
begin print_err ("Logarithm o0f"); print_scaled(x); print("_has been replaced by, 0");
help2("Since I don "t take logs of non-positive numbers,")
("I “mzeroing this one. Proceed, with fingers crossed. "); error; m_log < 0;
end

This code is used in section 132.

8135 METAFONT PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS 51

135. Conversely, the exponential routine calculates exp(x/28), when xz is scaled. The result is an integer
approximation to 26 exp(z/22*), when z is regarded as an integer.

function m_exp(x : scaled): scaled;
var k: small_number; {loop control index }
y,z: integer; {auxiliary registers }
begin if x > 174436200 then {22 In((23! —1)/2%) ~ 174436199.51 }
begin arith_error < true; m_exp < el_gordo;
end
else if x < —197694359 then m_ezp < 0 {2*In(271/216) ~ —197694359.45 }
else begin if x <0 then
begin z «+ —8 xx; y < 4000000; {y =2}
end
else begin if x < 127919879 then z < 1023359037 — 8 x x
{2271In((23! — 1)/2%%) ~ 1023359037.125 }
else z + 8% (174436200 — z); { z is always nonnegative }
y < el_gordo;
end;
{ Multiply y by exp(—z/2%7) 136);
if © < 127919879 then m_exp < (y + 8) div 16 else m_exp « y;
end;
end;

136. The idea here is that subtracting spec_log[k] from z corresponds to multiplying y by 1 — 27*.
A subtle point (which had to be checked) was that if x = 127919879, the value of y will decrease so that
y + 8 doesn’t overflow. In fact, z will be 5 in this case, and y will decrease by 64 when k = 25 and by 16
when k = 27.
(Multiply y by exp(—z/2%7) 136) =
k<« 1;
while z > 0 do
begin while z > spec_log[k] do
begin z < z — spec_logk]; y + vy — 1 — ((y — two_to_the[k — 1]) div two_to_the[k]);
end;
incr (k);
end

This code is used in section 135.

137. The trigonometric subroutines use an auxiliary table such that spec_atan[k] contains an approximation
to the angle whose tangent is 1/2F.

(Global variables 13) +=
spec_atan: array [1..26] of angle; {arctan2~* times 22° 180/ }

138. (Set initial values of key variables 21) +=
spec_atan|1] <— 27855475; spec_atan|2] < 14718068; spec_atan[3] < 7471121; spec_atan[4] < 3750058;
spec_atan[b] < 1876857; spec_atan|6] < 938658; spec_atan[7] < 469357; spec_atan|[8] + 234682;

[

[5
spec_atan|9] <— 117342; spec_atan[10] <— 58671; spec_atan[11] <— 29335; spec_atan[12] <— 14668,;
spec_atan[13] « 7334; spec_atan[14] « 3667; spec_atan|15] + 1833; spec_atan|[16] « 917;
spec_atan|17] < 458; spec_atan[18] < 229; spec_atan[19] < 115; spec_atan[20] < 57; spec_atan[21] + 29;
spec_atan|22] < 14; spec_atan[23] < T; spec_atan[24] < 4; spec_atan|[25] < 2; spec_atan[26] < 1;

52 PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS METAFONT §139

139. Given integers = and y, not both zero, the n_arg function returns the angle whose tangent points
in the direction (z,y). This subroutine first determines the correct octant, then solves the problem for
0 < y < z, then converts the result appropriately to return an answer in the range —one_eighty_deg < 6 <
one_eighty_deg. (The answer is +one_eighty_deg if y = 0 and = < 0, but an answer of —one_eighty_deg is
possible if, for example, y = —1 and 2 = —239.)

The octants are represented in a “Gray code,” since that turns out to be computationally simplest.

define negate_x =1

define negate_y = 2

define switch_z_and_y = 4

define first_octant = 1

define second_octant = first_octant + switch_z_and_y

define third_octant = first_octant + switch_r_and_y + negate_x
define fourth_octant = first_octant 4+ negate_x

define fifth_octant = first_octant + negate_x + negate_y

define sizth_octant = first_octant + switch_z_and_y + negate_r + negate_y
define seventh_octant = first_octant + switch_z_and_y + negate_y
define eighth_octant = first_octant + negate_y

function n_arg(z,y : integer): angle;
var z: angle; {auxiliary register }
t: integer; {temporary storage }
k: small_number; {loop counter }
octant: first_octant .. sizth_octant; {octant code }
begin if = > 0 then octant < first_octant
else begin negate(z); octant < first_octant + negate_x;
end;
if y < 0 then
begin negate(y); octant < octant + negate_y;
end;
if £ <y then
begin t < y; y < x; x + t; octant < octant + switch_x_and_y;
end;
if =0 then (Handle undefined arg 140)
else begin (Set variable z to the arg of (z,y) 142);
(Return an appropriate answer based on z and octant 141);
end;
end;

140. (Handle undefined arg 140) =
begin print_err("angle(0,0) is taken as zero");
help2 ("The._,‘ angle” between two identical points is undefined. ")
("I’muzeroinguthisuone.uProceed,uwithufingersucrossed. "); error; n_arg < 0;
end

This code is used in section 139.

8141 METAFONT PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS 53

141. (Return an appropriate answer based on z and octant 141) =
case octant of
first_octant: n_arg < z;
second_octant: n_arg < ninety_deg — z;
third_octant: n_arg < ninety_deg + z;
fourth_octant: n_arg < one_eighty_deg — z;
fifth_octant: n_arg <+ z — one_eighty_deg;
sizth_octant: n_arg < —z — ninety_deg;
seventh_octant: n_arg < z — ninety_deg;
eighth_octant: n_arg < —z;
end {there are no other cases }

This code is used in section 139.

142. At this point we have z >y > 0, and = > 0. The numbers are scaled up or down until 228 < z < 229,
so that accurate fixed-point calculations will be made.
(Set variable z to the arg of (z,y) 142) =
while x > fraction_two do
begin x + half (z); y < half (y);
end;
z <+ 0
if y > 0 then
begin while z < fraction_one do
begin double(x); double(y);
end;
(Increase z to the arg of (z,y) 143);
end

This code is used in section 139.

143. During the calculations of this section, variables z and y represent actual coordinates (z,27%y). We
will maintain the condition 2 > %, so that the tangent will be at most 27%. If 2 < 2y, the tangent is greater
than 27%~!. The transformation (a,b) + (a + btan ¢, b — atan ¢) replaces (a,b) by coordinates whose angle
has decreased by ¢; in the special case a = x, b = 27 %y, and tan¢ = 275~ this operation reduces to the
particularly simple iteration shown here. [Cf. John E. Meggitt, IBM Journal of Research and Development
6 (1962), 210-226.]
The initial value of will be multiplied by at most (14 3)(1+ £)(1+ 55)--- &~ 1.7584; hence there is no
chance of integer overflow.
(Increase z to the arg of (z,y) 143) =
k « 0;
repeat double(y); incr(k);
if y > x then
begin z < z + spec_atan[k]; t + x; x + x + (y div two_to_the[k + k]); y < y —t;
end;
until k£ = 15;
repeat double(y); incr(k);
if y > = then
begin z < z + spec_atanlk]; y + y — x;
end;
until k = 26

This code is used in section 142.

54 PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS METAFONT 8144

144. Conversely, the n_sin_cos routine takes an angle and produces the sine and cosine of that angle. The
results of this routine are stored in global integer variables n_sin and n_cos.

{ Global variables 13) +=
n_sin,n_cos: fraction; {results computed by n_sin_cos }

145. Given an integer z that is 229 times an angle 6 in degrees, the purpose of n_sin_cos(z) is to set
x =rcosf and y = rsin @ (approximately), for some rather large number r. The maximum of z and y will
be between 228 and 23°, so that there will be hardly any loss of accuracy. Then z and y are divided by 7.

procedure n_sin_cos(z : angle); {computes a multiple of the sine and cosine }
var k: small_number; {loop control variable }
q: 0..7; {specifies the quadrant }
r: fraction; {magnitude of (z,y) }
x,y,t: integer; {temporary registers }
begin while z < 0 do z < z + three_sizty_deg;
z < zmod three_sizty-deg; {now 0 < z < three_sizty_deg }
q < z div forty_five_deg; z < z mod forty_five_deg; x <+ fraction_one; y < x;
if —odd(q) then z « forty_five_deg — z;
(Subtract angle z from (z,y) 147);
(Convert (z,y) to the octant determined by ¢ 146);
r < pyth_add(x,y); n_cos < make_fraction(x,r); n_sin < make_fraction(y,r);
end;

146. In this case the octants are numbered sequentially.

(Convert (z,y) to the octant determined by ¢ 146) =
case g of
0: do_nothing;
1: begint <+ z; z + y; y + t;
end;
2: begint + x; x + —y; y < t;
end;
3: negate (x);
4: begin negate (z); negate(y);

end;

5: begin t + x; x ¢ —y; y ¢ —t;
end;

6: begint + z; x <+ y; y + —t;
end;

7: negate (y);
end {there are no other cases }

This code is used in section 145.

8147 METAFONT PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS 55

147. The main iteration of n_sin_cos is similar to that of n_arg but applied in reverse. The values of
spec_atan[k] decrease slowly enough that this loop is guaranteed to terminate before the (nonexistent) value
spec_atan[27] would be required.

(Subtract angle z from (z,y) 147) =
k+ 1,
while z > 0 do
begin if z > spec_atan[k] then
begin z + z — spec_atan[k]; t + x;
x + t + y div two_to_the[k]; y < y — t div two_to_the[k];
end;
incr(k);
end;
if y <0 then y + 0 {this precaution may never be needed }

This code is used in section 145.

148. And now let’s complete our collection of numeric utility routines by considering random number
generation. METAFONT generates pseudo-random numbers with the additive scheme recommended in
Section 3.6 of The Art of Computer Programming; however, the results are random fractions between 0
and fraction_one — 1, inclusive.

There’s an auxiliary array randoms that contains 55 pseudo-random fractions. Using the recurrence
Xy = (Tn—55 — Tn—24) mod 228 we generate batches of 55 new x,,’s at a time by calling new_randoms. The
global variable j_random tells which element has most recently been consumed.

(Global variables 13) +=
randoms: array [0 .. 54] of fraction; {the last 55 random values generated }
j-random: 0 ..54; {the number of unused randoms }

149. To consume a random fraction, the program below will say ‘next_random’ and then it will fetch
randoms|[j-random]. The next_-random macro actually accesses the numbers backwards; blocks of 55 z’s are
essentially being “flipped.” But that doesn’t make them less random.

define nezt_random =
if j_random = 0 then new_randoms
else decr(j_random)

procedure new_randoms;

var k: 0..54; {index into randoms }
x: fraction; {accumulator }

begin for k£ < 0 to 23 do
begin = < randoms[k] — randoms [k + 31];
if x < 0 then x < z + fraction_one;
randoms[k] + x;
end;

for k <+ 24 to 54 do
begin x + randoms[k] — randoms [k — 24];
if x <0 then x < z + fraction_one;
randoms[k] + x;
end;

j-random <— 54;

end;

56 PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS METAFONT §150

150. To initialize the randoms table, we call the following routine.

procedure init_randoms (seed : scaled);
var j,jj,k: fraction; {more or less random integers }
i: 0..54; {index into randoms }
begin j + abs(seed);
while j > fraction_one do j « half (§);
k<« 1;
for : < 0 to 54 do
begin jj < ki k< j — ki j < Jjj;
if kK < 0 then k < k+ fraction_one;
randoms|[(i * 21) mod 55] < j;
end;
new_randoms; new-randoms; new_randoms; { “warm up” the array }
end;

151. To produce a uniform random number in the range 0 < u <z or 0 > u >z or 0 = u = x, given a
scaled value x, we proceed as shown here.

Note that the call of take_fraction will produce the values 0 and = with about half the probability that it
will produce any other particular values between 0 and x, because it rounds its answers.

function unif-rand(x : scaled): scaled;
var y: scaled; {trial value }
begin next_random; y « take_fraction(abs(x), randoms[j-random));
if y = abs(z) then unif-rand < 0
else if = > 0 then unif rand <y
else unif-rand + —y;
end;

152. Finally, a normal deviate with mean zero and unit standard deviation can readily be obtained with
the ratio method (Algorithm 3.4.1R in The Art of Computer Programming).

function norm_rand: scaled;
var z,u,l: integer; {what the book would call 216X, 2280 and —2*InU }
begin repeat repeat next_random; x « take_fraction (112429, randoms[j_random] — fraction_half);
{216,/8/e ~ 112428.82793 }
next_random; u < randoms[j-random];
until abs(x) < u;
x + make_fraction (x,u); [<+ 139548960 — m_log(u); {2%*-12In2 ~ 139548959.6165 }
until ab_vs_cd (1024,1, z,x) > 0;
norm_rand < x;
end;

8153 METAFONT PART 9: PACKED DATA 57

153. Packed data. In order to make efficient use of storage space, METAFONT bases its major data
structures on a memory_word, which contains either a (signed) integer, possibly scaled, or a small number
of fields that are one half or one quarter of the size used for storing integers.

If x is a variable of type memory_word, it contains up to four fields that can be referred to as follows:

xz.int (an integer)
x.s¢ (a scaled integer)
x.hh.lh, x.hh.rh (two halfword fields)
x.hh.b0, x.hh.b1, x.hh.rh (two quarterword fields, one halfword field)
r.qqqq.b0, x.qqqq.b1, x.qqqq.b2, x.qqqq.b3 (four quarterword fields)

This is somewhat cumbersome to write, and not very readable either, but macros will be used to make the
notation shorter and more transparent. The Pascal code below gives a formal definition of memory_word
and its subsidiary types, using packed variant records. METAFONT makes no assumptions about the relative
positions of the fields within a word.

Since we are assuming 32-bit integers, a halfword must contain at least 16 bits, and a quarterword must
contain at least 8 bits. But it doesn’t hurt to have more bits; for example, with enough 36-bit words you
might be able to have mem_mazx as large as 262142.

N.B.: Valuable memory space will be dreadfully wasted unless METAFONT is compiled by a Pascal that
packs all of the memory_word variants into the space of a single integer. Some Pascal compilers will pack
an integer whose subrange is ‘0 .. 255’ into an eight-bit field, but others insist on allocating space for an
additional sign bit; on such systems you can get 256 values into a quarterword only if the subrange is
‘—128..127.

The present implementation tries to accommodate as many variations as possible, so it makes few as-
sumptions. If integers having the subrange ‘min_quarterword .. max_quarterword’ can be packed into a
quarterword, and if integers having the subrange ‘min_halfword .. maz_halfword’ can be packed into a
halfword, everything should work satisfactorily.

It is usually most efficient to have min_quarterword = min_halfword = 0, so one should try to achieve this
unless it causes a severe problem. The values defined here are recommended for most 32-bit computers.

define min_quarterword =0 {smallest allowable value in a quarterword }
define maz_quarterword = 255 {largest allowable value in a quarterword }
define min_halfword =0 {smallest allowable value in a halfword }

define maz_halfword = 65535 {largest allowable value in a halfword }

154. Here are the inequalities that the quarterword and halfword values must satisfy (or rather, the
inequalities that they mustn’t satisfy):

(Check the “constant” values for consistency 14) +=
init if mem_max # mem_top then bad + 10;
tini
if mem_maz < mem_top then bad + 10;
if (min_quarterword > 0) V (maz_quarterword < 127) then bad + 11,
if (min_halfword > 0) V (maz_halfword < 32767) then bad + 12;
if (min_quarterword < min_halfword) V (maz_quarterword > maz_halfword) then bad + 13;
if (mem_min < min_halfword) vV (mem_mazx > maz_halfword) then bad «+ 14;
if max_strings > maz_halfword then bad <+ 15;
if buf_size > max_halfword then bad < 16;
if (maz_quarterword — min_quarterword < 255) V (maz_halfword — min_halfword < 65535) then
bad + 17,

58 PART 9: PACKED DATA METAFONT §155

155. The operation of subtracting min_halfword occurs rather frequently in METAFONT, so it is convenient
to abbreviate this operation by using the macro ho defined here. METAFONT will run faster with respect
to compilers that don’t optimize the expression ‘z — 0, if this macro is simplified in the obvious way when
min_halfword = 0. Similarly, ¢i and go are used for input to and output from quarterwords.

define ho(#) = # — min_halfword {to take a sixteen-bit item from a halfword }

define qo(#) = # — min_quarterword {to read eight bits from a quarterword }

define qi(#) = # + min_quarterword { to store eight bits in a quarterword }

156. The reader should study the following definitions closely:
define sc = int { scaled data is equivalent to integer }

(Types in the outer block 18) +=

quarterword = min_quarterword .. maz_quarterword; {1/4 of a word }
halfword = min_halfword .. maz_halfword; {1/2 of a word }
two_choices =1 ..2; {used when there are two variants in a record }
three_choices =1 ..3; {used when there are three variants in a record }
two_halves = packed record rh: halfword;

case two_choices of

1: (Ih : halfword);

2: (b0 : quarterword; b1 : quarterword);

end;
four_quarters = packed record b0: quarterword;

b1: quarterword;

b2: quarterword;

b3: quarterword;

end;
memory_word = record

case three_choices of

1: (int : integer);

2: (hh : two_halves);

3: (qqqq : four_quarters);

end;
word_file = file of memory_word;

157. When debugging, we may want to print a memory-word without knowing what type it is; so we print
it in all modes.

debug procedure print-word (w : memory-word); { prints w in all ways }

begin print_int (w.int); print_char(",");

print_scaled (w.sc); print_char(","); print_scaled (w.sc div "10000); print_ln;

print_int (w.hh.lh); print_char("="); print_int(w.hh.b0); print_char(":"); print_int(w.hh.b1);
print_char(";"); print_int (w.hh.rh); print_char("y");

print_int (w.qqqq.b0); print_char(":"); print_int(w.qqqq.b1); print_char(":"); print_int(w.qqqq.b2);
print_char(":"); print_int (w.qqqq.b3);

end;

gubed

8158 METAFONT PART 10: DYNAMIC MEMORY ALLOCATION 59

158. Dynamic memory allocation. The METAFONT system does nearly all of its own memory al-
location, so that it can readily be transported into environments that do not have automatic facilities for
strings, garbage collection, etc., and so that it can be in control of what error messages the user receives.
The dynamic storage requirements of METAFONT are handled by providing a large array mem in which
consecutive blocks of words are used as nodes by the METAFONT routines.

Pointer variables are indices into this array, or into another array called eqtb that will be explained later.
A pointer variable might also be a special flag that lies outside the bounds of mem, so we allow pointers to
assume any halfword value. The minimum memory index represents a null pointer.

define pointer = halfword {a flag or a location in mem or eqtb }
define null = mem_min { the null pointer }

159. The mem array is divided into two regions that are allocated separately, but the dividing line between
these two regions is not fixed; they grow together until finding their “natural” size in a particular job.
Locations less than or equal to lo_mem_max are used for storing variable-length records consisting of two
or more words each. This region is maintained using an algorithm similar to the one described in exercise
2.5-19 of The Art of Computer Programming. However, no size field appears in the allocated nodes; the
program is responsible for knowing the relevant size when a node is freed. Locations greater than or equal
to hi-mem_min are used for storing one-word records; a conventional AVAIL stack is used for allocation in
this region.

Locations of mem between mem_min and mem_top may be dumped as part of preloaded base files, by
the INIMF preprocessor. Production versions of METAFONT may extend the memory at the top end in order
to provide more space; these locations, between mem_top and mem_maz, are always used for single-word
nodes.

The key pointers that govern mem allocation have a prescribed order:

null = mem_min < lo.mem_maz < hi_mem_min < mem_top < mem_end < mem_maz.

(Global variables 13) +=

mem: array [mem_min .. mem_maz] of memory_word; {the big dynamic storage area }
loomem_maz: pointer; {the largest location of variable-size memory in use }
hi_mem_min: pointer; {the smallest location of one-word memory in use }

160. Users who wish to study the memory requirements of specific applications can use optional special
features that keep track of current and maximum memory usage. When code between the delimiters stat
... tats is not “commented out,” METAFONT will run a bit slower but it will report these statistics when
tracing_stats is positive.

(Global variables 13) +=
var_used, dyn_used: integer; {how much memory is in use }

60 PART 10: DYNAMIC MEMORY ALLOCATION METAFONT 8161

161. Let’s consider the one-word memory region first, since it’s the simplest. The pointer variable mem_end
holds the highest-numbered location of mem that has ever been used. The free locations of mem that occur
between hi_mem_min and mem_end, inclusive, are of type two_halves, and we write info(p) and link (p) for
the [h and rh fields of mem[p] when it is of this type. The single-word free locations form a linked list

avail, link (avail), link (link (avail)), ...

terminated by null.

define link (#) = mem/[#].hh.rh {the link field of a memory word }
define info(#) = mem[#].hh.lh {the info field of a memory word }

(Global variables 13) +=
avail: pointer; {head of the list of available one-word nodes }
mem_end: pointer; {the last one-word node used in mem }

162. If one-word memory is exhausted, it might mean that the user has forgotten a token like ‘enddef’
or ‘endfor’. We will define some procedures later that try to help pinpoint the trouble.

(Declare the procedure called show_token_list 217)
(Declare the procedure called runaway 665)

163. The function get_avail returns a pointer to a new one-word node whose link field is null. However,
METAFONT will halt if there is no more room left.

function get_avail: pointer; {single-word node allocation }
var p: pointer; {the new node being got }
begin p < avail; {get top location in the avail stack }
if p # null then avail < link(avail) {and pop it off }
else if mem_end < mem_maxz then {or go into virgin territory }
begin incr(mem_end); p < mem_end;
end
else begin decr (hi_mem_min); p < hi_mem_min;
if hi_mem_min < lo_mem_maz then
begin runaway; {if memory is exhausted, display possible runaway text }
overflow ("main memory size", mem_max + 1 — mem_min); {quit; all one-word nodes are busy }
end;
end;
link (p) < null; {provide an oft-desired initialization of the new node }
stat incr(dyn_used); tats { maintain statistics }
get_avail < p;
end;

164. Conversely, a one-word node is recycled by calling free_avail.

define free_avail(#) = {single-word node liberation }
begin link (#) + avail; avail < #;
stat decr(dyn_used); tats
end

8165 METAFONT PART 10: DYNAMIC MEMORY ALLOCATION 61

165. There’s also a fast_get_avail routine, which saves the procedure-call overhead at the expense of extra
programming. This macro is used in the places that would otherwise account for the most calls of get_avail.

define fast_get_avail (#) =
begin # < avail; {avoid get_avail if possible, to save time }
if # = null then # < get_avail
else begin avail < link (#); link (#) <+ null;
stat incr(dyn_used); tats
end;
end

166. The available-space list that keeps track of the variable-size portion of mem is a nonempty, doubly-
linked circular list of empty nodes, pointed to by the roving pointer rover.

Each empty node has size 2 or more; the first word contains the special value maz_halfword in its link
field and the size in its info field; the second word contains the two pointers for double linking.

Each nonempty node also has size 2 or more. Its first word is of type two_halves, and its link field is never
equal to max_halfword. Otherwise there is complete flexibility with respect to the contents of its other fields
and its other words.

(We require mem_maz < maz_halfword because terrible things can happen when maz_halfword appears
in the link field of a nonempty node.)

define empty_flag = maz_halfword {the link of an empty variable-size node }
define is_empty (#) = (link (#) = empty_flag) {tests for empty node }
define node_size = info { the size field in empty variable-size nodes }
define llink (#) = info(# 4+ 1) {left link in doubly-linked list of empty nodes }
define rlink (#) = link (# + 1) {right link in doubly-linked list of empty nodes }
(Global variables 13) +=
rover: pointer; {points to some node in the list of empties }

62 PART 10: DYNAMIC MEMORY ALLOCATION METAFONT 8167

167. A call to get_-node with argument s returns a pointer to a new node of size s, which must be 2 or
more. The link field of the first word of this new node is set to null. An overflow stop occurs if no suitable
space exists.
If get_node is called with s = 230, it simply merges adjacent free areas and returns the value maz_halfword.
function get_node (s : integer): pointer; {variable-size node allocation }
label found, exit, restart;
var p: pointer; {the node currently under inspection }
q: pointer; {the node physically after node p }
r: integer; {the newly allocated node, or a candidate for this honor }
t,tt: integer; {temporary registers }
begin restart: p <— rover; {start at some free node in the ring }
repeat (Try to allocate within node p and its physical successors, and goto found if allocation was
possible 169);
p < rlink(p); {move to the next node in the ring }
until p = rover; {repeat until the whole list has been traversed }
if s = 10000000000 then
begin get_node < maz_halfword; return;
end;
if loomem_maz + 2 < hi-mem_min then
if loomem_maz + 2 < mem_min + maz_halfword then
(Grow more variable-size memory and goto restart 168);
overflow ("main memory size", mem_max + 1 — mem_min); {sorry, nothing satisfactory is left }
found: link(r) < null; {this node is now nonempty }
stat var_used < var_-used + s; { maintain usage statistics }
tats
get_node < r;
erit: end;

168. The lower part of mem grows by 1000 words at a time, unless we are very close to going under. When
it grows, we simply link a new node into the available-space list. This method of controlled growth helps to
keep the mem usage consecutive when METAFONT is implemented on “virtual memory” systems.

(Grow more variable-size memory and goto restart 168) =
begin if hi_mem_min — loomem_mazx > 1998 then t < lo_mem_mazx + 1000
else t « lo_mem_maz + 1+ (hiimem_min — lo_mem_maz) div 2; {lo_mem_maz +2 <t < hi_mem_min }
if t > mem_min + max_halfword then t < mem_min + max_halfword;
p < llink (rover); q < loomem_maz; rlink(p) < q; link(rover) < g;
rlink (q) < rover; llink(q) < p; link(q) < empty_flag; node_size(q) < t — lo-mem_maz;
lomem_maz + t; link(lo-mem_max) < null; info(lo-mem_maz) < null; rover + q; goto restart;
end

This code is used in section 167.

8169 METAFONT PART 10: DYNAMIC MEMORY ALLOCATION

169. (Try to allocate within node p and its physical successors, and goto found if allocation was
possible 169) =
q < p+ node_size(p); {find the physical successor }
while is_empty(q) do {merge node p with node ¢}
begin t « rlink(q); tt < llink(q);
if ¢ = rover then rover + t;
link (t) « tt; rlink(tt) « t;
q < g+ node_size(q);
end;
T4 q—S;
if » > p+ 1 then (Allocate from the top of node p and goto found 170);
if » = p then
if rlink(p) # p then (Allocate entire node p and goto found 171);
node_size(p) <— q —p {reset the size in case it grew }

This code is used in section 167.

170. (Allocate from the top of node p and goto found 170) =
begin node_size(p) + r — p; {store the remaining size }
rover < p; {start searching here next time }
goto found;
end

This code is used in section 169.

171. Here we delete node p from the ring, and let rover rove around.

(Allocate entire node p and goto found 171) =
begin rover < rlink(p); t < llink(p); llink(rover) < t; rlink(t) < rover; goto found;
end

This code is used in section 169.

63

172. Conversely, when some variable-size node p of size s is no longer needed, the operation free_node(p,)

will make its words available, by inserting p as a new empty node just before where rover now points.

procedure free_node(p : pointer; s : halfword); { variable-size node liberation }
var q: pointer; {llink(rover) }
begin node_size (p) < s; link(p) < empty_flag; q + llink (rover); llink(p) < ¢; rlink(p) < rover;
{ set both links }
llink (rover) < p; rlink(q) < p; {insert p into the ring }
stat var_used < var_used — s; tats {maintain statistics }
end;

)

64 PART 10: DYNAMIC MEMORY ALLOCATION METAFONT §173

173. Just before INIMF writes out the memory, it sorts the doubly linked available space list. The list is
probably very short at such times, so a simple insertion sort is used. The smallest available location will be
pointed to by rover, the next-smallest by rlink (rover), etc.

init procedure sort_avail; {sorts the available variable-size nodes by location }
var p, q,r: pointer; {indices into mem }
old_rover: pointer; {initial rover setting }
begin p < get_node(10000000000); {merge adjacent free areas }
p < rlink (rover); rlink(rover) < maz_halfword; old_rover <« rover;
while p # old_rover do (Sort p into the list starting at rover and advance p to rlink(p) 174);
p < Tover;
while rlink (p) # maz_halfword do
begin [link (rlink (p)) + p; p + rlink(p);
end;
rlink (p) < rover; llink (rover) < p;
end;
tini

174. The following while loop is guaranteed to terminate, since the list that starts at rover ends with
maz_halfword during the sorting procedure.

(Sort p into the list starting at rover and advance p to rlink(p) 174) =
if p < rover then
begin q < p; p < rlink(q); rlink(q) + rover; rover + g;
end
else begin g < rover;
while rlink(q) < p do ¢ + rlink(q);
r « rlink(p); rlink(p) < rlink(q); rlink(q) < p; p < 7;
end

This code is used in section 173.

§175 METAFONT PART 11: MEMORY LAYOUT 65

175. Memory layout. Some areas of mem are dedicated to fixed usage, since static allocation is more
efficient than dynamic allocation when we can get away with it. For example, locations mem_min to
mem_min + 2 are always used to store the specification for null pen coordinates that are ‘(0,0)’. The
following macro definitions accomplish the static allocation by giving symbolic names to the fixed positions.
Static variable-size nodes appear in locations mem_min through lo_mem_stat_maz, and static single-word
nodes appear in locations hi_mem_stat_min through mem_top, inclusive.

define null_coords = mem_min { specification for pen offsets of (0,0) }

define null_pen = null_coords +3 {we will define coord_node_size =3}

define dep_head = null_pen + 10 {and pen_node_size = 10}

define zero_val = dep_head +2 {two words for a permanently zero value }

define temp_val = zero_val +2 {two words for a temporary value node }

define end_attr = temp_val {we use end_attr + 2 only }

define infval = end_attr +2 {and inf-val + 1 only }

define bad_vardef = inf-val +2 {two words for vardef error recovery }

define lo_mem_stat_max = bad_vardef +1 {largest statically allocated word in the variable-size mem }

define sentinel = mem_top {end of sorted lists }

define temp_head = mem_top —1 {head of a temporary list of some kind }

define hold_head = mem_top —2 {head of a temporary list of another kind }

define hi_mem_stat_min = mem_top — 2 {smallest statically allocated word in the one-word mem }

176. The following code gets the dynamic part of mem off to a good start, when METAFONT is initializing
itself the slow way.

(Initialize table entries (done by INIMF only) 176) =
rover lo_mem_stat_maz + 1; {initialize the dynamic memory }
link (rover) < empty_flag; node_size(rover) + 1000; {which is a 1000-word available node }
llink (rover) < rover; rlink (rover) < rover;
lo_mem_maz <+ rover + 1000; link (loomem_maz) < null; info(lo.mem_maz) + null;
for k < hi_mem_stat_min to mem_top do memlk] < mem[lo-mem_maz]; {clear list heads }
avail < null; mem_end < mem_top; hi_mem_min < hi_mem_stat_min;
{ initialize the one-word memory }
var_used < lo_mem_stat_max + 1 — mem_min; dyn_used < mem_top + 1 — hi_mem_min,;
{ initialize statistics }
See also sections 193, 203, 229, 324, 475, 587, 702, 759, 911, 1116, 1127, and 1185.

This code is used in section 1210.

66 PART 11: MEMORY LAYOUT METAFONT §177

177. The procedure flush_list(p) frees an entire linked list of one-word nodes that starts at a given position,
until coming to sentinel or a pointer that is not in the one-word region. Another procedure, flush_node_list,
frees an entire linked list of one-word and two-word nodes, until coming to a null pointer.

procedure flush_list(p : pointer); {makes list of single-word nodes available }
label done;
var q,r: pointer; {list traversers }
begin if p > hi_mem_min then
if p # sentinel then
begin r < p;
repeat q < r; r < link(r);
stat decr(dyn_used); tats
if r < hi_mem_min then goto done;
until r = sentinel;
done: {now q is the last node on the list }
link (q) < avail; avail < p;
end;
end;

procedure flush_node_list(p : pointer);
var ¢: pointer; {the node being recycled }
begin while p # null do
begin q < p; p < link(p);
if ¢ < hiimem_min then free_node(q,2) else free_avail (q);
end;
end;
178. If METAFONT is extended improperly, the mem array might get screwed up. For example, some
pointers might be wrong, or some “dead” nodes might not have been freed when the last reference to them
disappeared. Procedures check-mem and search-mem are available to help diagnose such problems. These
procedures make use of two arrays called free and was_free that are present only if METAFONT’s debugging
routines have been included. (You may want to decrease the size of mem while you are debugging.)

(Global variables 13) +=
debug free: packed array [mem_min .. mem_maz] of boolean; {free cells}
was_free: packed array [mem_min .. mem_maz] of boolean; {previously free cells }
was-mem_end , was_-lo-max , was_hi_min: pointer; {previous mem_end, lo-mem_maz, and hi_mem_min }
panicking: boolean; {do we want to check memory constantly? }
gubed

179. (Set initial values of key variables 21) +=
debug was-mem_end < mem_min; {indicate that everything was previously free }
was_lo_mazx < mem_min; was_hi_min < mem_maz; panicking < false;
gubed

§180 METAFONT PART 11: MEMORY LAYOUT 67

180. Procedure check-mem makes sure that the available space lists of mem are well formed, and it

optionally prints out all locations that are reserved now but were free the last time this procedure was
called.

debug procedure check_mem (print_locs : boolean);
label donel, done2; {loop exits}
var p,q,r: pointer; {current locations of interest in mem }
clobbered: boolean; {is something amiss? }
begin for p + mem_min to loomem_maz do free[p] < false; {you can probably do this faster }
for p « hi_mem_min to mem_end do free[p| + false; {ditto}
(Check single-word avail list 181);
(Check variable-size avail list 182);
(Check flags of unavailable nodes 183);
(Check the list of linear dependencies 617);
if print_locs then (Print newly busy locations 184);
for p « mem_min to loomem_mazx do was_free[p] < free[pl;
for p < hi_mem_min to mem_end do was_free[p] < free[p]; { was_free < free might be faster }
was_mem_end < mem_end; was_lo.max < lo_mem_max; was_hi_min < hi_mem_min;
end;
gubed

181. (Check single-word awvail list 181) =
p < avail; q < null; clobbered <+ false;
while p # null do
begin if (p > mem_end) V (p < hi-mem_min) then clobbered + true
else if free[p] then clobbered + true;
if clobbered then
begin print_nl("AVAIL list clobbered at,"); print_int(q); goto donel;
end;
free[p] < true; q < p; p « link(q);
end;
donel:

This code is used in section 180.

182. (Check variable-size avail list 182) =
p < rover; q <+ null; clobbered + false;
repeat if (p > loomem_maz) V (p < mem_min) then clobbered < true
else if (rlink(p) > lo-mem_maz) V (rlink (p) < mem_min) then clobbered < true
else if —(is_empty(p)) V (node_size(p) < 2) V (p + node_size(p) > lo-mem_max) V
(Uink (rlink (p)) # p) then clobbered < true;
if clobbered then
begin print_nl("Double-AVAIL listclobbered at."); print-int(q); goto done2;
end;
for ¢ «+ p to p+ node_size(p) —1 do {mark all locations free }
begin if free[q] then
begin print_nl("Doubly, free location at,"); print_int(q); goto done2;
end;
freelq] + true;
end;
q < p; p < rlink(p);
until p = rover;
done2:

This code is used in section 180.

68 PART 11: MEMORY LAYOUT METAFONT 8183

183. (Check flags of unavailable nodes 183) =
p < mem_min;
while p < lo.mem_maz do {node p should not be empty }
begin if is_empty(p) then
begin print_nl("Bad,flag at,"); print-int(p);
end;
while (p < lo-mem_max) A —free[p] do incr(p);
while (p < lo-mem_max) A free[p] do incr(p);
end

This code is used in section 180.

184. (Print newly busy locations 184) =
begin print_nl("New_ busy_locs:");
for p < mem_min to lo_mem_mazx do
if —free[p] A ((p > was_lo-max) V was_free[p]) then
begin print_char("y"); print_int(p);
end;
for p < hi_mem_min to mem_end do
if —free[p] A ((p < was-hi-min) V (p > was-mem_end) V was_free[p]) then
begin print_char("u"); print_int(p);
end;
end

This code is used in section 180.

185. The search-mem procedure attempts to answer the question “Who points to node p?” In doing so, it
fetches link and info fields of mem that might not be of type two_halves. Strictly speaking, this is undefined
in Pascal, and it can lead to “false drops” (words that seem to point to p purely by coincidence). But for
debugging purposes, we want to rule out the places that do not point to p, so a few false drops are tolerable.

debug procedure search_mem (p : pointer); {look for pointers to p }
var ¢: integer; {current position being searched }
begin for ¢ + mem_min to loomem_mazr do
begin if link(q) = p then
begin print_nl("LINK("); print-int(q); print_char(")");
end;
if info(q) = p then
begin print_nl("INFO("); print_int(q); print_char(")");
end;
end;
for g < hi_mem_min to mem_end do
begin if link(q) = p then
begin print_nl("LINK("); print_int(q); print_char(")");
end;
if info(q) = p then
begin print_nl("INFO("); print-int(q); print_char(")");
end;
end;
(Search eqth for equivalents equal to p 209);
end;
gubed

8186 METAFONT PART 12: THE COMMAND CODES 69

186. The command codes. Before we can go much further, we need to define symbolic names for
the internal code numbers that represent the various commands obeyed by METAFONT. These codes are
somewhat arbitrary, but not completely so. For example, some codes have been made adjacent so that
case statements in the program need not consider cases that are widely spaced, or so that case statements
can be replaced by if statements. A command can begin an expression if and only if its code lies between
min_primary_command and max_primary_command, inclusive. The first token of a statement that doesn’t
begin with an expression has a command code between min_command and maz_statement_command, inclu-
sive. The ordering of the highest-numbered commands (comma < semicolon < end_group < stop) is crucial
for the parsing and error-recovery methods of this program.
At any rate, here is the list, for future reference.

define if-test =1 {conditional text (if) }

define fi_or_else =2 {delimiters for conditionals (elseif, else, fi) }

define input =3 {input a source file (input, endinput) }

define iteration = 4 {iterate (for, forsuffixes, forever, endfor) }

define repeat_loop =5 {special command substituted for endfor }

define exit_test =6 { premature exit from a loop (exitif) }

define relaz =7 {do nothing (\) }

define scan_tokens =8 {put a string into the input buffer }

define expand_after =9 {look ahead one token }

define defined_macro =10 {a macro defined by the user }

define min_command = defined_macro + 1

define display_command =11 {online graphic output (display) }

define save_command = 12 {save a list of tokens (save) }

define interim_command = 13 {save an internal quantity (interim) }
define let_command = 14 {redefine a symbolic token (let) }

define new_internal = 15 {define a new internal quantity (newinternal) }
define macro_def =16 {define a macro (def, vardef, etc.) }

define ship_out_.command = 17 {output a character (shipout) }

define add_to_command =18 {add to edges (addto) }

define cull_command =19 {cull and normalize edges (cull) }

define tfm_command =20 {command for font metric info (ligtable, etc.) }
define protection_.command = 21 {set protection flag (outer, inner) }
define show_command = 22 {diagnostic output (show, showvariable, etc.) }
define mode_command = 23 {set interaction level (batchmode, etc.) }
define random_seed = 24 {initialize random number generator (randomseed) }
define message_command = 25 {communicate to user (message, errmessage) }
define every_job_command = 26 { designate a starting token (everyjob) }
define delimiters = 27 { define a pair of delimiters (delimiters) }

define open_window =28 {define a window on the screen (openwindow) }
define special_command =29 {output special info (special, numspecial) }
define type_name = 30 {declare a type (numeric, pair, etc.) }

define maz_statement_command = type_name

define min_primary_command = type_name

define left_delimiter = 31 { the left delimiter of a matching pair }

define begin_group = 32 { beginning of a group (begingroup) }

define nullary = 33 { an operator without arguments (e.g., normaldeviate) }
define unary = 34 {an operator with one argument (e.g., sqrt) }

define stroop =35 {convert a suffix to a string (str) }

define cycle =36 {close a cyclic path (cycle) }

define primary_binary = 37 { binary operation taking ‘of’ (e.g., point) }
define capsule_token = 38 {a value that has been put into a token list }
define string_token =39 {a string constant (e.g., "hello")}

70 PART 12: THE COMMAND CODES METAFONT

define
define
define
define
define

internal_quantity = 40 {internal numeric parameter (e.g., pausing) }
min_suffix_token = internal_quantity

tag-token = 41 {a symbolic token without a primitive meaning }
numeric_token = 42 {a numeric constant (e.g., 3.14159) }
maz_suffix_token = numeric_token

define plus_or-minus = 43 { either ‘+’ or ‘=’

define
define
define
define
define
define
define

maz_primary-command = plus_or_minus { should also be numeric_token + 1}
min_tertiary_command = plus_or_minus

tertiary_secondary-macro = 44 {a macro defined by secondarydef }
tertiary_binary = 45 { an operator at the tertiary level (e.g., ‘“++) }
maz_tertiary_.command = tertiary_binary

left_brace = 46 { the operator ‘{’ }

min_expression_command = left_brace

define path_join = 47 {the operator ‘..’ }

define
define
define
define
define
define
define
define
define
define
define

ampersand = 48 { the operator ‘&’ }

expression_tertiary-macro = 49 {a macro defined by tertiarydef }
expression_binary = 50 { an operator at the expression level (e.g., ‘<’) }
equals = 51 {the operator ‘=" }

maz_expression_command = equals

and_command = 52 {the operator ‘and’ }

min_secondary-command = and_command

secondary_primary-macro = 53 { a macro defined by primarydef }
slash =54 {the operator ‘/’ }

secondary_-binary = 55 {an operator at the binary level (e.g., shifted) }
mazx_secondary_command = secondary_binary

define param_type = 56 {type of parameter (primary, expr, suffix, etc.) }

define
define
define
define
define
define
define
define
define
define
define
define
define

controls = 57 { specify control points explicitly (controls) }
tension = 58 { specify tension between knots (tension) }
at_least =59 {bounded tension value (atleast) }

curl_command = 60 {specify curl at an end knot (curl) }
macro_special = 61 { special macro operators (quote, #0, etc.) }
right_delimiter = 62 { the right delimiter of a matching pair }
left_bracket = 63 {the operator ‘[’ }

right_bracket = 64 {the operator ‘1’ }

right_brace = 65 { the operator ‘}’ }

with_option = 66 { option for filling (withpen, withweight) }
cull_.op = 67 {the operator ‘keeping’ or ‘dropping’ }
thing-to_add = 68 { variant of addto (contour, doublepath, also) }
of-token = 69 {the operator ‘of” }

define from_token =70 {the operator ‘from’}

define
define
define
define
define
define
define
define
define
define
define

define

to_token =71 {the operator ‘to’ }
at_token = 72 {the operator ‘at’}
in—window = 73 { the operator ‘inwindow’ }

step_token = 74 {the operator ‘step’ }

until_token =75 { the operator ‘until’ }

lig_kern_token = 76 {the operators ‘kern’ and ‘=:” and ‘=:|’, etc. }
assignment = 77 { the operator ‘:="}

skip_to =78 {the operation ‘skipto’ }

behar_label =79 { the operator ‘| |:’}

double_colon =80 {the operator ‘::’}

colon =81 {the operator ‘:’}

comma = 82 {the operator ‘,’, must be colon + 1}

§186

§186 METAFONT PART 12: THE COMMAND CODES 71

define end_of_statement = cur_cmd > comma

define semicolon =83 {the operator ‘;’, must be comma + 1}

define end_group = 84 {end a group (endgroup), must be semicolon + 1}
define stop =85 {end a job (end, dump), must be end_group + 1}
define max_command_code = stop

define outer_tag = maz_command_code +1 { protection code added to command code }

(Types in the outer block 18) +=
command-code = 1 .. mazx_command_code;

72 PART 12: THE COMMAND CODES METAFONT §187

187. Variables and capsules in METAFONT have a variety of “types,” distinguished by the following code
numbers:

define undefined =0 {no type has been declared }
define unknown_tag =1 {this constant is added to certain type codes below }
define vacuous =1 {no expression was present }
define boolean_type =2 {boolean with a known value }
define unknown_boolean = boolean_type + unknown_tag
define string_type = 4 {string with a known value }
define unknown_string = string_type + unknown_tag
define pen_type = 6 { pen with a known value }
define unknown_pen = pen_type + unknown_tag
define future_pen =8 {subexpression that will become a pen at a higher level }
define path_type =9 {path with a known value }
define unknown_path = path_type + unknown_tag
define picture_type = 11 { picture with a known value }
define unknown_picture = picture_type + unknown_tag
define transform_type = 13 { transform variable or capsule }
define pair_type = 14 { pair variable or capsule }
define numeric_type = 15 {variable that has been declared numeric but not used }
define known =16 {numeric with a known value }
define dependent =17 {a linear combination with fraction coefficients }
define proto_dependent =18 {a linear combination with scaled coefficients }
define independent =19 {numeric with unknown value }
define token_list =20 { variable name or suffix argument or text argument }
define structured = 21 { variable with subscripts and attributes }
define unsuffized_macro = 22 { variable defined with vardef but no @# }
define suffized_macro = 23 { variable defined with vardef and o#}
define unknown_types = unknown_boolean , unknown_string , unknown_pen , unknown_picture , unknown_path
(Basic printing procedures 57) +=
procedure print_type(t : small_number);
begin case t of
vacuous: print("vacuous");
boolean_type: print("boolean");
unknown_boolean: print("unknown boolean");
string_type: print("string");
unknown_string: print("unknown, string");
pen_type: print("pen");
unknown_pen: print("unknown pen");
future_pen: print("future_ pen");
path_type: print("path");
unknown_path: print("unknown, path");
picture_type: print("picture");
unknown_picture: print("unknown picture");
transform_type: print("transform");
pair_type: print("pair");
known: print("known numeric");
dependent: print("dependent");
proto_dependent: print("proto-dependent");
numeric_type: print("numeric");
independent: print("independent");
token_list: print("token list");
structured: print("structured");

8187 METAFONT PART 12: THE COMMAND CODES 73

unsuffized_macro: print("unsuffixed macro");
suffized_macro: print("suffixed macro");
othercases print("undefined")

endcases;

end;

188. Values inside METAFONT are stored in two-word nodes that have a name_type as well as a type. The
possibilities for name_type are defined here; they will be explained in more detail later.

define root =0 { name_type at the top level of a variable }

define saved_root =1 {same, when the variable has been saved }
define structured_root =2 { name_type where a structured branch occurs }
define subscr =3 { name_type in a subscript node }

define attr =4 { name_type in an attribute node }

define z_part_sector =5 { name_type in the xpart of a node }
define y_part_sector =6 { name_type in the ypart of a node }
define zx_part_sector =7 { name_type in the xxpart of a node }
define zy_part_sector =8 { name_type in the xypart of a node }
define yz_part_sector =9 { name_type in the yxpart of a node }
define yy_part_sector =10 { name_type in the yypart of a node }
define capsule =11 { name_type in stashed-away subexpressions }
define token = 12 { name_type in a numeric token or string token }

74 PART 12: THE COMMAND CODES METAFONT §189

189. Primitive operations that produce values have a secondary identification code in addition to their com-
mand code; it’s something like genera and species. For example, ‘*’ has the command code primary_binary,
and its secondary identification is times. The secondary codes start at 30 so that they don’t overlap with
the type codes; some type codes (e.g., string_type) are used as operators as well as type identifications.

define true_code =30 {operation code for true }

define false_code = 31 {operation code for false }

define null_picture_code = 32 { operation code for nullpicture }
define null_pen_code = 33 { operation code for nullpen }
define job_name_op = 34 {operation code for jobname }
define read_string_op = 35 {operation code for readstring }
define pen_circle = 36 { operation code for pencircle }
define normal_deviate = 37 { operation code for normaldeviate }
define odd_op = 38 {operation code for odd }

define known_op =39 {operation code for known }

define unknown_op =40 {operation code for unknown }
define not_op =41 {operation code for not }

define decimal =42 {operation code for decimal }

define reverse =43 {operation code for reverse }

define make_path_op = 44 { operation code for makepath }
define make_pen_op = 45 {operation code for makepen }
define total_weight_op = 46 { operation code for totalweight }
define oct_op = 47 {operation code for oct }

define hex_op =48 {operation code for hex }

define ASCILop =49 {operation code for ASCIT }

define char_op =50 {operation code for char }

define length_op = 51 {operation code for length }

define turning_op = 52 { operation code for turningnumber }
define z_part = 53 { operation code for xpart }

define y_part = 54 {operation code for ypart }

define zz_part = 55 {operation code for xxpart }

define zy_part =56 {operation code for xypart }

define yz_part =57 {operation code for yxpart }

define yy_part = 58 { operation code for yypart }

define sqrt_op =59 {operation code for sqrt }

define m_exp_op = 60 {operation code for mexp }

define m_log_op = 61 {operation code for mlog }

define sin_d_op = 62 {operation code for sind }

define cos_d_op = 63 {operation code for cosd }

define floor_op = 64 {operation code for floor }

define uniform_deviate = 65 {operation code for uniformdeviate }
define char_exists_op = 66 {operation code for charexists }
define angle_op = 67 {operation code for angle }

define cycle_op = 68 {operation code for cycle }

define plus =69 {operation code for +}

define minus = 70 {operation code for -}

define times =71 {operation code for * }

define over =72 {operation code for / }

define pythag-add = 73 {operation code for ++ }

define pythag-sub = 74 {operation code for +-+}

define or_op =75 {operation code for or }

define and_op = 76 {operation code for and }

define less_than = 77 {operation code for <}

6189 METAFONT PART 12: THE COMMAND CODES

define less_or_equal = 78 { operation code for <=}

define greater_than =79 {operation code for >}

define greater_or_equal = 80 { operation code for >=}

define equal_to = 81 {operation code for =}

define unequal_to = 82 { operation code for <>}

define concatenate = 83 { operation code for & }

define rotated_by = 84 {operation code for rotated }

define slanted_by = 85 {operation code for slanted }

define scaled_by = 86 { operation code for scaled }

define shifted_by = 87 {operation code for shifted }

define transformed_by = 88 { operation code for transformed }
define z_scaled =89 {operation code for xscaled }

define y_scaled = 90 { operation code for yscaled }

define z_scaled =91 {operation code for zscaled }

define intersect = 92 {operation code for intersectiontimes }
define double_dot =93 {operation code for improper .. }
define substring_of =94 {operation code for substring }
define min_of = substring_of

define subpath_of =95 {operation code for subpath }

define direction_time_of =96 {operation code for directiontime }
define point_of =97 {operation code for point }

define precontrol_of =98 {operation code for precontrol }
define postcontrol_of =99 { operation code for postcontrol }
define pen_offset_of =100 {operation code for penoffset }

procedure print_op(c : quarterword);
begin if ¢ < numeric_type then print_type(c)
else case c of

true_code: print("true");
false_code: print("false");
null_picture_code: print("nullpicture");
null_pen_code: print("nullpen");
job_name_op: print("jobname");
read_string_op: print("readstring");
pen_circle: print("pencircle");
normal_deviate: print("normaldeviate");
odd_op: print("odd");
known_op: print("known");
unknown_op: print("unknown");
not_op: print("not");
decimal: print("decimal");
reverse: print("reverse");
make_path_op: print("makepath");
make_pen_op: print("makepen");
total_weight_op: print("totalweight");
oct_op: print("oct");
hex_op: print("hex");
ASCIL op: print("ASCII");
char_op: print("char");
length_op: print("length");
turning_op: print("turningnumber");
x_part: print("xpart");
y_part: print("ypart");

75

76

PART 12: THE COMMAND CODES
xz_part: print("xxpart");
xy_part: print("xypart");
yz_part: print("yxpart");

()

)

yy-part: print("yypart'
sqrt_op: print("sqrt");
m_ezp_op: print("mexp");

m_log_op: print("mlog");

sin_d_op: print("sind");

cos_d_op: print("cosd");

floor_op: print("floor");
uniform_deviate: print("uniformdeviate");
char_ezists_op: print("charexists");
angle_op: print("angle");

cycle_op: print("cycle");

plus: print_char("+");

minus: print_char("=");

times: print_char("*");

over: print_char("/");

pythag_add: print("++");

pythag_sub: print("+-+");

or_op: print("or");

and-op: print("and");

less_than: print_char("<");
less_or_equal: print("<=");

greater_than: print_char(">");
greater_or_equal: print(">=");

equal_to: print_char("=");

unequal_to: print("<>");

concatenate: print("&");

rotated_by: print("rotated");
slanted_by: print("slanted");
scaled_by: print("scaled");

shifted_by: print("shifted");
transformed_by: print("transformed");
z_scaled: print("xscaled");

y_scaled: print("yscaled");

z_scaled: print("zscaled");

intersect: print("intersectiontimes");
substring_of : print("substring");
subpath_of : print("subpath");
direction_time_of : print("directiontime");
point_of : print("point");

precontrol_of : print("precontrol");
postcontrol_of : print("postcontrol");
pen_offset_of : print("penoffset");
othercases print("..")

endcases;

)

end;

METAFONT

§189

§190 METAFONT PART 12: THE COMMAND CODES 77

190. METAFONT also has a bunch of internal parameters that a user might want to fuss with. Every such
parameter has an identifying code number, defined here.

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

tracing_titles = 1 { show titles online when they appear }

tracing_equations = 2 { show each variable when it becomes known }
tracing_capsules = 3 {show capsules too }

tracing_choices = 4 {show the control points chosen for paths }
tracing_specs = 5 { show subdivision of paths into octants before digitizing }
tracing_pens = 6 {show details of pens that are made }

tracing-commands =7 { show commands and operations before they are performed }
tracing_restores = 8 { show when a variable or internal is restored }
tracing-macros = 9 { show macros before they are expanded }

tracing_edges = 10 { show digitized edges as they are computed }
tracing-output = 11 { show digitized edges as they are output }

tracing_stats = 12 { show memory usage at end of job }

tracing-online = 13 { show long diagnostics on terminal and in the log file }
year = 14 {the current year (e.g., 1984) }

month =15 {the current month (e.g., 3 = March) }

day =16 {the current day of the month }

time =17 {the number of minutes past midnight when this job started }
char_code =18 {the number of the next character to be output }

char_ext =19 { the extension code of the next character to be output }
char_wd =20 {the width of the next character to be output }

char_ht = 21 {the height of the next character to be output }

char_dp = 22 {the depth of the next character to be output }

char_ic = 23 {the italic correction of the next character to be output }
char_dx = 24 {the device’s x movement for the next character, in pixels }
char_dy =25 {the device’s y movement for the next character, in pixels }
design_size = 26 { the unit of measure used for char_wd .. char_ic, in points }
hppp = 27 { the number of horizontal pixels per point }

vppp = 28 {the number of vertical pixels per point }

z_offset =29 { horizontal displacement of shipped-out characters }

y-offset =30 { vertical displacement of shipped-out characters }

define pausing = 31 { positive to display lines on the terminal before they are read }

define

showstopping = 32 { positive to stop after each show command }

define fontmaking = 33 { positive if font metric output is to be produced }

define
define
define
define

proofing = 34 { positive for proof mode, negative to suppress output }
smoothing = 35 { positive if moves are to be “smoothed” }
autorounding = 36 { controls path modification to “good” points }
granularity = 37 { autorounding uses this pixel size }

define fillin = 38 {extra darkness of diagonal lines }

define
define
define
define

turning_check = 39 { controls reorientation of clockwise paths }
warning-check = 40 { controls error message when variable value is large }
boundary_char =41 { the right boundary character for ligatures }
maz_given_internal = 41

(Global variables 13) +=
internal: array [1 .. maz_internal] of scaled; {the values of internal quantities }

int_name:

array [l .. max_internal] of str_number; {their names }

int_ptr: max_given_internal .. maz_internal; {the maximum internal quantity defined so far }

78 PART 12: THE COMMAND CODES METAFONT §191

191. (Set initial values of key variables 21) +=
for k + 1 to maz_given_internal do internal[k] + 0;
int_ptr < maz_given_internal;

192. The symbolic names for internal quantities are put into METAFONT’s hash table by using a routine
called primitive, which will be defined later. Let us enter them now, so that we don’t have to list all those
names again anywhere else.

(Put each of METAFONT’s primitives into the hash table 192) =
primitive ("tracingtitles", internal_quantity, tracing_titles);
primitive ("tracingequations", internal_quantity, tracing_equations);
primitive ("tracingcapsules", internal_quantity, tracing_capsules);
primitive ("tracingchoices", internal_quantity, tracing_choices);
primitive ("tracingspecs", mtemal quantity , tracing-specs);
primitive ("tracingpens", internal_quantity, tracing_pens);
primitive ("tracingcommands", internal_quantity, tracing_commands);
primitive ("tracingrestores", internal_quantity, tracing_restores);
primitive ("tracingmacros", internal_quantity, tracing_macros);
primitive ("tracingedges", mtemal quantity , tracing-edges);
primitive ("tracingoutput", internal_quantity, tracing-output);
primitive("tracingstats", internal_quantity , tracing_stats);
primitive "trac1ngon11ne " internal_quantity , tracing_online);
primitive ("year", internal_quantity , year);
primitive ("month", internal_quantity, month);
primitive ("day", mternal quantity, day);
primitive ("time", internal_quantity, time);
primitive ("charcode", internal_quantity, char_code);
primitive (" charext", mtemal quantity , char_ext);
primitive (" charwd", mternal quantity, char_wd);

(
(
(
(
(
(
(
(
(
(
(
(
("
(
(
(
(
E
primitive ("charht", internal_quantity, char_ht);
(
(
(
(
(
(
(
(
(
(
(
(
(
(
("
(
(
(
(

primitive ("chardp", internal_quantity, char_dp);
primitive ("charic", internal_quantity, char_ic);
primitive (" chardx", internal_quantity, char_dz);
primitive ("chardy", internal_quantity, char_dy);
primative ("d e31gn51ze",intemal,quantity,desz’gn,size);
primitive ("hppp", internal_quantity , hppp);

primitive ("vppp", internal_quantity , vppp);

primitive ("xoffset", internal_quantity , x_offset);
primitive ("yoffset", internal_quantity, y_offset);

primitive ("pausing", internal_quantity , pausing);

primitive ("showstopping", internal_quantity , showstopping);
primitive ("fontmaking", internal_quantity, fontmaking);
primitive ("proofing", internal_quantity, proofing);
primitive ("smoothing", internal_quantity, smoothing);

primitive ("autorounding", internal_quantity , autorounding);
primitive ("granularity", internal_quantity, granularity);
primitive("£il1lin", internal_quantity, fillin);
primitive ("turningcheck", internal_quantity, turning_check);
primitive ("warningcheck", internal_quantity , warning_check);
primitive ("boundarychar", internal_quantity , boundary_char);
See also sections 211, 683, 688, 695, 709, 740, 893, 1013, 1018, 1024, 1027, 1037, 1052, 1079, 1101, 1108, and 1176.

This code is used in section 1210.

§193 METAFONT PART 12: THE COMMAND CODES 79

193. Well, we do have to list the names one more time, for use in symbolic printouts.

(Initialize table entries (done by INIMF only) 176) +=
int_name[tracing_titles] + "tracingtitles"; int_name[tracing_equations| + "tracingequations";
int_name[tracing-capsules] + "tracingcapsules"; int_name|[tracing_choices] < "tracingchoices";
int_name[tracing-specs] < "tracingspecs"; int_name[tracing_pens] < "tracingpens";
int_name[tracing-commands)] < "tracingcommands"; int_name[tracing_restores] <— "tracingrestores";
int_name[tracing_macros] < "tracingmacros"; int_name[tracing_edges] < "tracingedges";
int_name|[tracing-output] < "tracingoutput"; int_name[tracing_stats] + "tracingstats";
int_name[tracing-online] < "tracingonline"; int_name[year| + "year"; int-name[month]| + "month";
int_name[day] < "day"; int_name[time] < "time"; int_name[char_code] + "charcode";
int_name[char_ext] < "charext"; int_name[char-wd] < "charwd"; int_name[char_ht] < "charht";
int_name[char_dp] < "chardp"; int_name|char_ic] + "charic"; int_name[char_dz] < "chardx";
int_name[char_dy] < "chardy"; int-name[design_size| < "designsize"; inl_name[hppp] < "hppp";
int_name[vppp] < "vppp"; int_name[z_offset] + "xoffset"; int_namely_offset] + "yoffset";
int_name[pausing] + "pausing"; int_name[showstopping] < "showstopping";

int_name[fontmaking] < "fontmaking"; int_name[proofing] < "proofing";

int_name[smoothing| < "smoothing"; int_name[autorounding] + "autorounding";

int_name[granularity] «+ "granularity"; int-name|fillin] < "£illin";

int_name[turning_check] + "turningcheck"; int_name|[warning_check] < "warningcheck";

int_name[boundary_char] < "boundarychar";

194. The following procedure, which is called just before METAFONT initializes its input and output,
establishes the initial values of the date and time. Since standard Pascal cannot provide such information,
something special is needed. The program here simply specifies July 4, 1776, at noon; but users probably
want a better approximation to the truth.

Note that the values are scaled integers. Hence METAFONT can no longer be used after the year 32767.

procedure fiz_date_and_time;
begin internal [time] < 12 % 60 x unity; { minutes since midnight }
internal[day| < 4 x unity; {fourth day of the month }
internal[month] < 7 x unity; {seventh month of the year }
internal[year] <— 1776 % unity; { Anno Domini }
end;

195. METAFONT is occasionally supposed to print diagnostic information that goes only into the transcript
file, unless tracing_online is positive. Now that we have defined tracing_online we can define two routines
that adjust the destination of print commands:
(Basic printing procedures 57) +=
procedure begin_diagnostic; { prepare to do some tracing }
begin old_setting < selector;
if (internal[tracing-online] < 0) A (selector = term_and_log) then
begin decr (selector);
if history = spotless then history < warning_issued;
end;
end;
procedure end_diagnostic(blank_line : boolean); {restore proper conditions after tracing }
begin print_nl("");
if blank_line then print_in;
selector < old_setting;
end;

80 PART 12: THE COMMAND CODES METAFONT §196

196. Of course we had better declare another global variable, if the previous routines are going to work.

(Global variables 13) +=
old_setting: 0 .. maz_selector;

197. We will occasionally use begin_diagnostic in connection with line-number printing, as follows. (The
parameter s is typically "Path" or "Cycle spec", etc.)

(Basic printing procedures 57) +=

procedure print_diagnostic(s,t : str_number; nuline : boolean);
begin begin_diagnostic;
if nuline then print_nl(s) else print(s);
print("uatyline"); print_int(line); print(t); print_char(":");
end;

198. The 256 ASCII code characters are grouped into classes by means of the char_class table. Individual
class numbers have no semantic or syntactic significance, except in a few instances defined here. There’s
also maz_class, which can be used as a basis for additional class numbers in nonstandard extensions of
METAFONT.

define digit_class =0 {the class number of 0123456789 }

define period_class =1 {the class number of *.” }

define space_class =2 {the class number of spaces and nonstandard characters }
define percent_class =3 {the class number of }’ }

define string_class =4 {the class number of ‘"’ }

define right_paren_class = 8 {the class number of)’}

define isolated_classes = 5,6,7,8 {characters that make length-one tokens only }
define letter_class =9 {letters and the underline character }

define left_bracket_class =17 {‘[’}

define right_bracket_class =18 {1’}

define invalid_class = 20 { bad character in the input }

define maz_class = 20 {the largest class number }

(Global variables 13) +=
char_class: array [ASCII_code] of 0 .. maz_class; {the class numbers }

§199 METAFONT PART 12: THE COMMAND CODES 81

199. If changes are made to accommodate non-ASCII character sets, they should follow the guidelines in
Appendix C of The METAFONT book.

(Set initial values of key variables 21) +=
for k < "0" to "9" do char_class[k] + digit_class;

char_class["."] < period_class; char_class["L"] < space_class; char_class["%"] < percent_class;
char_class[""""] < string_class;
char_class[","] < 5; char_class[";"] <— 6; char_class[" ("] <= 7; char_class[")"] < right_paren_class;

for k + "A" to "Z" do char_class[k] + letter_class;
for k + "a" to "z" do char_class[k] + letter_class;

char_class[" ["] + left_bracket_class; char_class["1"] < right_bracket_class;
char_class["{"] + 19; char_class["}"] + 19;

for k< 0to "," — 1 do char_class[k] < invalid_class;

for k < 127 to 255 do char_class[k] < invalid_class;

char_class["_"] + letter_class;
char_class["<"] < 10; char_class["="] < 10; char_class[">"] < 10; char_class[":"] + 10;
char_class[" "] < 10;
char_class["~ "] - 11; char_class[" "] + 11;
char_class["+"] + 12; char_class["-"] + 12;
char_class["/"] < 13; char_class["*"] < 13; char_class["\"] + 13;
char_class["'"] <— 14; char_class["?"] « 14;
char_class["#"] < 15; char_class["&"] <— 15; char_class["@"] <— 15; char_class["$"] + 15;
char_class[" "] < 16; char_class["~"] < 16;

"]

]

82 PART 13: THE HASH TABLE METAFONT §200

200. The hash table. Symbolic tokens are stored and retrieved by means of a fairly standard hash table
algorithm called the method of “coalescing lists” (cf. Algorithm 6.4C in The Art of Computer Programming).
Once a symbolic token enters the table, it is never removed.

The actual sequence of characters forming a symbolic token is stored in the str_pool array together with
all the other strings. An auxiliary array hash consists of items with two halfword fields per word. The first
of these, called next(p), points to the next identifier belonging to the same coalesced list as the identifier
corresponding to p; and the other, called text(p), points to the str_start entry for p’s identifier. If position p
of the hash table is empty, we have text(p) = 0; if position p is either empty or the end of a coalesced hash
list, we have nezt(p) = 0.

An auxiliary pointer variable called hash_used is maintained in such a way that all locations p > hash_used
are nonempty. The global variable st_count tells how many symbolic tokens have been defined, if statistics
are being kept.

The first 256 locations of hash are reserved for symbols of length one.

There’s a parallel array called eqtb that contains the current equivalent values of each symbolic token.
The entries of this array consist of two halfwords called eq_type (a command code) and equiv (a secondary
piece of information that qualifies the eq_type).

define next(#) = hash[#].lh {link for coalesced lists }

define text(#) = hash[#].rh {string number for symbolic token name }
define eq_type(#) = eqtb[#].Ih {the current “meaning” of a symbolic token }
define equiv(#) = eqtb[#].rh { parametric part of a token’s meaning }
define hash_base = 257 { hashing actually starts here }

define hash_is_full = (hash_used = hash_base) {are all positions occupied? }

(Global variables 13) +=
hash_used: pointer; { allocation pointer for hash }
st_count: integer; {total number of known identifiers }

201. Certain entries in the hash table are “frozen” and not redefinable, since they are used in error recovery.

define hash_top = hash_base + hash_size { the first location of the frozen area }
define frozen_inaccessible = hash_top { hash location to protect the frozen area }
define frozen_repeat_loop = hash_top +1 { hash location of a loop-repeat token }
define frozen_right_delimiter = hash_top +2 { hash location of a permanent ‘)’ }
define frozen_left_bracket = hash_top +3 { hash location of a permanent ‘[’ }
define frozen_slash = hash_top +4 { hash location of a permanent ‘/’ }

define frozen_colon = hash_top +5 { hash location of a permanent ‘:’}

define frozen_semicolon = hash_top + 6 { hash location of a permanent ‘;’ }
define frozen_end_for = hash_top + 7 { hash location of a permanent endfor }
define frozen_end_def = hash_top +8 { hash location of a permanent enddef }
define frozen_fi = hash_top +9 { hash location of a permanent fi }

define frozen_end_group = hash_top + 10 { hash location of a permanent ‘endgroup’ }
define frozen_bad_vardef = hash_top + 11 { hash location of ‘a bad variable’}
define frozen_undefined = hash_top + 12 { hash location that never gets defined }
define hash_end = hash_top + 12 { the actual size of the hash and eqth arrays }

{ Global variables 13) +=
hash: array [1 .. hash_end] of two_halves; {the hash table }
eqtb: array [1 .. hash_end] of two_halves; {the equivalents }

202. (Set initial values of key variables 21) +=
next(1) « 0; text(1) + 0; eq_type(1l) + tag-token; equiv(1) + null;
for k + 2 to hash_end do
begin hash[k] < hash[1]; eqth[k] < eqtb[1];
end;

§203 METAFONT PART 13: THE HASH TABLE 83

203. (Initialize table entries (done by INIMF only) 176) +=
hash_used < frozen_inaccessible; {nothing is used }
st_count + 0;
text (frozen_bad_vardef) + "a bad variable"; text(frozen_fi) « "£i";
text(frozen_end_group) < "endgroup"; text(frozen_end_def) < "enddef";
text(frozen_end_for) < "endfor";
text (frozen_semicolon) < ";"; text(frozen_colon) « ":"; text(frozen_slash) « "/";
text (frozen_left_bracket) < "["; text(frozen_right_delimiter) < ")";
text (frozen_inaccessible) < ", INACCESSIBLE";
eq_type (frozen_right_delimiter) < right_delimiter;

204. (Check the “constant” values for consistency 14) +=
if hash_end + maz_internal > maz_halfword then bad <+ 21;

205. Here is the subroutine that searches the hash table for an identifier that matches a given string of
length [appearing in buffer[j .. (j + 1 — 1)]. If the identifier is not found, it is inserted; hence it will always
be found, and the corresponding hash table address will be returned.

function id_lookup(j,1 : integer): pointer; {search the hash table }
label found; {go here when you’ve found it }
var h: integer; {hash code}
p: pointer; {index in hash array }
k: pointer; {index in buffer array }
begin if [= 1 then (Treat special case of length 1 and goto found 206);
(Compute the hash code h 208);
p < h+ hash_base; {we start searching here; note that 0 < h < hash_prime }
loop begin if text(p) > 0 then
if length(text(p)) =1 then
if str_eq_buf (text(p),j) then goto found;
if next(p) = 0 then
(Insert a new symbolic token after p, then make p point to it and goto found 207);
p < next(p);
end;
found: id_lookup < p;
end;

206. (Treat special case of length 1 and goto found 206) =
begin p < buffer[j] + 1; text(p) < p — 1; goto found;
end

This code is used in section 205.

84 PART 13: THE HASH TABLE METAFONT §207

207. (Insert a new symbolic token after p, then make p point to it and goto found 207) =
begin if text(p) > 0 then
begin repeat if hash_is_full then overflow ("hash size", hash_size);
decr (hash_used);
until text(hash-used) = 0; {search for an empty location in hash }
next (p) < hash_used; p < hash_used;
end;
str_room (1);
for k< jtoj+1—1do append_char(buffer[k]);
text(p) < make_string; str_ref [text(p)] < maz_str_ref;
stat incr(st_count); tats
goto found;
end

This code is used in section 205.

208. The value of hash_prime should be roughly 85% of hash_size, and it should be a prime number. The
theory of hashing tells us to expect fewer than two table probes, on the average, when the search is successful.
[See J. S. Vitter, Journal of the ACM 30 (1983), 231-258.]

(Compute the hash code h 208) =
h « buffer[j];
fork+~j+1toj+1—1do
begin h < h + h + buffer[k];
while i > hash_prime do h < h — hash_prime;
end

This code is used in section 205.

209. (Search eqtb for equivalents equal to p 209) =
for g < 1 to hash_end do
begin if equiv(q) = p then
begin print_nl ("EQUIV("); print_int(q); print_char(")");
end;
end

This code is used in section 185.

210. We need to put METAFONT’s “primitive” symbolic tokens into the hash table, together with their
command code (which will be the eg_type) and an operand (which will be the equiv). The primitive procedure
does this, in a way that no METAFONT user can. The global value cur_sym contains the new eqtb pointer
after primitive has acted.

init procedure primitive (s : str_number; ¢ : halfword; o : halfword);
var k: pool_pointer; {index into str_pool }
j: small_number; {index into buffer }
I: small_-number; {length of the string }
begin k « str_start[s]; | < str_start[s + 1] — k; {we will move s into the (empty) buffer }
for j < 0tol — 1 do buffer[j] < so(str_pool[k + j]);
cur_sym < id_lookup(0,1);
if s > 256 then {we don’t want to have the string twice }
begin flush_string (str_ptr — 1); text(cur_sym) « s;
end;
eq_type (cur_sym) < ¢; equiv(cur_sym) < o;
end;
tini

6211 METAFONT PART 13: THE HASH TABLE 85

211. Many of METAFONT’s primitives need no equiv, since they are identifiable by their eq_type alone.
These primitives are loaded into the hash table as follows:

(Put each of METAFONT’s primitives into the hash table 192) +=
primitive (" . .", path_join,0);
primitive (" [, left_bracket,0); eqth|frozen_left_bracket] < eqtb[cur_sym];
primiative ("1", right_bracket, 0);
primitive ("}", right_brace O)
primitive ("{", left_brace, 0);

primitive (" : ", colon,0); eqth[frozen_colon] + eqth[cur_sym];
primative(": : ", double_colon,, 0);
primative(" | | 2", bchar_label, 0);
primitive (" :=" asszgnment 0);

(
(
(
(
(
(
(
("
primitive (", ", comma,0);

primitive (" ; ", semicolon,0); eqtb[frozen_semicolon] < eqtb[cur_sym];
primitive ("\", relaz, 0);

primitive ("addto", add_to_command, 0);

primitive ("at", at_ token ,0);

primitive ("atleast", at_least,0);

primitive ("begingroup", begin_group,0); bg_loc + cur_sym;

primitive ("controls", controls, 0);

primitive ("cull", cull_command, 0);

primitive ("curl", curl_command, 0);

primitive ("delimiters", delimiters,0);

primitive ("display", display_command,0);

primitive ("endgroup", end_group,0); eqth|frozen_end_group] < eqth[cur_sym]; eg_loc + cur_sym;
primitive ("everyjob", every_job_command,0);

primitive ("exitif", exit_test,0);

primitive ("expandafter", expand_after, 0);

primitive ("from", from_token,0);

primitive ("inwindow", in_window, 0);

primitive ("interim", interim_command,0);

primitive ("let", let_command, 0);

primitive('new1nterna1" new_internal,, 0);

primitive ("of", of_token,0);

primitive("openw1ndow open_window, 0);

primitive ("randomseed", random._seed, 0);

primitive ("save", save- command ,0);

primitive ("scantokens", scan_tokens, 0);

primitive ("shipout", ship_out_command,0);

primitive ("skipto", skip_to,0);

primitive ("step", step_token, 0);

primitive("str", str_op,0);

primitive("tensmn" tension, 0);

primitive ("to", to_token, 0);

("until", until_token,0);

primitive

86 PART 13: THE HASH TABLE METAFONT 8212

212. Each primitive has a corresponding inverse, so that it is possible to display the cryptic numeric
contents of eqtb in symbolic form. Every call of primitive in this program is therefore accompanied by some
straightforward code that forms part of the print_cmd_mod routine explained below.

(Cases of print_cmd_mod for symbolic printing of primitives 212) =
add_to_command: print("addto");
assignment: print(":=");

at_least: print("atleast");

at_token: print("at");

behar_label: print("|1:");
begin_group: print("begingroup");
colon: print(":");

comma: print(",");

controls: print("controls");
cull_command: print("cull");
curl_command: print("curl");
delimiters: print("delimiters");
display_command: print("display");
double_colon: print("::");

end_group: print("endgroup");
every_job_command: print("everyjob");
exit_test: print("exitif");
expand_after: print("expandafter");
from_token: print("from");
in_window: print("inwindow");
interim_command: print("interim");
left_brace: print("{");

left_bracket: print("[");
let_command: print("let");
new_internal: print("newinternal);
of-token: print("of");

open_window: print("openwindow");
path_join: print("..");

random_seed: print("randomseed");
relax: print_char("\");

right_brace: print("}");
right_bracket: print("1");
save_command: print("save");
scan_tokens: print("scantokens");
semicolon: print(";");
ship_out_command: print("shipout");
skip_to: print("skipto");

step_token: print("step");

str_op: print("str");

tension: print("tension");

to_token: print("to");

until_token: print("until");

See also sections 684, 689, 696, 710, 741, 894, 1014, 1019, 1025, 1028, 1038, 1043, 1053, 1080, 1102, 1109, and 1180.

This code is used in section 625.

§213 METAFONT PART 13: THE HASH TABLE 87

213. We will deal with the other primitives later, at some point in the program where their eq_type and
equiv values are more meaningful. For example, the primitives for macro definitions will be loaded when
we consider the routines that define macros. It is easy to find where each particular primitive was treated
by looking in the index at the end; for example, the section where "def" entered eqth is listed under ‘def
primitive’.

88 PART 14: TOKEN LISTS METAFONT §214

214. Token lists. A METAFONT token is either symbolic or numeric or a string, or it denotes a macro
parameter or capsule; so there are five corresponding ways to encode it internally: (1) A symbolic token
whose hash code is p is represented by the number p, in the info field of a single-word node in mem. (2) A
numeric token whose scaled value is v is represented in a two-word node of mem; the type field is known,
the name_type field is token, and the wvalue field holds v. The fact that this token appears in a two-word
node rather than a one-word node is, of course, clear from the node address. (3) A string token is also
represented in a two-word node; the type field is string_type, the name_type field is token, and the value field
holds the corresponding str_number. (4) Capsules have name_type = capsule, and their type and value fields
represent arbitrary values (in ways to be explained later). (5) Macro parameters are like symbolic tokens in
that they appear in info fields of one-word nodes. The kth parameter is represented by expr_base + k if it
is of type expr, or by suffiz_base + k if it is of type suffix, or by text_base + k if it is of type text. (Here
0 < k < param_size.) Actual values of these parameters are kept in a separate stack, as we will see later.
The constants ezpr_base, suffiz_base, and text_base are, of course, chosen so that there will be no confusion
between symbolic tokens and parameters of various types.

It turns out that value (null) = 0, because null = null_coords; we will make use of this coincidence later.

Incidentally, while we’re speaking of coincidences, we might note that the ‘type’ field of a node has nothing
to do with “type” in a printer’s sense. It’s curious that the same word is used in such different ways.

define type(#) = mem[#].hh.b0 {identifies what kind of value this is }

define name_type(#) = mem[#].hh.b1 {a clue to the name of this value }

define token_node_size = 2 { the number of words in a large token node }

define value_loc(#) = #+ 1 {the word that contains the value field }

define value (#) = mem[value_loc(#)].int { the value stored in a large token node }
define expr_base = hash_end +1 {code for the zeroth expr parameter }

define suffiz_base = expr_base + param_size { code for the zeroth suffix parameter }
define text_base = suffiz_base + param_size { code for the zeroth text parameter }

(Check the “constant” values for consistency 14) +=
if text_base + param_size > maz_halfword then bad <+ 22;

215. A numeric token is created by the following trivial routine.

function new_num_tok (v : scaled): pointer;
var p: pointer; {the new node}
begin p < get_node(token_node_size); value(p) < v; type(p) < known; name_type(p) < token;
new_num_tok < p;
end;

6216 METAFONT PART 14: TOKEN LISTS 89

216. A token list is a singly linked list of nodes in mem, where each node contains a token and a link.
Here’s a subroutine that gets rid of a token list when it is no longer needed.

procedure token_recycle; forward;
procedure flush_token_list(p : pointer);
var ¢: pointer; {the node being recycled }
begin while p # null do
begin g < p; p < link(p);
if ¢ > hi-mem_min then free_avail (q)
else begin case type(q) of
vacuous, boolean_type , known: do_nothing;
string_type: delete_str_ref (value(q));
unknown_types, pen_type , path_type, future_pen , picture_type, pair_type, transform_type, dependent,
proto_dependent , independent: begin g_pointer < q; token_recycle;
end;
othercases confusion("token")
endcases;
free_node(q, token_node_size);
end;
end;
end;

217. The procedure show_token_list, which prints a symbolic form of the token list that starts at a given
node p, illustrates these conventions. The token list being displayed should not begin with a reference count.
However, the procedure is intended to be fairly robust, so that if the memory links are awry or if p is not
really a pointer to a token list, almost nothing catastrophic can happen.

An additional parameter g is also given; this parameter is either null or it points to a node in the token
list where a certain magic computation takes place that will be explained later. (Basically, ¢ is non-null
when we are printing the two-line context information at the time of an error message; g marks the place
corresponding to where the second line should begin.)

The generation will stop, and ¢ ETC.’ will be printed, if the length of printing exceeds a given limit [; the
length of printing upon entry is assumed to be a given amount called null_tally. (Note that show_token_list
sometimes uses itself recursively to print variable names within a capsule.)

Unusual entries are printed in the form of all-caps tokens preceded by a space, e.g., ¢ BAD’.

(Declare the procedure called show_token_list 217) =
procedure print_capsule; forward;
procedure show_token_list(p, q : integer; I, null_tally : integer);
label exit;
var class,c: small_number; {the char_class of previous and new tokens }
r,v: integer; {temporary registers }
begin class < percent_class; tally < null_tally;
while (p # null) A (tally <) do
begin if p = ¢ then (Do magic computation 646);
(Display token p and set ¢ to its class; but return if there are problems 218);
class + ¢; p < link(p);
end;
if p # null then print(" ETC.");
erit: end;

This code is used in section 162.

90 PART 14: TOKEN LISTS METAFONT §218

218. (Display token p and set ¢ to its class; but return if there are problems 218) =
¢ < letter_class; {the default }
if (p < mem_min) V (p > mem_end) then
begin print (" CLOBBERED"); return;
end;
if p < hi_mem_min then (Display two-word token 219)
else begin r + info(p);
if r > expr_base then (Display a parameter token 222)
else if r < 1 then
if » =0 then (Display a collective subscript 221)
else print (", IMPOSSIBLE")
else begin r + text(r);
if (r <0)V (r > str_ptr) then print (" NONEXISTENT")
else (Print string r as a symbolic token and set ¢ to its class 223);
end;
end

This code is used in section 217.

219. (Display two-word token 219) =
if name_type(p) = token then
if type(p) = known then (Display a numeric token 220)
else if type(p) # string_type then print (", BAD")
else begin print_char(""""); slow_print(value(p)); print_char(""""); ¢ + string_class;
end
else if (name_type(p) # capsule) V (type (p) < vacuous) V (type(p) > independent) then print(" BAD")
else begin g_pointer < p; print_capsule; c < right_paren_class;
end

This code is used in section 218.

220. (Display a numeric token 220) =

begin if class = digit_class then print_char(",");

v < value(p);

if v < 0 then
begin if class = left_bracket_class then print_char(",");
print_char (" ["); print_scaled (v); print_char("1"); c + right_bracket_class;
end

else begin print_scaled (v); ¢ + digit_class;
end;

end

This code is used in section 219.

221. Strictly speaking, a genuine token will never have info(p) = 0. But we will see later (in the
print_variable_name routine) that it is convenient to let info(p) = 0 stand for ‘[1°.
(Display a collective subscript 221) =

begin if class = left_bracket_class then print_char(",");

print("[1"); ¢ < right_bracket_class;

end

This code is used in section 218.

6222 METAFONT PART 14: TOKEN LISTS 91

222. (Display a parameter token 222) =
begin if r < suffir_base then
begin print (" (EXPR"); r < r — (expr_base);
end
else if r < text_base then
begin print (" (SUFFIX"); r < r — (suffiz_base);

end
else begin print(" (TEXT"); r < r — (text_base);
end;
print_int (r); print_char(")"); c < right_paren_class;
end

This code is used in section 218.

223. (Print string r as a symbolic token and set ¢ to its class 223) =
begin ¢ « char_class[so(str_pool [str_start[r]])];
if ¢ = class then
case c of
letter_class: print_char(".");
isolated_classes: do_nothing;
othercases print_char(",")
endcases;
slow_print (r);
end

This code is used in section 218.

224. The following procedures have been declared forward with no parameters, because the author dislikes
Pascal’s convention about forward procedures with parameters. It was necessary to do something, because
show_token_list is recursive (although the recursion is limited to one level), and because flush_token_list is
syntactically (but not semantically) recursive.

(Declare miscellaneous procedures that were declared forward 224) =
procedure print_capsule;
begin print_char("("); print_exp(g-pointer,0); print_char(")");
end;
procedure token_recycle;
begin recycle_value (g_pointer);
end;

This code is used in section 1202.

225. (Global variables 13) +=
g-pointer: pointer; {(global) parameter to the forward procedures }

92 PART 14: TOKEN LISTS METAFONT §226

226. Macro definitions are kept in METAFONT’s memory in the form of token lists that have a few extra
one-word nodes at the beginning.

The first node contains a reference count that is used to tell when the list is no longer needed. To emphasize
the fact that a reference count is present, we shall refer to the info field of this special node as the ref_count
field.

The next node or nodes after the reference count serve to describe the formal parameters. They consist
of zero or more parameter tokens followed by a code for the type of macro.

define ref_count = info {reference count preceding a macro definition or pen header }
define add_mac_ref (#) = incr(ref-count(#)) {make a new reference to a macro list }
define general_macro =0 { preface to a macro defined with a parameter list }

define primary-macro =1 { preface to a macro with a primary parameter }

define secondary_macro =2 {preface to a macro with a secondary parameter }
define tertiary-macro =3 { preface to a macro with a tertiary parameter }

define expr-macro =4 { preface to a macro with an undelimited expr parameter }
define of-macro =5 {preface to a macro with undelimited ‘expr z of y’ parameters }
define suffiz_macro =6 { preface to a macro with an undelimited suffix parameter }
define text_macro =7 {preface to a macro with an undelimited text parameter }

procedure delete_mac_ref (p : pointer);
{ p points to the reference count of a macro list that is losing one reference }
begin if ref count(p) = null then flush_token_list(p)
else decr(ref-count(p));
end;

227. The following subroutine displays a macro, given a pointer to its reference count.

(Declare the procedure called print_cmd-mod 625)
procedure show_macro(p : pointer; q,l : integer);
label exit;
var r: pointer; {temporary storage }
begin p <+ link(p); {bypass the reference count }
while info(p) > text-macro do
begin r < link(p); link(p) < null; show_token_list(p, null,l,0); link(p) < r; p < 15
if [> 0 then [< [— tally else return;
end; {control printing of ‘ETC.’ }
tally < 0;
case info(p) of
general_macro: print("=>");
primary_macro, secondary_macro, tertiary_macro: begin print_char("<");
print_cmd_mod (param_type, info(p)); print(">=>");
end;
expr-macro: print("<expr>->");
of-macro: print("<expr>of<primary>->");
suffic_macro: print("<suffix>->");
text_macro: print("<text>->");
end; {there are no other cases }
show_token_list (link (p), q,1 — tally,0);
exit: end;

6228 METAFONT PART 15: DATA STRUCTURES FOR VARIABLES 93

228. Data structures for variables. The variables of METAFONT programs can be simple, like ‘x’; or
they can combine the structural properties of arrays and records, like ‘x20a.b’. A METAFONT user assigns
a type to a variable like x20a.b by saying, for example, ‘boolean x[Ja.b’. It’s time for us to study how
such things are represented inside of the computer.

Each variable value occupies two consecutive words, either in a two-word node called a value node, or
as a two-word subfield of a larger node. One of those two words is called the value field; it is an integer,
containing either a scaled numeric value or the representation of some other type of quantity. (It might also
be subdivided into halfwords, in which case it is referred to by other names instead of value.) The other word
is broken into subfields called type, name_type, and link. The type field is a quarterword that specifies the
variable’s type, and name_type is a quarterword from which METAFONT can reconstruct the variable’s name
(sometimes by using the link field as well). Thus, only 1.25 words are actually devoted to the value itself;
the other three-quarters of a word are overhead, but they aren’t wasted because they allow METAFONT to
deal with sparse arrays and to provide meaningful diagnostics.

In this section we shall be concerned only with the structural aspects of variables, not their values. Later
parts of the program will change the type and walue fields, but we shall treat those fields as black boxes
whose contents should not be touched.

However, if the type field is structured, there is no value field, and the second word is broken into two
pointer fields called attr_head and subscr_head. Those fields point to additional nodes that contain structural
information, as we shall see.

define subscr_head_loc(#) =#+ 1 {where value, subscr_head, and attr_head are }

define attr_head (#) = info(subscr_head_loc(#)) {pointer to attribute info }

define subscr_head (#) = link (subscr_head_loc(#)) { pointer to subscript info }

define value_node_size = 2 { the number of words in a value node }

94 PART 15: DATA STRUCTURES FOR VARIABLES METAFONT §229

229. An attribute node is three words long. Two of these words contain type and value fields as described
above, and the third word contains additional information: There is an attr_loc field, which contains the
hash address of the token that names this attribute; and there’s also a parent field, which points to the value
node of structured type at the next higher level (i.e., at the level to which this attribute is subsidiary). The
name_type in an attribute node is ‘attr’. The link field points to the next attribute with the same parent;
these are arranged in increasing order, so that attr_loc(link (p)) > attr_loc(p). The final attribute node links
to the constant end_attr, whose attr_loc field is greater than any legal hash address. The attr_head in the
parent points to a node whose name_type is structured_root; this node represents the null attribute, i.e., the
variable that is relevant when no attributes are attached to the parent. The attr_head node has the fields
of either a value node, a subscript node, or an attribute node, depending on what the parent would be if
it were not structured; but the subscript and attribute fields are ignored, so it effectively contains only the
data of a value node. The link field in this special node points to an attribute node whose attr_loc field is
zero; the latter node represents a collective subscript ‘[]’ attached to the parent, and its link field points to
the first non-special attribute node (or to end_attr if there are none).

A subscript node likewise occupies three words, with type and wvalue fields plus extra information; its
name_type is subscr. In this case the third word is called the subscript field, which is a scaled integer. The
link field points to the subscript node with the next larger subscript, if any; otherwise the link points to the
attribute node for collective subscripts at this level. We have seen that the latter node contains an upward
pointer, so that the parent can be deduced.

The name_type in a parent-less value node is root, and the link is the hash address of the token that
names this value.

In other words, variables have a hierarchical structure that includes enough threads running around so
that the program is able to move easily between siblings, parents, and children. An example should be
helpful: (The reader is advised to draw a picture while reading the following description, since that will
help to firm up the ideas.) Suppose that ‘x” and ‘x.a’ and ‘x[Ib” and ‘x5’ and ‘x20b’ have been mentioned
in a user’s program, where x[1b has been declared to be of boolean type. Let h(z), h(a), and h(b)
be the hash addresses of x, a, and b. Then eg_type(h(x)) = tag-token and equiv(h(z)) = p, where p is
a two-word value node with name_type(p) = root and link(p) = h(xz). We have type(p) = structured,
attr_head (p) = q, and subscr_head(p) = r, where ¢ points to a value node and r to a subscript node.
(Are you still following this? Use a pencil to draw a diagram.) The lone variable ‘x’ is represented by
type(q) and value(q); furthermore name_type(q) = structured_root and link(q) = qI, where ¢! points to
an attribute node representing ‘x[1’. Thus name_type(q1) = attr, attr_-loc(ql) = collective_subscript = 0,
parent(ql) = p, type(ql) = structured, attr_head(ql) = qq, and subscr_head(ql) = qql; qq is a three-word
“attribute-as-value” node with type(qq) = numeric_type (assuming that x5 is numeric, because ¢qq represents
‘x[1’ with no further attributes), name_type(qq) = structured_root, attr_loc(qq) = 0, parent(qq) = p, and
link(qq) = qq1. (Now pay attention to the next part.) Node ¢ql is an attribute node representing
‘x[1[1’, which has never yet occurred; its type field is undefined, and its value field is undefined. We
have name_type(qql) = attr, attr_loc(qql) = collective_subscript, parent(qql) = g1, and link(qql) = qq2.
Since gq2 represents ‘x[1b’) type(qq2) = unknown_boolean; also attr_loc(qq2) = h(b), parent(qq2) = ql,
name_type(qq2) = attr, link(qq2) = end_attr. (Maybe colored lines will help untangle your picture.) Node
r is a subscript node with type and wvalue representing ‘x5’; name_type(r) = subscr, subscript(r) = 5.0,
and link(r) = r1 is another subscript node. To complete the picture, see if you can guess what link(r1)
is; give up? It’s ¢1. Furthermore subscript(rl) = 20.0, name_type(rl) = subscr, type(rl) = structured,
attr_head(r1) = qqq, subscr-head(rl) = qqql, and we finish things off with three more nodes qqq, qqq1,
and ¢qg2 hung onto 1. (Perhaps you should start again with a larger sheet of paper.) The value of variable
‘x20b’ appears in node qqq2 = link(qqql), as you can well imagine. Similarly, the value of ‘x.a’ appears in
node ¢2 = link(ql1), where attr_loc(¢q2) = h(a) and parent(¢2) = p.

If the example in the previous paragraph doesn’t make things crystal clear, a glance at some of the simpler
subroutines below will reveal how things work out in practice.

The only really unusual thing about these conventions is the use of collective subscript attributes. The
idea is to avoid repeating a lot of type information when many elements of an array are identical macros (for
which distinct values need not be stored) or when they don’t have all of the possible attributes. Branches

6229 METAFONT PART 15: DATA STRUCTURES FOR VARIABLES 95

of the structure below collective subscript attributes do not carry actual values except for macro identifiers;
branches of the structure below subscript nodes do not carry significant information in their collective
subscript attributes.

define attr_loc_loc(#) = #+ 2 {where the attr_loc and parent fields are }
define attr_loc(#) = info(attr_loc_loc(#)) {hash address of this attribute }
define parent(#) = link (attr_loc_loc(#)) { pointer to structured variable }
define subscript_loc(#) = #+2 {where the subscript field lives }

define subscript(#) = mem[subscript_loc(#)].sc {subscript of this variable }
define attr_node_size =3 {the number of words in an attribute node }
define subscr_node_size =3 {the number of words in a subscript node }
define collective_subscript =0 { code for the attribute ‘[1’}

(Initialize table entries (done by INIMF only) 176) +=
attr_loc(end_attr) < hash_end + 1; parent(end_attr) < null;

230. Variables of type pair will have values that point to four-word nodes containing two numeric values.
The first of these values has name_type = x_part_sector and the second has name_type = y_part_sector; the
link in the first points back to the node whose value points to this four-word node.

Variables of type transform are similar, but in this case their value points to a 12-word node containing
six values, identified by z_part_sector, y_part_sector, xx_part_sector, zy_part_sector, yzr_part_sector, and
yy_part_sector.

When an entire structured variable is saved, the root indication is temporarily replaced by saved_root.

Some variables have no name; they just are used for temporary storage while expressions are being
evaluated. We call them capsules.

define z_part_loc(#) =# {where the xpart is found in a pair or transform node }
define y_part_loc(#) =#+2 {where the ypart is found in a pair or transform node }
define zz_part_loc(#) =#+4 {where the xxpart is found in a transform node }
define zy_part_loc(#) = #+6 {where the xypart is found in a transform node }
define yx_part_loc(#) = #+ 8 { where the yxpart is found in a transform node }
define yy_part_loc(#) =#+ 10 {where the yypart is found in a transform node }

define pair_node_size =4 {the number of words in a pair node }
define transform_node_size = 12 { the number of words in a transform node }

(Global variables 13) +=
big-node_size: array [transform_type .. pair_type] of small_number;

231. The big_-node_size array simply contains two constants that METAFONT occasionally needs to know.

(Set initial values of key variables 21) +=
big_node_size[transform_type] < transform_node_size; big-node_size[pair_type| < pair_node_size;

232. If type(p) = pair_type or transform_type and if value(p) = null, the procedure call init_big_node(p)
will allocate a pair or transform node for p. The individual parts of such nodes are initially of type
independent.

procedure init_big_node (p : pointer);

var ¢: pointer; {the new node }
s: small_number; {its size }

begin s « big_-node_size[type (p)]; q < get-node(s);

repeat s <+ s — 2; (Make variable ¢ + s newly independent 586);
name_type(q + s) < half (s) + x_part_sector; link(q+ s) < null;

until s = 0;

link (q) + p; value(p) < g¢;

end;

96 PART 15: DATA STRUCTURES FOR VARIABLES METAFONT §233

233. The id_transform function creates a capsule for the identity transformation.

function id_transform: pointer;
var p, q,r: pointer; {list manipulation registers }
begin p <+ get_node(value_node_size); type(p) < transform_type; name_type(p) <+ capsule;
value (p) < null; init_big-node (p); q < value(p); r < q + transform_node_size;
repeat r < r — 2; type(r) < known; value(r) < 0;
until r = g;
value (zz_part_loc(q)) < unity; value(yy_part_loc(q)) < unity; id_transform < p;
end;

234. Tokens are of type tag_token when they first appear, but they point to null until they are first used
as the root of a variable. The following subroutine establishes the root node on such grand occasions.

procedure new_root(x : pointer);
var p: pointer; {the new node }
begin p < get_node(value_node_size); type(p) < undefined; name_type(p) < root; link(p) < x;
equiv (x) < p;
end;

235. These conventions for variable representation are illustrated by the print_variable_name routine,
which displays the full name of a variable given only a pointer to its two-word value packet.

procedure print_variable_name(p : pointer);
label found, exit;
var ¢: pointer; {a token list that will name the variable’s suffix }
r: pointer; {temporary for token list creation }
begin while name_type (p) > z_part_sector do
(Preface the output with a part specifier; return in the case of a capsule 237);
q < null;
while name_type(p) > saved_root do
(Ascend one level, pushing a token onto list ¢ and replacing p by its parent 236);
r + get_avail; info(r) < link(p); link(r) < g;
if name_type(p) = saved_root then print(" (SAVED)");
show_token_list (r, null, el_gordo, tally); flush_token_list(r);
erit: end;

236. (Ascend one level, pushing a token onto list ¢ and replacing p by its parent 236) =
begin if name_type(p) = subscr then
begin r <+ new_num_tok (subscript (p));
repeat p < link(p);
until name_type(p) = attr;
end
else if name_type(p) = structured_root then
begin p < link(p); goto found;
end
else begin if name_type(p) # attr then confusion("var");
r < get_avail; info(r) < attr_loc(p);
end;
link(r) < q; q < r;
found: p < parent(p);
end

This code is used in section 235.

6237 METAFONT PART 15: DATA STRUCTURES FOR VARIABLES 97

237. (Preface the output with a part specifier; return in the case of a capsule 237) =
begin case name_type(p) of
z_part_sector: print_char("x");
y_part_sector: print_char("y");
zz_part_sector: print("xx");
zy-part_sector: print("xy");
yz_part_sector: print("yx");
yy_part_sector: print("yy");
capsule: begin print ("%CAPSULE"); print_int(p — null); return;
end;
end; {there are no other cases }
print ("party"); p < link(p — 2 * (name_type (p) — z_part_sector));
end

This code is used in section 235.

238. The interesting function returns true if a given variable is not in a capsule, or if the user wants to
trace capsules.

function interesting (p : pointer): boolean;
var t: small_number; {a name_type }
begin if internal[tracing_capsules] > 0 then interesting < true
else begin t + name_type(p);
if t > z_part_sector then
if t # capsule then t < name_type (link (p — 2 * (t — z_part_sector)));
interesting < (t # capsule);
end;
end;

239. Now here is a subroutine that converts an unstructured type into an equivalent structured type, by
inserting a structured node that is capable of growing. This operation is done only when name_type (p) = root,
subscr, or attr.

The procedure returns a pointer to the new node that has taken node p’s place in the structure. Node p
itself does not move, nor are its value or type fields changed in any way.

function new_structure(p : pointer): pointer;
var ¢,r: pointer; {list manipulation registers }
begin case name_type(p) of
root: begin q < link(p); r < get_node (value_node_size); equiv(q) < r;
end;
subscr: (Link a new subscript node r in place of node p 240);
attr: (Link a new attribute node r in place of node p 241);
othercases confusion("struct")
endcases;
link (r) < link(p); type(r) < structured; name_type(r) < name_type(p); attr_head (r) + p;
name_type(p) + structured_root;
q + get_node (attr_node_size); link(p) < q; subscr_head(r) < q; parent(q) < r; type(q) < undefined;
name_type(q) < attr; link(q) < end_attr; attr_loc(q) < collective_subscript; new_structure < r;
end;

)

98 PART 15: DATA STRUCTURES FOR VARIABLES METAFONT §240

240. (Link a new subscript node r in place of node p 240) =
begin ¢ + p;
repeat g < link(q);
until name_type(q) = attr;
q < parent(q); r < subscr-head_loc(q); { link(r) = subscr_head(q) }
repeat q < r; r < link(r);
until r = p;
r < get_node (subscr_node_size); link(q) < r; subscript(r) < subscript(p);
end

This code is used in section 239.

241. If the attribute is collective_subscript, there are two pointers to node p, so we must change both of
them.

(Link a new attribute node r in place of node p 241) =
begin q < parent(p); r < attr_head(q);
repeat q < r; r < link(r);
until r = p;
r < get_node (attr_node_size); link(q) < r;
mem [attr_loc_loc(r)] < mem[attr_loc_loc(p)]; {copy attr_loc and parent }
if attr_loc(p) = collective_subscript then
begin q < subscr_head_loc(parent (p));
while link(q) # p do q < link(q);
link(q) < ;
end;
end

This code is used in section 239.

6242 METAFONT PART 15: DATA STRUCTURES FOR VARIABLES 99

242. The find_variable routine is given a pointer ¢ to a nonempty token list of suffixes; it returns a pointer to
the corresponding two-word value. For example, if ¢ points to token x followed by a numeric token containing
the value 7, find_variable finds where the value of x7 is stored in memory. This may seem a simple task,
and it usually is, except when x7 has never been referenced before. Indeed, x may never have even been
subscripted before; complexities arise with respect to updating the collective subscript information.

If a macro type is detected anywhere along path ¢, or if the first item on ¢ isn’t a tag_token, the value null
is returned. Otherwise p will be a non-null pointer to a node such that undefined < type(p) < structured.

define abort_find =
begin find_variable < null; return; end

function find_variable(t : pointer): pointer;
label ezit;
var p,q,r,s: pointer; {nodes in the “value” line }
PP, qq,rr, ss: pointer; {nodes in the “collective” line }
n: integer; {subscript or attribute }
save_word: memory-word; {temporary storage for a word of mem }
begin p < info(t); t < link(t);
if eq_type(p) mod outer_tag # tag_token then abort_find;
if equiv(p) = null then new_root(p);
p < equiv(p); pp < p;
while ¢ # null do
begin (Make sure that both nodes p and pp are of structured type 243);
if ¢ < hi_mem_min then (Descend one level for the subscript value(t) 244)
else (Descend one level for the attribute info(t) 245);
t + link(t);
end;
if type(pp) > structured then
if type(pp) = structured then pp < attr_head(pp) else abort_find;
if type (p) = structured then p «+ attr_head (p);
if type(p) = undefined then
begin if type(pp) = undefined then
begin type(pp) < numeric_type; value(pp) < null;
end;
type (p) < type(pp); value(p) + null;
end;
find_variable < p;
erit: end;

243. Although pp and p begin together, they diverge when a subscript occurs; pp stays in the collective
line while p goes through actual subscript values.

(Make sure that both nodes p and pp are of structured type 243) =
if type (pp) # structured then
begin if type(pp) > structured then abort_find;
ss < new_structure(pp);
if p = pp then p < ss;
pp 4 8
end; {now type(pp) = structured }
if type(p) # structured then {it cannot be > structured }
p < new_structure(p) {now type(p) = structured }

This code is used in section 242.

100 PART 15: DATA STRUCTURES FOR VARIABLES METAFONT 8244

244. We want this part of the program to be reasonably fast, in case there are lots of subscripts at the
same level of the data structure. Therefore we store an “infinite” value in the word that appears at the end
of the subscript list, even though that word isn’t part of a subscript node.

(Descend one level for the subscript value(t) 244) =

begin n < value(t); pp < link (attr_head(pp)); {now attr_loc(pp) = collective_subscript }

q < link (attr_head (p)); save_word < mem/[subscript_loc(q)]; subscript(q) < el_gordo;

s < subscr_head_loc(p); {link(s) = subscr_head(p) }

repeat r < s; s < link(s);

until n < subscript(s);

if n = subscript(s) then p < s

else begin p < get_node(subscr_node_size); link(r) < p; link(p) < s; subscript(p) + n;
name_type (p) < subscr; type(p) + undefined;
end;

mem [subscript_loc(q)] < save_word;

end

This code is used in section 242.

245. (Descend one level for the attribute info(t) 245) =
begin n < info(t); ss < attr_head(pp);
repeat 11 < ss; ss < link(ss);
until n < attr_loc(ss);
if n < attr_loc(ss) then
begin qq « get_node(attr_node_size); link(rr) < qq; link(qq) < ss; attr_loc(qq) + n;
name-type(qq) < attr; type(qq) < undefined; parent(qq) < pp; $$ < qq;
end;
if p = pp then
begin p « ss; pp + ss;
end
else begin pp + ss; s « attr_head(p);
repeat r < s; s <« link(s);
until n < attr_loc(s);
if n = attr_loc(s) then p + s
else begin ¢ < get_node(attr_node_size); link(r) < q; link(q) < s; attr_loc(q) < n;
name_type(q) < attr; type(q) < undefined; parent(q) < p; p « q;
end;
end;
end

This code is used in section 242.

§246 METAFONT PART 15: DATA STRUCTURES FOR VARIABLES 101

246. Variables lose their former values when they appear in a type declaration, or when they are defined
to be macros or let equal to something else. A subroutine will be defined later that recycles the storage asso-
ciated with any particular type or value; our goal now is to study a higher level process called flush_variable,
which selectively frees parts of a variable structure.

This routine has some complexity because of examples such as ‘numeric x[Ja[]b’, which recycles all
variables of the form x[ila[jlb (and no others), while ‘vardef x[la[l=...’ discards all variables of the
form x[i]a[j] followed by an arbitrary suffix, except for the collective node x[Ja[] itself. The obvious way
to handle such examples is to use recursion; so that’s what we do.

Parameter p points to the root information of the variable; parameter ¢ points to a list of one-word nodes
that represent suffixes, with info = collective_subscript for subscripts.

(Declare subroutines for printing expressions 257)
(Declare basic dependency-list subroutines 594)
(Declare the recycling subroutines 268)
{ Declare the procedure called flush_cur_ezp 808)
(Declare the procedure called flush_below_variable 247)
procedure flush_variable(p,t : pointer; discard_suffizes : boolean);
label exit;
var ¢,r: pointer; {list manipulation }
n: halfword; { attribute to match }
begin while t # null do
begin if type(p) # structured then return;
n < info(t); t < link(t);
if n = collective_subscript then
begin r < subscr_head_loc(p); q < link(r); {q = subscr_head(p) }
while name_type (q) = subscr do
begin flush_variable(q,t, discard_suffizes);
if ¢t = null then
if type(q) = structured then r < ¢
else begin link(r) < link(q); free-node(q, subscr_node_size);
end
else r + ¢;
q <+ link(r);
end;
end;
p < attr_head(p);
repeat r « p; p < link(p);
until attr_loc(p) > n;
if attr_loc(p) # n then return;
end;
if discard_suffizes then flush_below_variable(p)
else begin if type(p) = structured then p «+ attr_head (p);
recycle_value (p);
end;
erit: end;

102 PART 15: DATA STRUCTURES FOR VARIABLES METAFONT §247

247. The next procedure is simpler; it wipes out everything but p itself, which becomes undefined.

(Declare the procedure called flush_below_variable 247) =
procedure flush_below_variable (p : pointer);
var ¢,r: pointer; {list manipulation registers }
begin if type(p) # structured then recycle_value(p) {this sets type(p) = undefined }
else begin ¢ « subscr_head (p);
while name_type(q) = subscr do
begin flush_below_variable(q); r + q; q + link(q); free_node(r, subscr_node_size);
end;
r < attr_head (p); q < link(r); recycle_value(r);
if name_type (p) < saved_root then free_node(r, value_node_size)
else free_node(r, subscr_node_size); { we assume that subscr-node_size = attr_node_size }
repeat flush_below_variable(q); r < q; q < link(q); free_node(r, attr_node_size);
until ¢ = end_attr;
type (p) < undefined;
end;
end;

This code is used in section 246.

248. Just before assigning a new value to a variable, we will recycle the old value and make the old value
undefined. The und_type routine determines what type of undefined value should be given, based on the
current type before recycling.

function und_type (p : pointer): small_number;
begin case type(p) of
undefined , vacuous: und_type < undefined;
boolean_type , unknown_boolean: und_type < unknown_boolean;
string_type, unknown_string: und_type < unknown_string;
pen_type , unknown_pen , future_pen: und_type < unknown_pen;
path_type, unknown_path: und_type < unknown_path;
picture_type , unknown_picture: und_type < unknown_picture;
transform_type , pair_type, numeric_type: und_type < type(p);
known , dependent, proto_dependent, independent: und_type < numeric_type;
end; {there are no other cases }
end;

249. The clear_symbol routine is used when we want to redefine the equivalent of a symbolic token. It
must remove any variable structure or macro definition that is currently attached to that symbol. If the
saving parameter is true, a subsidiary structure is saved instead of destroyed.

procedure clear_symbol(p : pointer; saving : boolean);
var q: pointer; { equiv(p)}
begin ¢ + equiv(p);
case eq_type(p) mod outer_tag of
defined_macro, secondary_primary_-macro , tertiary_secondary_macro, expression_tertiary_macro: if —saving
then delete_mac_ref (q);

tag_token: if q # null then

if saving then name_type(q) + saved_root

else begin flush_below_variable(q); free_node(q, value_node_size);

end;

othercases do_nothing
endcases;
eqth[p] < eqtb[frozen_undefined];
end;

)

§250 METAFONT PART 16: SAVING AND RESTORING EQUIVALENTS 103

250. Saving and restoring equivalents. The nested structure provided by begingroup and endgroupll
allows eqtb entries to be saved and restored, so that temporary changes can be made without difficulty. When
the user requests a current value to be saved, METAFONT puts that value into its “save stack.” An appear-
ance of endgroup ultimately causes the old values to be removed from the save stack and put back in their
former places.

The save stack is a linked list containing three kinds of entries, distinguished by their info fields. If p
points to a saved item, then

info(p) = 0 stands for a group boundary; each begingroup contributes such an item to the save stack and
each endgroup cuts back the stack until the most recent such entry has been removed.

info(p) = ¢, where 1 < gq < hash_end, means that mem[p + 1] holds the former contents of egtb[g]. Such
save stack entries are generated by save commands.

info(p) = hash_end + q, where ¢ > 0, means that value(p) is a scaled integer to be restored to internal
parameter number ¢. Such entries are generated by interim commands.

The global variable save_ptr points to the top item on the save stack.

define save_node_size =2 {number of words per non-boundary save-stack node }
define saved_equiv(#) = mem[# + 1].hh { where an eqtb entry gets saved }
define save_boundary_item (#) =
begin # < get_avail; info(#) < 0; link (#) < save_ptr; save_plr < #;
end
(Global variables 13) +=
save_ptr: pointer; {the most recently saved item }

251. (Set initial values of key variables 21) +=
save_ptr < null;

252. The save_variable routine is given a hash address ¢; it salts this address in the save stack, together
with its current equivalent, then makes token ¢ behave as though it were brand new.

Nothing is stacked when save_ptr = null, however; there’s no way to remove things from the stack when
the program is not inside a group, so there’s no point in wasting the space.

procedure save_variable(q : pointer);
var p: pointer; {temporary register }
begin if save_ptr # null then
begin p < get_node(save_node_size); info(p) < q; link(p) < save_ptr; saved_equiv(p) < eqtb[ql;
save_ptr < p;
end;
clear_symbol (q, (save_ptr # null));
end;
253. Similarly, save_internal is given the location ¢ of an internal quantity like tracing_pens. It creates a
save stack entry of the third kind.

procedure save_internal (q : halfword);
var p: pointer; {new item for the save stack }
begin if save_ptr # null then
begin p < get_node(save_node_size); info(p) < hash_end + q; link (p) < save_ptr;
value (p) < internallq]; save_ptr <+ p;
end;
end;

104 PART 16: SAVING AND RESTORING EQUIVALENTS METAFONT §254
254. At the end of a group, the unsave routine restores all of the saved equivalents in reverse order. This
routine will be called only when there is at least one boundary item on the save stack.

procedure unsave;
var ¢: pointer; {index to saved item }
p: pointer; {temporary register }
begin while info(save_ptr) # 0 do
begin ¢ < info(save_ptr);
if ¢ > hash_end then
begin if internal [tracing-restores] > 0 then
begin begin_diagnostic; print_nl("{restoring,"); slow_print(int_-namelq — (hash_end)));
print_char ("="); print_scaled (value (save_ptr)); print_char("}"); end_diagnostic(false);
end;
internal[q — (hash-end)] < value (save_ptr);
end
else begin if internal[tracing_restores] > 0 then
begin begin_diagnostic; print_nl("{restoring"); slow_print(text(q)); print_char("}");
end_diagnostic(false);
end;
clear_symbol (q, false); eqtb[q] + saved_equiv (save_ptr);
if eq_type(q) mod outer_tag = tag-token then
begin p < equiv(q);
if p # null then name_type(p) < root;
end;
end;
p < link (save_ptr); free_node(save_ptr, save_node_size); save_ptr < p;
end;
p < link (save_ptr); free_avail (save_ptr); save_ptr < p;
end;

8255 METAFONT PART 17: DATA STRUCTURES FOR PATHS 105

255. Data structures for paths. When a METAFONT user specifies a path, METAFONT will create a
list of knots and control points for the associated cubic spline curves. If the knots are zg, 21, ..., zn, there
are control points z,j' and z,_ ; such that the cubic splines between knots zx and zj1 are defined by Bézier’s
formula
Z(t) = B(Zka Z}ja Zk_+1; Zk+1; t)
= (1 =tz 4+ 3(1 =)%tz +3(1 —)24 + 22041

for 0 <t <1.

There is a 7-word node for each knot zg, containing one word of control information and six words for the
x and y coordinates of z;, and z; and z,j The control information appears in the left_type and right_type
fields, which each occupy a quarter of the first word in the node; they specify properties of the curve as it
enters and leaves the knot. There’s also a halfword link field, which points to the following knot.

If the path is a closed contour, knots 0 and n are identical; i.e., the link in knot n — 1 points to knot O.
But if the path is not closed, the left_type of knot 0 and the right_type of knot n are equal to endpoint. In
the latter case the link in knot n points to knot 0, and the control points z; and z; are not used.

define left_type(#) = mem[#].hh.b0 { characterizes the path entering this knot }
define right_type (#) = mem [#].hh.b1 { characterizes the path leaving this knot }
define endpoint =0 {left_type at path beginning and right_type at path end }
define z_coord (#) = mem[# + 1].sc {the = coordinate of this knot }

define y_coord (#) = mem[# + 2].sc {the y coordinate of this knot }

define left_z (#) = mem[# + 3].sc {the z coordinate of previous control point }
define left_y(#) = mem[# + 4].sc {the y coordinate of previous control point }
define right_z (#) = mem[# + 5].sc {the x coordinate of next control point }
define right_y(#) = mem[# + 6].sc {the y coordinate of next control point }
define knot_node_size =7 {number of words in a knot node }

106 PART 17: DATA STRUCTURES FOR PATHS METAFONT §256

256. Before the Bézier control points have been calculated, the memory space they will ultimately occupy
is taken up by information that can be used to compute them. There are four cases:

o If right_type = open, the curve should leave the knot in the same direction it entered; METAFONT will
figure out a suitable direction.

o If right_type = curl, the curve should leave the knot in a direction depending on the angle at which it
enters the next knot and on the curl parameter stored in right_curl.

o If right_type = given, the curve should leave the knot in a nonzero direction stored as an angle in
right_given.

o If right_type = explicit, the Bézier control point for leaving this knot has already been computed; it is
in the right_z and right_y fields.

The rules for left_type are similar, but they refer to the curve entering the knot, and to left fields instead of
right fields.

Non-ezplicit control points will be chosen based on “tension” parameters in the left_tension and right_tensionli
fields. The ‘atleast’ option is represented by negative tension values.

For example, the METAFONT path specification

z0..zl..tension atleast 1..{curl 2}z2..z3{-1,-2}..tension 3 and 4..p,

where p is the path ‘z4..controls z45 and z54..z5’, will be represented by the six knots

left_type left info z_coord, y_coord right_type right info

endpoint ., o, Yo curl 1.0,1.0
open —,1.0 T1,Y1 open _,—1.0
curl 2.0,—1.0 To, Yo curl 2.0,1.0
given d,1.0 T3,Y3 given d, 3.0
open _,4.0 T4, Y4 explicit T45, Y45
explicit T4, Ys4a s, Ys endpoint .,

Here d is the angle obtained by calling n_arg(—unity, —two). Of course, this example is more complicated
than anything a normal user would ever write.

These types must satisfy certain restrictions because of the form of METAFONT’s path syntax: (i) open
type never appears in the same node together with endpoint, given, or curl. (ii) The right_type of a node
is explicit if and only if the left_type of the following node is explicit. (iii) endpoint types occur only at the
ends, as mentioned above.

define left_curl = left.x { curl information when entering this knot }

define left_given = left.x { given direction when entering this knot }

define left_tension = left.y { tension information when entering this knot }

define right_curl = right_z { curl information when leaving this knot }

define right_given = right_r { given direction when leaving this knot }

define right_tension = right_y {tension information when leaving this knot }

define explicit =1 {left_type or right_type when control points are known }

define given =2 {left_type or right_type when a direction is given }

define curl =3 {left_type or right_type when a curl is desired }

define open =4 {left_type or right_type when METAFONT should choose the direction }

8257 METAFONT PART 17: DATA STRUCTURES FOR PATHS 107

257. Here is a diagnostic routine that prints a given knot list in symbolic form. It illustrates the conventions
discussed above, and checks for anomalies that might arise while METAFONT is being debugged.

(Declare subroutines for printing expressions 257) =
procedure print_path(h : pointer; s : str_number; nuline : boolean);
label done, donel;
var p,q: pointer; {for list traversal }
begin print_diagnostic("Path", s, nuline); print_ln; p < h;
repeat q < link(p);
if (p = null) V (¢ = null) then
begin print_nl("??7?"); goto done; {this won’t happen }
end;
(Print information for adjacent knots p and ¢ 258);
PG
if (p # h) V (left_type(h) # endpoint) then (Print two dots, followed by given or curl if present 259);
until p = h;
if left_type(h) # endpoint then print("cycle");
done: end_diagnostic(true);
end;
See also sections 332, 388, 473, 589, 801, and 807.

This code is used in section 246.

258. (Print information for adjacent knots p and ¢ 258) =
print_two (z_coord (p), y_coord (p));
case right_type (p) of
endpoint: begin if left_type(p) = open then print("{open?}"); {can’t happen }
if (left_type(q) # endpoint) V (¢ # h) then q + null; {force an error }
goto donel;
end;
explicit: (Print control points between p and ¢, then goto donel 261);
open: {Print information for a curve that begins open 262);
curl, given: (Print information for a curve that begins curl or given 263);
othercases print("??7") {can’t happen }
endcases;
if left_type(q) < explicit then print("..control?") {can’t happen }
else if (right_tension(p) # unity) V (left_tension(q) # unity) then (Print tension between p and g 260);
donel:

This code is used in section 257.

259. Since n_sin_cos produces fraction results, which we will print as if they were scaled, the magnitude
of a giwen direction vector will be 4096.

(Print two dots, followed by given or curl if present 259) =
begin print_nl("y..");
if left_type (p) = given then
begin n_sin_cos(left_given(p)); print_char("{"); print_scaled (n_cos); print_char(",");
print_scaled (n_sin); print_char("}");
end
else if left_type(p) = curl then
begin print("{curl"); print_scaled (left_curl(p)); print_char("}");
end;
end

This code is used in section 257.

108 PART 17: DATA STRUCTURES FOR PATHS METAFONT

260. (Print tension between p and g 260) =
begin print("..tension ");
if right_tension(p) < 0 then print("atleast");
print_scaled (abs (right_tension(p)));
if right_tension(p) # left_tension(q) then
begin print (" and,");
if left_tension(q) < 0 then print("atleast");
print_scaled (abs (left_tension (q)));
end;
end

This code is used in section 258.

261. (Print control points between p and ¢, then goto donel 261) =
begin print("..controls,"); print_two(right_z(p), right-y(p)); print("Land,");
if left_type(q) # explicit then print("??") {can’t happen }
else print_two (left_z(q), left_y(q));
goto donel;
end

This code is used in section 258.

262. (Print information for a curve that begins open 262) =
if (left_type (p) # explicit) A (left_type(p) # open) then print("{open?}") {can’t happen }

This code is used in section 258.

§260

263. A curl of 1 is shown explicitly, so that the user sees clearly that METAFONT’s default curl is present.

(Print information for a curve that begins curl or given 263) =

begin if left_type(p) = open then print("??"); {can’t happen }

if right_type (p) = curl then
begin print("{curl,"); print_scaled (right_curl(p));
end

else begin n_sin_cos(right_given(p)); print_char("{"); print_scaled (n_cos); print_char(",");
print_scaled (n_sin);
end;

print_char ("}");

end

This code is used in section 258.

264. If we want to duplicate a knot node, we can say copy_knot:

function copy_knot(p : pointer): pointer;
var ¢: pointer; {the copy }
k: 0 .. knot_node_size —1; {runs through the words of a knot node }
begin q < get_node(knot_node_size);
for k < 0 to knot-node_size — 1 do mem|q + k] < mem/[p + kJ;
copy_knot < q;
end;

8265 METAFONT PART 17: DATA STRUCTURES FOR PATHS 109

265. The copy_path routine makes a clone of a given path.
function copy_path(p : pointer): pointer;
label exit;
var ¢, pp, qq: pointer; { for list manipulation }
begin g « get_node(knot_node_size); {this will correspond to p }
qq < q; pp < p;
loop begin left_type(qq) < left-type(pp); right-type(qq) < right_type(pp);
x_coord (qq) < x_coord (pp); y-coord(qq) + y-coord (pp);
left_z(qq) < left_z(pp); left-y(qq) < left-y(pp);
right_z(qq) < right_z (pp); right-y(qq) < right_y(pp);
if link(pp) = p then
begin link(qq) < q; copy-path < q; return;
end;
link (qq) + get_node(knot_node_size); qq < link(qq); pp < link(pp);
end;
erit: end;

266. Similarly, there’s a way to copy the reverse of a path. This procedure returns a pointer to the first
node of the copy, if the path is a cycle, but to the final node of a non-cyclic copy. The global variable path_tail
will point to the final node of the original path; this trick makes it easier to implement ‘doublepath’.
All node types are assumed to be endpoint or explicit only.
function htap_ypoc(p : pointer): pointer;
label exit;
var ¢, pp, qq, rr: pointer; { for list manipulation }
begin g < get_node(knot_node_size); { this will correspond to p }
49 < q; pp < p;
loop begin right_type(qq) < left_type(pp); left_type(qq) < right_type(pp);
x_coord (qq) <+ z_coord(pp); y-_coord(qq) < y_coord (pp);
right_-z(qq) < left_z(pp); right-y(qq) < left-y(pp);
left-z(qq) < right-z(pp); left-y(qq) < right-y(pp);
if link(pp) = p then
begin link(q) < qq; path_tail < pp; htap_ypoc + ¢; return;
end;
rr < get_node(knot_node_size); link(rr) < qq; qq < rr; pp < link(pp);
end;
exit: end;

267. (Global variables 13) +=
path_tail: pointer; {the node that links to the beginning of a path }

268. When a cyclic list of knot nodes is no longer needed, it can be recycled by calling the following
subroutine.

(Declare the recycling subroutines 268) =
procedure toss_knot_list(p : pointer);
var ¢: pointer; {the node being freed }
r: pointer; {the next node }
begin ¢ < p;
repeat r < link(q); free_node(q, knot_node_size); q < r;
until ¢ = p;
end;
See also sections 385, 487, 620, and 809.

This code is used in section 246.

110 PART 18: CHOOSING CONTROL POINTS METAFONT §269

269. Choosing control points. Now we must actually delve into one of METAFONT’s more difficult
routines, the make_choices procedure that chooses angles and control points for the splines of a curve when
the user has not specified them explicitly. The parameter to make_choices points to a list of knots and path
information, as described above.

A path decomposes into independent segments at “breakpoint” knots, which are knots whose left and
right angles are both prespecified in some way (i.e., their left_type and right_type aren’t both open).

(Declare the procedure called solve_choices 284)
procedure make_choices(knots : pointer);
label done;
var h: pointer; {the first breakpoint }
p,q: pointer; {consecutive breakpoints being processed }
(Other local variables for make_choices 280)
begin check_arith; {make sure that arith_error = false }
if internal [tracing-choices] > 0 then print_path(knots,", before choices", true);
(If consecutive knots are equal, join them explicitly 271);
(Find the first breakpoint, h, on the path; insert an artificial breakpoint if the path is an unbroken
cycle 272);
p < Iy
repeat (Fill in the control points between p and the next breakpoint, then advance p to that
breakpoint 273);
until p = h;
if internal[tracing_choices] > 0 then print_path(knots,", after choices", true);
if arith_error then (Report an unexpected problem during the choice-making 270);
end;

270. (Report an unexpected problem during the choice-making 270) =
begin print_err ("Some_number got too_big");
help2 ("The path that_ I, just computed is out,of range.")
("Souituwilll_,probably._,lookufunny.._lProceed,uforl_,a._llaugh. "); put_get_error; arith_error < false;
end

This code is used in section 269.

§271 METAFONT PART 18: CHOOSING CONTROL POINTS 111

271. Two knots in a row with the same coordinates will always be joined by an explicit “curve” whose
control points are identical with the knots.

(If consecutive knots are equal, join them explicitly 271) =
p + knots;
repeat g « link(p);
if x_coord (p) = z_coord(q) then
if y_coord (p) = y_coord(q) then
if right_type(p) > explicit then
begin right_type (p) < explicit;
if left_type(p) = open then
begin left_type (p) < curl; left_curl(p) + unity;
end;
left_type(q) + explicit;
if right_type (q) = open then
begin right_type(q) < curl; right_curl(q) < unity;
end;
right_x (p) < z_coord (p); left_z(q) + x_coord (p);
right_y (p) < y-coord (p); left_y(q) + y-coord (p);
end;
P q;
until p = knots

This code is used in section 269.

272. If there are no breakpoints, it is necessary to compute the direction angles around an entire cycle. In
this case the left_type of the first node is temporarily changed to end_cycle.

define end_cycle = open + 1

(Find the first breakpoint, h, on the path; insert an artificial breakpoint if the path is an unbroken
cycle 272) =
h < knots;
loop begin if left_type(h) # open then goto done;
if right_type(h) # open then goto done;
h <+ link(h);
if h = knots then
begin left_type (h) < end_cycle; goto done;
end;
end;
done:

This code is used in section 269.

273. If right_type(p) < given and g = link(p), we must have right_type(p) = left_type(q) = explicit or
endpoint.

(Fill in the control points between p and the next breakpoint, then advance p to that breakpoint 273) =
q < link(p);
if right_type (p) > given then
begin while (left_type(q) = open) A (right_type(q) = open) do q + link(q);
(Fill in the control information between consecutive breakpoints p and ¢ 278);
end;
p<q

This code is used in section 269.

112 PART 18: CHOOSING CONTROL POINTS METAFONT §274

274. Before we can go further into the way choices are made, we need to consider the underlying theory.
The basic ideas implemented in make_choices are due to John Hobby, who introduced the notion of “mock
curvature” at a knot. Angles are chosen so that they preserve mock curvature when a knot is passed, and
this has been found to produce excellent results.

It is convenient to introduce some notations that simplify the necessary formulas. Let di x+1 = |2k+1 — 2]
be the (nonzero) distance between knots k and k + 1; and let

21— 2k i rt ot

Zg — 2k—1 dr—1k

so that a polygonal line from zx_1 to 2z to zxy1 turns left through an angle of v¢,. We assume that
|tr| < 180°. The control points for the spline from zj to 21 will be denoted by

1 101
22_ = 2L + gpkel k(zk+1 — Zk),
- _ 1 —1
Zjp1 = 2kl — 30kp1€ PR (2 — 21),

where py and oj41 are nonnegative “velocity ratios” at the beginning and end of the curve, while ; and
¢r+1 are the corresponding “offset angles.” These angles satisfy the condition

0k + ¢ + Y. = 0, (%)
whenever the curve leaves an intermediate knot k£ in the direction that it enters.

275. Let ay and Biy1 be the reciprocals of the “tension” of the curve at its beginning and ending points.
This means that pr = apf(0k, dx+1) and oxr1 = Brs1f(dr+1,0k), where f(0,¢) is METAFONT’s standard
velocity function defined in the welocity subroutine. The cubic spline B(z, ,z,:', 21 Pag1s t) has curvature

20k+1 sin(@k + ¢k+1) — 6sin 0y, and 20k sin(&k + ¢k+1) — 6sin ¢k+1

2 2
Pk k1 Ojy1dk k+1

at t = 0 and ¢t = 1, respectively. The mock curvature is the linear approximation to this true curvature that
arises in the limit for small 6y and ¢g1, if second-order terms are discarded. The standard velocity function
satisfies

£(0,0) =1+ 06 +0¢ + ¢*);

hence the mock curvatures are respectively

2Bk+1(0k + Pry1) — 60k and 205, (0k + Ort1) — 60p41
ardi k1 Be i 1dr k1 '

§276 METAFONT PART 18: CHOOSING CONTROL POINTS 113

276. The turning angles v, are given, and equation (x) above determines ¢, when 6 is known, so the
task of angle selection is essentially to choose appropriate values for each ;. When equation (x) is used to
eliminate ¢ variables from (xx), we obtain a system of linear equations of the form

Apbi—1 + (Br + Ci)0k + DOry1 = —Brpor — Dypgga,

where
Qg1 3—ag_1

Bide—1k B
The tensions are always % or more, hence each a and 8 will be at most %. It follows that By > gAk and
Cy > %Dk; hence the equations are diagonally dominant; hence they have a unique solution. Moreover, in
most cases the tensions are equal to 1, so that By, = 24, and Cy = 2Dj,. This makes the solution numerically
stable, and there is an exponential damping effect: The data at knot k & j affects the angle at knot k by a
factor of O(277).

o 3 — Br+1 D, — Br+1

Ay = k= 55— k= :
Bidk—1.k addy g1 @ dy g1

277. However, we still must consider the angles at the starting and ending knots of a non-cyclic path.
These angles might be given explicitly, or they might be specified implicitly in terms of an amount of “curl.”
Let’s assume that angles need to be determined for a non-cyclic path starting at zg and ending at z,.
Then equations of the form
ApbOi—1 + (Br + Ci)0; + DiOiy1 = Ry

have been given for 0 < k < n, and it will be convenient to introduce equations of the same form for k = 0

and k = n, where
Ay=By=C,=D, =0.

If 8y is supposed to have a given value Fy, we simply define Cy = 1, Dy = 0, and Ry = Ey. Otherwise a curl
parameter, 7, has been specified at zy; this means that the mock curvature at zy should be 7y times the

mock curvature at zi; i.e.,
Qﬂl ((90 + ¢1) - 690 20&0(90 + ¢1) — 6¢1

addn - B3 doy

This equation simplifies to

(aoxo +3 — B1)0o + ((3 — o) xo + B1)01 = —((3 — an)x0 + B1) ¥1,

where xg = Oé%’}/o/,B%; so we can set Cyp = xoag +3 — 51, Do = (3 - Oé())Xo + 51, Ry = —Do¥y. It can be
shown that Cy > 0 and CyB; — A1 Dy > 0 when ~y > 0, hence the linear equations remain nonsingular.
Similar considerations apply at the right end, when the final angle ¢, may or may not need to be

determined. It is convenient to let v,, = 0, hence 0,, = —¢,,. We either have an explicit equation 0,, = E,,
or we have)
((3 - 571))(71 + anfl)enfl + (Ban +3 - anfl)en = 07 Xn = ag’yn .
n—1

When make_choices chooses angles, it must compute the coefficients of these linear equations, then solve
the equations. To compute the coefficients, it is necessary to compute arctangents of the given turning
angles 1. When the equations are solved, the chosen directions 6y are put back into the form of control
points by essentially computing sines and cosines.

114 PART 18: CHOOSING CONTROL POINTS METAFONT §278

278. OK, we are ready to make the hard choices of make_choices. Most of the work is relegated to
an auxiliary procedure called solve_choices, which has been introduced to keep make_choices from being
extremely long.

(Fill in the control information between consecutive breakpoints p and ¢ 278) =
(Calculate the turning angles ¢, and the distances d x+1; set n to the length of the path 281);
(Remove open types at the breakpoints 282);
solve_choices(p, q,n)

This code is used in section 273.

279. It’s convenient to precompute quantities that will be needed several times later. The values of
delta_z[k] and delta_y[k] will be the coordinates of zxy; — 2z, and the magnitude of this vector will be
deltalk] = dj k+1. The path angle 15, between zi, — z;_1 and 2541 — 25 will be stored in psi[k].

(Global variables 13) +=

delta_z, delta_y, delta: array [0 .. path_size] of scaled; {knot differences }

psi: array [1 .. path_size] of angle; {turning angles }

280. (Other local variables for make_choices 280) =

k,n: 0 .. path_size; {current and final knot numbers }

s, t: pointer; {registers for list traversal }

delx, dely: scaled; {directions where open meets explicit }
sine, cosine: fraction; {trig functions of various angles }

This code is used in section 269.

281. (Calculate the turning angles ¢, and the distances di, k+1; set n to the length of the path 281) =
k< 0; s+ p; n < path_size;
repeat t < link(s); delta_z[k] < z_coord(t) — z_coord(s); delta_y[k] < y_coord (t) — y_coord(s);
deltalk] « pyth_add (delta_x[k], delta_y[k]);
if £ > 0 then
begin sine «+ make_fraction(delta_y[k — 1], delta[k — 1]);
cosine < make_fraction (delta_z[k — 1], delta[k — 1]);
psilk] < n_arg(take_fraction (delta_z k], cosine) + take_fraction(delta_y[k], sine),
take_fraction (delta_y[k], cosine) — take_fraction (delta_x [k], sine));
end;
incr(k); s« t;
if k = path_size then overflow ("path size", path_size);
if s = ¢ then n + k;
until (k> n) A (left_type(s) # end_cycle);
if k =n then psi[n] < 0 else psilk] < psi[l]

This code is used in section 278.

6282 METAFONT PART 18: CHOOSING CONTROL POINTS 115

282. When we get to this point of the code, right_type(p) is either given or curl or open. If it is open, we
must have left_type(p) = end_cycle or left_type(p) = explicit. In the latter case, the open type is converted
to given; however, if the velocity coming into this knot is zero, the open type is converted to a curl, since
we don’t know the incoming direction.

Similarly, left_type(q) is either given or curl or open or end_cycle. The open possibility is reduced either
to given or to curl.

(Remove open types at the breakpoints 282) =
if left_type(q) = open then
begin delx « right_z(q) — z_coord(q); dely + right_y(q) — y-coord(q);
if (delr = 0) A (dely = 0) then
begin left_type(q) < curl; left_curl(q) < unity;
end
else begin left_type(q) < given; left_given(q) < n_arg(delz, dely);
end;
end;
if (right_type (p) = open) A (left_type(p) = explicit) then
begin delz < z_coord(p) — left_x (p); dely < y_coord (p) — left_y(p);
if (delr = 0) A (dely = 0) then
begin right_type (p) < curl; right_curl(p) « unity;
end
else begin right_type (p) < given; right_given(p) < n_arg(delz, dely);
end;
end

This code is used in section 278.

283. Linear equations need to be solved whenever n > 1; and also when n = 1 and exactly one of the
breakpoints involves a curl. The simplest case occurs when n = 1 and there is a curl at both breakpoints;
then we simply draw a straight line.

But before coding up the simple cases, we might as well face the general case, since we must deal with
it sooner or later, and since the general case is likely to give some insight into the way simple cases can be
handled best.

When there is no cycle, the linear equations to be solved form a tri-diagonal system, and we can apply the
standard technique of Gaussian elimination to convert that system to a sequence of equations of the form

90-'—11,091 = Vo, 01 +U102 = 1, ey anl +un,19n = Un—1, Hn = Un.

It is possible to do this diagonalization while generating the equations. Once 6,, is known, it is easy to
determine 0,_1, ..., 01, 0y; thus, the equations will be solved.

The procedure is slightly more complex when there is a cycle, but the basic idea will be nearly the same.
In the cyclic case the right-hand sides will be v + w0y instead of simply v, and we will start the process off
with ug = vg = 0, wg = 1. The final equation will be not 8,, = v,, but 8,, + u,01 = v, +w,b0y; an appropriate
ending routine will take account of the fact that 6,, = 6y and eliminate the w’s from the system, after which
the solution can be obtained as before.

When wug, vi, and wy are being computed, the three pointer variables r, s, ¢ will point respectively to
knots k — 1, k, and k + 1. The u’s and w’s are scaled by 228, i.e., they are of type fraction; the 6’s and v’s
are of type angle.

(Global variables 13) +=

theta: array [0 .. path_size] of angle; {values of 6y }
uu: array [0 .. path_size] of fraction; {values of uy }
vv: array [0 .. path_size] of angle; {values of vy }
ww: array [0 .. path_size] of fraction; {values of wy }

116 PART 18: CHOOSING CONTROL POINTS METAFONT §284

284. Our immediate problem is to get the ball rolling by setting up the first equation or by realizing that
no equations are needed, and to fit this initialization into a framework suitable for the overall computation.

(Declare the procedure called solve_choices 284) =
{ Declare subroutines needed by solve_choices 296)
procedure solve_choices(p, q : pointer; n : halfword);
label found, exit;
var k: 0 .. path_size; {current knot number }
r,s,t: pointer; {registers for list traversal }
(Other local variables for solve_choices 286)
begin k + 0; s < p;
loop begin t + link(s);
if k=0 then (Get the linear equations started; or return with the control points in place, if linear
equations needn’t be solved 285)
else case left_type(s) of
end_cycle, open: {Set up equation to match mock curvatures at zx; then goto found with 6,
adjusted to equal 6y, if a cycle has ended 287);
curl: (Set up equation for a curl at 6,, and goto found 295);
given: (Calculate the given value of 6,, and goto found 292);
end; {there are no other cases }
r <+ s; s« t; incr(k);
end;
found: {Finish choosing angles and assigning control points 297);
erit: end;

This code is used in section 269.

285. On the first time through the loop, we have k£ = 0 and r is not yet defined. The first linear equation,
if any, will have Ay = By = 0.
(Get the linear equations started; or return with the control points in place, if linear equations needn’t be
solved 285) =
case right_type(s) of
given: if left_type(t) = given then (Reduce to simple case of two givens and return 301)
else (Set up the equation for a given value of 6y 293);
curl: if left_type(t) = curl then (Reduce to simple case of straight line and return 302)
else (Set up the equation for a curl at 6y 294);
open: begin uu|[0] < 0; vw[0] + 0; ww|0] < fraction_one;
end; {this begins a cycle }
end {there are no other cases }

This code is used in section 284.

§286 METAFONT PART 18: CHOOSING CONTROL POINTS 117

286. The general equation that specifies equality of mock curvature at zj is
A1+ (B + Ck)0k + Dibpi1 = =B, — Dira,

as derived above. We want to combine this with the already-derived equation 01 4+up_10x = vp_1+wr_16
in order to obtain a new equation 0y + urfr1 = v + wrby. This can be done by dividing the equation

(B — ug—1Ax + C)0k + Dibiy1 = —Brr, — Dpthy1 — Apvg—1 — Agwi—160

by By — ug_1 Ak + Ck. The trick is to do this carefully with fixed-point arithmetic, avoiding the chance of
overflow while retaining suitable precision.

The calculations will be performed in several registers that provide temporary storage for intermediate
quantities.

{ Other local variables for solve_choices 286) =

aa, bb, cc, ff, acc: fraction; {temporary registers }
dd, ee: scaled; {likewise, but scaled }

Ilt,rt: scaled; {tension values}

This code is used in section 284.

287. (Set up equation to match mock curvatures at zj; then goto found with 6,, adjusted to equal 6y, if

a cycle has ended 287) =

begin (Calculate the values aa = A /By, bb = Dy /Ck, dd = (3 — ag—1)dk k+1, e = (3 — Br+1)dk—1,k,
and cc = (B, —ug—14x)/ By 288);

(Calculate the ratio ff = Cy/(Ck + Br — uk—14x) 289);

uu (k] < take_fraction(ff, bb); (Calculate the values of vy and wy 290);

if left_type(s) = end_cycle then (Adjust 6, to equal 8y and goto found 291);

end

This code is used in section 284.

288. Since tension values are never less than 3/4, the values aa and bb computed here are never more
than 4/5.

<Calculate the values aa = Ak/Bk, bb = Dk./C’k, dd = (3 - Oék—l)dk,k+17 ee = (3 - /Bk—i-l)dk—l,k; and
cc = (Bk — uk,lAk)/Bk 288> =

if abs(right_tension(r)) = unity then
begin aa + fraction_half; dd <+ 2 deltalk];
end

else begin aa < make_fraction (unity,3 % abs(right_tension (r)) — unity);
dd < take_fraction (deltalk], fraction_three — make_fraction (unity, abs(right_tension(r))));
end;

if abs(left_tension(t)) = unity then
begin bb « fraction_half; ee < 2 x delta[k — 1];
end

else begin bb < make_fraction (unity, 3 * abs(left_tension(t)) — unity);
ee + take_fraction(delta[k — 1], fraction_three — make_fraction (unity, abs (left_tension(t))));
end;

cc « fraction_one — take_fraction (uulk — 1], aa)

This code is used in section 287.

118 PART 18: CHOOSING CONTROL POINTS METAFONT §289

289. The ratio to be calculated in this step can be written in the form

B2 - ee

ﬂ%~ee+o¢i~cc~dd,

because of the quantities just calculated. The values of dd and ee will not be needed after this step has been
performed.
(Calculate the ratio ff = Cy/(Ck + B — up—14g) 289) =
dd < take_fraction(dd, cc); It < abs(left_tension(s)); 1t < abs(right_tension(s));
if It #rt then {B;'#a;'}
if It < rt then
begin [f « make_fraction(lt,rt); ff + take_fraction(ff,ff); {ai/B%}
dd + take_fraction(dd, ff);
end
else begin ff < make_fraction(rt,lt); [f « take_fraction(ff,[f); {B7/a3}
ee < take_fraction (ee, ff);
end;
ff < make_fraction(ee, ee + dd)

This code is used in section 287.

290. The value of up_; will be < 1 except when k£ = 1 and the previous equation was specified by a curl.
In that case we must use a special method of computation to prevent overflow.
Fortunately, the calculations turn out to be even simpler in this “hard” case. The curl equation makes
wo = 0 and Vo = —UO’(/Jl, hence —Bl’L/Jl — Al’l)() = —(Bl — UOAl)lﬂl = —cCC - Bl¢1.
(Calculate the values of vy and wy 290) =
acc + —take_fraction (psi[k + 1], uu[k]);
if right_type(r) = curl then
begin wwlk] < 0; wwlk] < acc — take_fraction(psi[l], fraction_one — ff);
end
else begin ff + make_fraction(fraction_one — ff, cc); {thisis Bg/(Cr + By —ur_14x) <5}
acc + acc — take_fraction(psi(k], ff); [f + take_fraction(ff,aa); {thisis Ag/(Ck + By —ux—_14%) }
k] - acc — take_fraction(vv[k — 1], ff);
if ww[k —1] =0 then ww[k] <0
else ww k] + —take_fraction (ww[k — 1], ff);
end

This code is used in section 287.

6291 METAFONT PART 18: CHOOSING CONTROL POINTS 119

291. When a complete cycle has been traversed, we have 0y + ug0r+1 = vk + wiby, for 1 < k < n. We
would like to determine the value of ,, and reduce the system to the form 0y + w011 = vy for 0 < k < mn,
so that the cyclic case can be finished up just as if there were no cycle.

The idea in the following code is to observe that

0,, = v, + w60y —upb; =---

= Up + wpbo — Up (U1 + w10 —ur(v2 + - = Up—2(Vp_1 +wn_1600 — un_100) . ..)),

so we can solve for 6,, = 6.
(Adjust 60, to equal 0y and goto found 291) =
begin aa + 0; bb < fraction_one; {we have k=n}
repeat decr(k);
if £k =0 then k < n;
aa + vv k] — take_fraction(aa, uulk]); bb + wwk] — take_fraction(bb, uulk]);
until k. =n; {now 6, =aa+bb-0,}
aa < make_fraction(aa, fraction_one — bb); theta[n] < aa; vw|0] < aa;
for k < 1ton —1do wlk] «+ wlk] + take_fraction(aa, wwlk]);
goto found;
end

This code is used in section 287.

292. define reduce_angle(#) =
if abs(#) > one_eighty_deg then
if # > 0 then # < # — three_sixty_deg else # < # + three_sixty_deg

(Calculate the given value of 8,, and goto found 292) =
begin theta[n] < left_given(s) — n_arg(delta_x[n — 1], delta_y[n — 1]); reduce_angle (theta[n]); goto found;
end

This code is used in section 284.

293. (Set up the equation for a given value of 0y 293) =
begin vv|[0] < right_given(s) — n_arg(delta_z[0], delta_y[0]); reduce_angle(vv|[0]); uu[0] < 0; ww[0] < O;
end

This code is used in section 285.

294. (Set up the equation for a curl at 0y 294) =
begin cc « right_curl(s); It < abs(left_tension(t)); rt < abs(right_tension(s));
if (rt = unity) A (It = unity) then wuu[0] < make_fraction(cc + cc + unity, cc + two)
else uu[0] < curl_ratio(cc,rt,lt);
w 0] < —take_fraction (psi[l], uu[0]); ww0] < 0;
end

This code is used in section 285.

295. (Set up equation for a curl at 6,, and goto found 295) =
begin cc « left_curl(s); It + abs(left_tension(s)); rt < abs(right_tension(r));
if (rt = unity) A (It = unity) then ff < make_fraction(cc + cc + unity, cc + two)
else ff < curl_ratio(cc,lt, rt);
theta[n] < —make_fraction (take_fraction(vv[n — 1], ff'), fraction_one — take_fraction (ff , uun — 1]));
goto found;
end

This code is used in section 284.

120 PART 18: CHOOSING CONTROL POINTS METAFONT §296

296. The curl_ratio subroutine has three arguments, which our previous notation encourages us to call ~,
a~ !, and 7! It is a somewhat tedious program to calculate

(3—a)a®y+4°
o+ BB

with the result reduced to 4 if it exceeds 4. (This reduction of curl is necessary only if the curl and tension
are both large.) The values of a and § will be at most 4/3.

{ Declare subroutines needed by solve_choices 296) =
function curl_ratio(gamma, a_tension, b_tension : scaled): fraction;
var alpha, beta, num, denom, ff: fraction; {registers}
begin alpha < make_fraction (unity, a_tension); beta < make_fraction(unity, b_tension);
if alpha < beta then
begin ff < make_fraction(alpha, beta); ff + take_fraction(ff, ff);
gamma < take_fraction(gamma, ff');
beta < beta div ‘10000; { convert fraction to scaled }
denom < take_fraction(gamma, alpha) + three — beta;
num <— take_fraction(gamma, fraction_three — alpha) + beta;
end
else begin ff < make_fraction(beta, alpha); ff < take_fraction(ff, ff);
beta + take_fraction(beta, ff) div '10000; { convert fraction to scaled }
denom < take_fraction(gamma, alpha) + (ff div 1365) — beta; {1365~ 2'2/3}
num < take_fraction(gamma, fraction_three — alpha) + beta;
end;
if num > denom + denom + denom + denom then curl_ratio < fraction_four
else curl_ratio < make_fraction(num, denom);
end;
See also section 299.

This code is used in section 284.

297. We're in the home stretch now.

(Finish choosing angles and assigning control points 297) =
for k + n — 1 downto 0 do theta[k] + vvlk] — take_fraction(theta[k + 1], uvulk]);
s+ p; k+ 0
repeat ¢ < link(s);
n_sin_cos(thetalk]); st < n_sin; ct < n_cos;
n_sin_cos (—psilk + 1] — theta[k + 1]); sf < n_sin; cf < n_cos;
set_controls(s,t, k);
iner(k); s+ t;
until £ =n

This code is used in section 284.

298. The set_controls routine actually puts the control points into a pair of consecutive nodes p and gq.
Global variables are used to record the values of sin @, cos 6, sin ¢, and cos ¢ needed in this calculation.

(Global variables 13) +=
st,ct,sf,cf: fraction; {sines and cosines }

§299 METAFONT PART 18: CHOOSING CONTROL POINTS

299. (Declare subroutines needed by solve_choices 296) +=
procedure set_controls(p, q : pointer; k : integer);
var rr, ss: fraction; {velocities, divided by thrice the tension }
lt,rt: scaled; {tensions }
sine: fraction; {sin(f + ¢)
begin It < abs(left_tension(q)); 1t < abs(right_tension(p)); rr < velocity(st, ct, sf, cf,1t);
ss + wvelocity (sf , cf , st, ct, lt);
if (right_tension(p) < 0) V (left_tension(q) < 0) then
(Decrease the velocities, if necessary, to stay inside the bounding triangle 300);
right_x (p) < z_coord (p) + take_fraction(take_fraction(delta_z[k], ct) — take_fraction(delta_y[k], st), rr)
right_y (p) < y-coord (p) + take_fraction (take_fraction(delta_y[k], ct) + take_fraction(delta_z k], st), rr)
left_z(q) < x_coord(q) — take_fraction (take_fraction (delta_x [k], cf) + take_fraction(delta_ylk], sf), ss);
left_y(q) < y-coord(q) — take_fraction (take_fraction (delta_y[k], cf) — take_fraction (delta_z[k], sf), ss);
right_type (p) < explicit; left_type(q) + explicit;
end;

121

i
)

300. The boundedness conditions rr < sin¢ /sin(d + ¢) and ss < sinf /sin(f + ¢) are to be enforced if

sin 6, sin ¢, and sin(f + ¢) all have the same sign. Otherwise there is no “bounding triangle.”

(Decrease the velocities, if necessary, to stay inside the bounding triangle 300) =
if (st >0)A(sf >20))V((st <0)A(sf <0)) then
begin sine « take_fraction(abs(st), cf) + take_fraction(abs(sf), ct);
if sine > 0 then
begin sine « take_fraction(sine, fraction_one + unity); { safety factor }
if right_tension(p) < 0 then
if ab_vs_cd(abs(sf), fraction_one, rr, sine) < 0 then rr < make_fraction(abs(sf), sine);
if left_tension(g) < 0 then
if ab_vs_cd (abs(st), fraction_one, ss, sine) < 0 then ss < make_fraction(abs(st), sine);
end;
end

This code is used in section 299.

301. Only the simple cases remain to be handled.

{Reduce to simple case of two givens and return 301) =
begin aa + n_arg(delta_z[0], delta_y[0]);
n_sin_cos (right_given(p) — aa); ct < n_cos; st < n_sin;
n_sin_cos (left_given(q) — aa); cf < n_cos; sf < —n_sin;
set_controls(p, ¢,0); return;
end

This code is used in section 285.

122 PART 18: CHOOSING CONTROL POINTS METAFONT 8302

302. (Reduce to simple case of straight line and return 302) =
begin right_type (p) < explicit; left_type(q) < explicit; It < abs(left_tension(q));
rt < abs(right_tension(p));
if rt = unity then
begin if delta_z[0] > 0 then right_z(p) < z_coord (p) + ((delta_z[0] + 1) div 3)
else right_z (p) < z_coord (p) + ((delta_z[0] — 1) div 3);
if delta_y[0] > 0 then right_y(p) < y_coord (p) + ((delta_y[0] + 1) div 3)
else right_y(p) < y-coord (p) + ((delta_y[0] — 1) div 3);
end
else begin ff + make_fraction(unity,3 xrt); {a/3}
right_x (p) < x-coord (p) + take_fraction (delta_z[0], ff');
right_y (p) < y-coord (p) + take_fraction (delta_y[0], ff);
end;
if It = unity then
begin if delta_xz[0] > 0 then left_x(q) < z_coord(q) — ((delta_z[0] + 1) div 3)
else left_z(q) < z_coord(q) — ((delta-z[0] — 1) div 3);
if delta_y[0] > 0 then left_y(q) + y-coord(q) — ((delta_y[0] + 1) div 3)
else left_y(q) < y-coord(q) — ((delta_y[0] — 1) div 3);
end
else begin [f + make_fraction(unity,3 = 1t); {5/3}
left_z (q) < x-coord (q) — take_fraction (delta_x[0], ff');
left_y(q) < y-coord(q) — take_fraction (delta_y[0], ff);
end;
return;
end

This code is used in section 285.

8303 METAFONT PART 19: GENERATING DISCRETE MOVES 123

303. Generating discrete moves. The purpose of the next part of METAFONT is to compute discrete
approximations to curves described as parametric polynomial functions z(t). We shall start with the low
level first, because an efficient “engine” is needed to support the high-level constructions.

Most of the subroutines are based on variations of a single theme, namely the idea of bisection. Given a

Bernshtein polynomial
B(z0,21, .-, 2nit) = Y <Z>tk(1 —)" F 2y,

k
we can conveniently bisect its range as follows:
1) Let z,io) =z, for 0 <k <n.
2) Let zl(cjﬂ) = %(z,(cj) + z,(cjﬁl), for0<k<n-—j for0<j<n.
Then

B(zo, 21,y 2n5t) = B(zéo),zél),...,zén);%) = B(zén),zgnfl),...,z,(zo);Qt— 1).

This formula gives us the coefficients of polynomials to use over the ranges 0 <t < % and % <t<1.

In our applications it will usually be possible to work indirectly with numbers that allow us to deduce
relevant properties of the polynomials without actually computing the polynomial values. We will deal with
coefficients 7, = 2l(z;C — zp—1) for 1 < k < n, instead of the actual numbers zy, 21, ..., z,, and the value
of [will increase by 1 at each bisection step. This technique reduces the amount of calculation needed for
bisection and also increases the accuracy of evaluation (since one bit of precision is gained at each bisection).
Indeed, the bisection process now becomes one level shorter:

1) Let 28 = 7, for 1 <k < n.

2) Let 2y = 129 4 z9)), for 1 <k <n—j, for 1 <j <n.

The relevant coefficients (Z1, ..., Z}) and (Z{, ..., Z!) for the two subintervals after bisection are respectively
(Z{l), Z£2), o Zf")) and (an)7 Zé"_l), . Z,(f)). And the values of zg appropriate for the bisected interval
are z), = 29 and 2{l = 20 + (Z) + Z4 + --- + Z!) /21+1.

Step 2’ involves division by 2, which introduces computational errors of at most % at each step; thus after
[levels of bisection the integers Zj, will differ from their true values by at most (n — 1)I/2. This error rate
is quite acceptable, considering that we have [more bits of precision in the Z’s by comparison with the z’s.
Note also that the Z’s remain bounded; there’s no danger of integer overflow, even though we have the
identity Zi = 2'(zx — 21,_1) for arbitrarily large I.

In fact, we can show not only that the Z’s remain bounded, but also that they become nearly equal, since
they are control points for a polynomial of one less degree. If | Z; 11 — Z| < M initially, it is possible to prove
that |Zy41 — Zi| < [M/2'] after [levels of bisection, even in the presence of rounding errors. Here’s the
proof [cf. Lane and Riesenfeld, IEEE Trans. on Pattern Analysis and Machine Intelligence PAMI-2 (1980),
35-46]: Assuming that |Zx11 — Zi| < M before bisection, we want to prove that |Zy11 — Zg| < [M/2]
afterward. First we show that |Z,£j_21 -7 ,E,])| < M for all j and k, by induction on j; this follows from the
fact that

|half (a + b) — half (b+ ¢)| < max(Ja —b|,[b—c|)

holds for both of the rounding rules half () = |2/2]| and half (z) = sign(z)||2z/2|]. (If |a —b] and |b — ¢
are equal, then a + b and b + ¢ are both even or both odd. The rounding errors either cancel or round the
numbers toward each other; hence

|half (a + b) — half (b+ ¢)| <

as required. A simpler argument applies if |a — b| and |b — ¢| are unequal.) Now it is easy to see that
20%0 - 20| < 312" - 20+ 4] <[4 + 1)) = [M)2].
Another interesting fact about bisection is the identity
I+ + 2+ 2+ o+ 2 =270+ + Zy + B,

where E is the sum of the rounding errors in all of the halving operations (|E| < n(n —1)/4).

124 PART 19: GENERATING DISCRETE MOVES METAFONT 8304

304. We will later reduce the problem of digitizing a complex cubic z(t) = B(zq, 21, 22, 23;t) to the following
simpler problem: Given two real cubics z(t) = B(xo, 21,2, z3;t) and y(t) = B(yo,y1, Y2, ys;t) that are
monotone nondecreasing, determine the set of integer points

P={(l=®] ly®]) o<t <1}

Well, the problem isn’t actually quite so clean as this; when the path goes very near an integer point (a,b),
computational errors may make us think that P contains (a —1,b) while in reality it should contain (a,b—1).
Furthermore, if the path goes exactly through the integer points (a — 1,0 — 1) and (a, b), we will want P to
contain one of the two points (a — 1,b) or (a,b — 1), so that P can be described entirely by “rook moves”
upwards or to the right; no diagonal moves from (a — 1,b — 1) to (a,b) will be allowed.

Thus, the set P we wish to compute will merely be an approximation to the set described in the formula
above. It will consist of |2(1)] — |=(0)] rightward moves and |y(1)] — [¢(0)] upward moves, intermixed in
some order. Our job will be to figure out a suitable order.

The following recursive strategy suggests itself, when we recall that x(0) = x, (1) = x3, y(0) = yo, and
y(1) = ys:

If |zo| = |x3] then take |y3| — [yo] steps up.

Otherwise if |yo]| = |y3] then take |z3| — |xo] steps to the right.

Otherwise bisect the current cubics and repeat the process on both halves.

This intuitively appealing formulation does not quite solve the problem, because it may never terminate. For
example, it’s not hard to see that no steps will ever be taken if (g, 21, 2, 3) = (yo0,¥1,Y2,y3)! However, we
can surmount this difficulty with a bit of care; so let’s proceed to flesh out the algorithm as stated, before
worrying about such details.

The bisect-and-double strategy discussed above suggests that we represent (zg, 21, z2, 3) by (X1, X2, X3),
where X}, = 2!(x), — x_1) for some [. Initially I = 16, since the 2’s are scaled. In order to deal with other
aspects of the algorithm we will want to maintain also the quantities m = |x3| — 2] and R = 2!(xo mod 1).
Similarly, (yo,y1,v2,y3) will be represented by (Y1,Y2,Y3), n = |y3] — |yo], and S = 2!(yo mod 1). The
algorithm now takes the following form:

If m = 0 then take n steps up.
Otherwise if n = 0 then take m steps to the right.
Otherwise bisect the current cubics and repeat the process on both halves.

The bisection process for (X7, Xa, X3, m, R, 1) reduces, in essence, to the following formulas:

X} = half (X1 + X2), XY = half (Xo+ X3), X} = half (X, + XY),
X{ =X, X!=X} X=X,

R =2R, T=X|+X,+X,+ R, R'"=Tmod?2*!,

m' = |T/2F, m" =m—m'.

8305 METAFONT PART 19: GENERATING DISCRETE MOVES 125

305. When m = n = 1, the computation can be speeded up because we simply need to decide between
two alternatives, (up,right) versus (right,up). There appears to be no simple, direct way to make the
correct decision by looking at the values of (X, Xa, X3, R) and (Y7,Y3,Y3,S); but we can streamline the
bisection process, and we can use the fact that only one of the two descendants needs to be examined after
each bisection. Furthermore, we observed earlier that after several levels of bisection the X’s and Y’s will
be nearly equal; so we will be justified in assuming that the curve is essentially a straight line. (This,
incidentally, solves the problem of infinite recursion mentioned earlier.)
It is possible to show that
m=|(X1+X2+Xs+R+E)/2,

where E is an accumulated rounding error that is at most 3 - (2/716 — 1) in absolute value. We will make
sure that the X’s are less than 228; hence when [= 30 we must have m < 1. This proves that the special
case m = n = 1 is bound to be reached by the time | = 30. Furthermore [= 30 is a suitable time to make
the straight line approximation, if the recursion hasn’t already died out, because the maximum difference
between X’s will then be < 2'4; this corresponds to an error of < 1 with respect to the original scaling.
(Stating this another way, each bisection makes the curve two bits closer to a straight line, hence 14 bisections
are sufficient for 28-bit accuracy.)

In the case of a straight line, the curve goes first right, then up, if and only if (T — 2/)(2! —) >
(U —2Y(2' = R), where T = X1 + Xo + X3+ R and U = Y; + Yo + Y3 + S. For the actual curve essentially
runs from (R/2!,5/2!) to (T/2',U/2!), and we are testing whether or not (1,1) is above the straight line
connecting these two points. (This formula assumes that (1, 1) is not exactly on the line.)

306. We have glossed over the problem of tie-breaking in ambiguous cases when the cubic curve passes
exactly through integer points. METAFONT finesses this problem by assuming that coordinates (z,y) actually
stand for slightly perturbed values (x4 &,y +n), where £ and 7 are infinitesimals whose signs will determine
what to do when z and/or y are exact integers. The quantities |z] and |y| in the formulas above should
actually read |z + &| and |y +n].

If x is a scaled value, we have |z + £| = |z if € >0, and |z +&] = |z — 2716 if £ < 0. It is convenient
to represent £ by the integer xi_corr, defined to be 0 if £ > 0 and 1 if £ < 0; then, for example, the integer
|2+ &] can be computed as floor_unscaled (x — xi_corr). Similarly, 7 is conveniently represented by eta_corr.

In our applications the sign of £ — n will always be the same as the sign of £. Therefore it turns out
that the rule for straight lines, as stated above, should be modified as follows in the case of ties: The line
goes first right, then up, if and only if (T'— 2')(2! — S) + ¢ > (U — 2!)(2! — R). And this relation holds iff
ab_vs_cd (T — 21,28 — S, U — 2,2 — R) — zi_corr > 0.

These conventions for rounding are symmetrical, in the sense that the digitized moves obtained from
(0,1, T2, X3, Y0, Y1, Y2, Y3, &, n) will be exactly complementary to the moves that would be obtained from
(—x3, —x9, —x1, —T0, —Y3, —Y2, —Y1, — Y0, —&, —1n), if arithmetic is exact. However, truncation errors in the
bisection process might upset the symmetry. We can restore much of the lost symmetry by adding zi_corr
or eta_corr when halving the data.

126 PART 19: GENERATING DISCRETE MOVES METAFONT 8307

307. One further possibility needs to be mentioned: The algorithm will be applied only to cubic polyno-
mials B(zo, 21, T2, z3;t) that are nondecreasing as ¢ varies from 0 to 1; this condition turns out to hold if
and only if zo < z; and 2o < w3, and either o7 < 29 or (7 — 22)? < (w7 — x0)(w3 — z2). If bisection were
carried out with perfect accuracy, these relations would remain invariant. But rounding errors can creep in,
hence the bisection algorithm can produce non-monotonic subproblems from monotonic initial conditions.
This leads to the potential danger that m or n could become negative in the algorithm described above.

For example, if we start with (z1 — xg, 22 — x1, 23 — 22) = (X1, X2, X3) = (7, —16, 39), the corresponding
polynomial is monotonic, because 162 < 7 - 39. But the bisection algorithm produces the left descendant
(7, -5, 3), which is nonmonotonic; its right descendant is (0, —1, 3).

Fortunately we can prove that such rounding errors will never cause the algorithm to make a tragic
mistake. At every stage we are working with numbers corresponding to a cubic polynomial B(Zg, Z1, T2, T3)
that approximates some monotonic polynomial B(xg, 21,22, z3). The accumulated errors are controlled so
that |z — x| < € = 3-2716. If bisection is done at some stage of the recursion, we have m = | 3| — |Zo] > 0,
and the algorithm computes a bisection value Z such that m’ = |Z| — |Zo] and m” = |Z3] — |Z|. We want to
prove that neither m’ nor m” can be negative. Since T is an approximation to a value in the interval [xg, z3],
we have T > 29 — e and T < x3 + ¢, hence T > Zg — 2¢ and T < I3 + 2¢. If m’ is negative we must have
Zo mod 1 < 2¢; if m” is negative we must have Z3 mod 1 > 1—2e. In either case the condition |Z3|—|Zo] > 0
implies that Z3 — &9 > 1 — 2¢, hence x5 — 29 > 1 — 4e. But it can be shown that if B(zg,x1, 22, x3;t) is a
monotonic cubic, then B(xg, z1, %2, 23; %) is always between .06[zg, z3] and .94[xo, z3); and it is impossible
for Z to be within € of such a number. Contradiction! (The constant .06 is actually (2 — v/3)/4; the worst
case occurs for polynomials like B(0,2 — /3,1 — /3, 3;).)

308. OK, now that a long theoretical preamble has justified the bisection-and-doubling algorithm, we are
ready to proceed with its actual coding. But we still haven’t discussed the form of the output.

For reasons to be discussed later, we shall find it convenient to record the output as follows: Moving one
step up is represented by appending a ‘1’ to a list; moving one step right is represented by adding unity to
the element at the end of the list. Thus, for example, the net effect of “(up, right, right, up, right)” is to
append (3,2).

The list is kept in a global array called move. Before starting the algorithm, METAFONT should check
that move_ptr 4+ |ys| — |yo] < move_size, so that the list won’t exceed the bounds of this array.

(Global variables 13) +=
move: array [0 .. move_size] of integer; {the recorded moves }
move_ptr: 0 .. move_size; {the number of items in the move list }

§309 METAFONT PART 19: GENERATING DISCRETE MOVES 127

309. When bisection occurs, we “push” the subproblem corresponding to the right-hand subinterval onto
the bisect_stack while we continue to work on the left-hand subinterval. Thus, the bisect_stack will hold
(X1,X5,X3,R,m,Y1,Y5, Y3, S5 n,l) values for subproblems yet to be tackled.

At most 15 subproblems will be on the stack at once (namely, for I = 15, 16, ..., 29); but the stack is
bigger than this, because it is used also for more complicated bisection algorithms.

define stack_rl = bisect_stack[bisect_ptr] {stacked value of X7 }
define stack_x2 = bisect_stack[bisect_ptr + 1] { stacked value of X5 }
define stack_z3 = bisect_stack [bisect_ptr + 2] {stacked value of X3}
define stack_r = bisect_stack [bisect_ptr + 3] { stacked value of R}
define stack_m = bisect_stack [bisect_ptr + 4] { stacked value of m }
define stack_yl = bisect_stack[bisect_ptr + 5] {stacked value of Y7 }
define stack_y2 = bisect_stack[bisect_ptr + 6] {stacked value of Y5 }
define stack_y3 = bisect_stack[bisect_ptr + 7] {stacked value of Y3 }
define stack_s = bisect_stack [bisect_ptr + 8] { stacked value of S}
define stack_-n = bisect_stack[bisect_ptr + 9] { stacked value of n }
define stack_l = bisect_stack[bisect_ptr + 10] { stacked value of [}
define move_increment = 11 { number of items pushed by make_moves }

(Global variables 13) +=
bisect_stack: array [0 .. bistack_size] of integer;
bisect_ptr: 0 .. bistack_size;

310. (Check the “constant” values for consistency 14) +=
if 15 % move_increment > bistack_size then bad <+ 31;

128 PART 19: GENERATING DISCRETE MOVES METAFONT 8311

311. The make_moves subroutine is given scaled values (xg, 1,22, 23) and (Yo, y1,y2,y3) that represent
monotone-nondecreasing polynomials; it makes |23 4+ &] — |xo + £] rightward moves and |y3 + 7] — [yo + 1]
upward moves, as explained earlier. (Here |x +] actually stands for |x/216 — zi_corr |, if x is regarded as
an integer without scaling.) The unscaled integers z; and y;, should be less than 22® in magnitude.

It is assumed that move_ptr + |ys + 1| — |yo + 1] < move_size when this procedure is called, so that the
capacity of the move array will not be exceeded.

The variables r» and s in this procedure stand respectively for R — xi_corr and S — eta_corr in the theory
discussed above.

procedure make_moves(zx0, vzl , xx2, 223, yy0, yyl , yy2, yy3 : scaled; zi_corr, eta_corr : small_number);
label continue, done, exit;
var z1,22,23,m,r,yl,y2,y3,n,s,l: integer; { bisection variables explained above }
q,t,u, x2a, x3a, y2a, y3a: integer; {additional temporary registers }
begin if (zz8 < z20) V (yy3 < yy0) then confusion("m");
l < 16; bisect_ptr + 0;
rl « xxl —xx0; 2 < 222 — 21 T3 — T3 — TTL;
if 220 > zi_corr then r < (zz0 — wi_corr) mod unity
else r < unity — 1 — ((—2z0 + zi_corr — 1) mod unity);
m 4 (zz3 — z20 + 1) div unity;
yl < yyl —yy0; y2 < yy2 — yyl; y3 < yy3 — yy2;
if yy0 > eta_corr then s« (yy0 — eta_corr) mod unity
else s « unity — 1 — ((—yy0 + eta_corr — 1) mod unity);
n + (yy3 — yy0 + s) div unity;
if (zx8 — 220 > fraction_one) V (yy8 — yy0 > fraction_one) then
(Divide the variables by two, to avoid overflow problems 313);
loop begin continue: (Make moves for current subinterval; if bisection is necessary, push the second
subinterval onto the stack, and goto continue in order to handle the first subinterval 314);
if bisect_ptr = 0 then return;
(Remove a subproblem for make_moves from the stack 312);
end;
exit: end;

312. (Remove a subproblem for make_moves from the stack 312) =
bisect_ptr < bisect_ptr — move_increment;
xl < stack_xl; x2 < stack-x2; x83 < stack_z3; r < stack_r; m < stack-m;
yl < stack_yl; y2 < stack_y2; y3 < stack-y3; s < stack_s; n < stack-n;
l + stack_l

This code is used in section 311.

313. Our variables (z1, 22, z3) correspond to (X1, X2, X3) in the notation of the theory developed above.
We need to keep them less than 228 in order to avoid integer overflow in weird circumstances. For example,
data like 29 = —22% + 216 — 1 and z; = 29 = x5 = 2?® — 1 would otherwise be problematical. Hence this
part of the code is needed, if only to thwart malicious users.

(Divide the variables by two, to avoid overflow problems 313) =
begin z1 + half (x1 + zi_corr); z2 < half (22 + zi_corr); x3 < half (8 + xi_corr);
r < half (r + zi_corr);
yl < half (y1 + eta_corr); y2 < half (y2 + eta_corr); y3 < half (y3 + eta_corr); s < half (s + eta_corr);
[+ 15;
end

This code is used in section 311.

6314 METAFONT PART 19: GENERATING DISCRETE MOVES 129

314. (Make moves for current subinterval; if bisection is necessary, push the second subinterval onto the
stack, and goto continue in order to handle the first subinterval 314) =
if m =0 then (Move upward n steps 315)
else if n =0 then (Move to the right m steps 316)
else if m +n =2 then (Make one move of each kind 317)
else begin incr(l); stack-l < ;
stack_x3 <+ x3; stack_z2 < half (22 + z3 + zi_corr); x2 + half (x1 + z2 + zi_corr);
23 < half (22 + stack_z2 + xi_corr); stack_zl + z3;
r<r—+r+axicorr; t < xl +x2 + 28 +r;
q + tdiv two_to_thell]; stack_r < t mod two_to_thell];
stack-m < m — q; m < q;
stack_y8 <+ y3; stack_y2 < half (y2 + y3 + eta_corr); y2 + half (y1 + y2 + eta_corr);
y3 « half (y2 + stack_y2 + eta_corr); stack-yl + y3;
$ < s+ s+ eta_corr; u <+ yl +y2 + y3 + s;
q + udiv two_to_the[l]; stack_s + uwmod two_to_thell];
stack-n <—n — q; n < q;
bisect_ptr < bisect_ptr + move_increment; goto continue;
end

This code is used in section 311.

315. (Move upward n steps 315) =
while n > 0 do
begin incr(move_ptr); move[move_ptr] + 1; decr(n);
end

This code is used in section 314.

316. (Move to the right m steps 316) =
move [move_ptr] <— move[move_ptr] +m

This code is used in section 314.

130 PART 19: GENERATING DISCRETE MOVES METAFONT

317. (Make one move of each kind 317) =
begin r < two_to_the[l] — r; s < two_to_the[l] — s;
while | < 30 do
begin z8a < z3; 12a <+ half (22 4+ z3 + wi_corr); z2 < half (x1 + 22 + zi_corr);
x8 <« half (2 + z2a + zi_corr); t < x1 + 22 + 28; v <+ 71 — Ti_corr;
y3a < y8; y2a < half (y2 + y3 + eta_corr); y2 < half (y1 + y2 + eta_corr);
y3 half (y2 + y2a + eta_corr); u <+ yl +y2 + y3; s+ s+ s — eta_corr;
if t <r then
if u < s then (Switch to the right subinterval 318)
else begin (Move up then right 320);
goto done;
end
else if u < s then
begin (Move right then up 319);
goto done;
end;
iner(1);
end;
T 4— T — Ti_COTT; S 4— S — eta_corr;
if abvs_cd(zl + 22 + 23,s,yl + y2 + y3,r) — zi_corr > 0 then (Move right then up 319)
else (Move up then right 320);
done: end

This code is used in section 314.

318. (Switch to the right subinterval 318) =
begin z1 <+ x3; 22 < 12a; 8 < x3a; r <1 —1t; yl < y3; y2 < y2a; y3 + y3a; s+ s—u;
end

This code is used in section 317.

319. (Move right then up 319) =
begin incr(move[move_ptr]); incr(move_ptr); move[move_ptr] < 1;
end

This code is used in sections 317 and 317.

320. (Move up then right 320) =
begin incr(move_ptr); move[move_ptr] < 2;
end

This code is used in sections 317 and 317.

§317

8321 METAFONT PART 19: GENERATING DISCRETE MOVES 131

321. After make_moves has acted, possibly for several curves that move toward the same octant, a
“smoothing” operation might be done on the move array. This removes optical glitches that can arise
even when the curve has been digitized without rounding errors.

The smoothing process replaces the integers ag...a, in movelb .. t] by “smoothed” integers af...al,
defined as follows:

+1, ifl<k<nandag_9>ar_1 < ag > agi1;
ay = ax + Ok+1 — Ok; O = {—1, ifl<k<nand ag_2 <ap_1> ar < agi1;
0, otherwise.

Here a < b means that a < b — 2, and a > b means that a > b + 2.

The smoothing operation is symmetric in the sense that, if ag . . . a,, smoothes to ag .. . al,, then the reverse
sequence a, . .. ag smoothes to a), ... ag; also the complementary sequence (m — ayp) ... (m — a,) smoothes to
(m—ap)...(m—al). We have aj, + - -+ a,, = ag + - - - + a,, because dyp = d,+1 = 0.
procedure smooth-moves (b, t : integer);

var k: 1.. move_size; {index into move }

a, aa, aaa: integer; {original values of move|k], movelk — 1], move[k — 2] }
begin if t — b > 3 then
begin k < b+ 2; aa < movelk — 1]; aaa < move[k — 2J;
repeat a < movelk];
if abs(a — aa) > 1 then (Increase and decrease move[k — 1] and move[k] by o 322);
incr(k); aaa + aa; aa + a;
until k£ =t¢;
end;
end;

322. (Increase and decrease movel[k — 1] and move[k] by) 322) =
if a > aa then
begin if aaa > aa then
if a > movelk + 1] then
begin incr(movelk — 1]); movelk] < a — 1;
end;
end
else begin if aaa < aa then
if a < movelk + 1] then
begin decr(move[k — 1]); movelk] + a + 1;
end;
end

This code is used in section 321.

132 PART 20: EDGE STRUCTURES METAFONT 8323

323. Edge structures. Now we come to METAFONT’s internal scheme for representing what the user
can actually “see,” the edges between pixels. Each pixel has an integer weight, obtained by summing the
weights on all edges to its left. METAFONT represents only the nonzero edge weights, since most of the edges
are weightless; in this way, the data storage requirements grow only linearly with respect to the number of
pixels per point, even though two-dimensional data is being represented. (Well, the actual dependence on
the underlying resolution is order nlogn, but the the logn factor is buried in our implicit restriction on the
maximum raster size.) The sum of all edge weights in each row should be zero.

The data structure for edge weights must be compact and flexible, yet it should support efficient updating
and display operations. We want to be able to have many different edge structures in memory at once, and
we want the computer to be able to translate them, reflect them, and/or merge them together with relative
ease.

METAFONT’s solution to this problem requires one single-word node per nonzero edge weight, plus one
two-word node for each row in a contiguous set of rows. There’s also a header node that provides global
information about the entire structure.

324. Let’s consider the edge-weight nodes first. The info field of such nodes contains both an m value
and a weight w, in the form 8m 4 w + ¢, where ¢ is a constant that depends on data found in the header.
We shall consider ¢ in detail later; for now, it’s best just to think of it as a way to compensate for the
fact that m and w can be negative, together with the fact that an info field must have a value between
min_halfword and maz_halfword. The m value is an unscaled x coordinate, so it satisfies |m| < 4096;
the w value is always in the range 1 < |w| < 3. We can unpack the data in the info field by fetching
ho(info(p)) = info(p) — min_halfword and dividing this nonnegative number by 8; the constant ¢ will be
chosen so that the remainder of this division is 4 + w. Thus, for example, a remainder of 3 will correspond
to the edge weight w = —1.

Every row of an edge structure contains two lists of such edge-weight nodes, called the sorted and unsorted
lists, linked together by their link fields in the normal way. The difference between them is that we always
have info(p) < info(link(p)) in the sorted list, but there’s no such restriction on the elements of the unsorted
list. The reason for this distinction is that it would take unnecessarily long to maintain edge-weight lists in
sorted order while they’re being updated; but when we need to process an entire row from left to right in
order of the m values, it’s fairly easy and quick to sort a short list of unsorted elements and to merge them
into place among their sorted cohorts. Furthermore, the fact that the unsorted list is empty can sometimes
be used to good advantage, because it allows us to conclude that a particular row has not changed since the
last time we sorted it.

The final link of the sorted list will be sentinel, which points to a special one-word node whose info field
is essentially infinite; this facilitates the sorting and merging operations. The final link of the unsorted list
will be either null or void, where void = null + 1 is used to avoid redisplaying data that has not changed:
A void value is stored at the head of the unsorted list whenever the corresponding row has been displayed.

define zero_w =4
define void = null + 1

(Initialize table entries (done by INIMF only) 176) +=
info(sentinel) < mazx_halfword; { link (sentinel) = null }

8325 METAFONT PART 20: EDGE STRUCTURES 133

325. The rows themselves are represented by row header nodes that contain four link fields. Two of these
four, sorted and unsorted, point to the first items of the edge-weight lists just mentioned. The other two,
link and knil, point to the headers of the two adjacent rows. If p points to the header for row number n,
then link(p) points up to the header for row n + 1, and knil(p) points down to the header for row n — 1.
This double linking makes it convenient to move through consecutive rows either upward or downward; as
usual, we have link (knil(p)) = knil(link (p)) = p for all row headers p.

The row associated with a given value of n contains weights for edges that run between the lattice points
(m,n) and (m,n + 1).

define knil = info {inverse of the link field, in a doubly linked list }

define sorted_loc(#) =#+ 1 {where the sorted link field resides }

define sorted (#) = link (sorted_loc(#)) {beginning of the list of sorted edge weights }

define unsorted (#) = info(# +1) {beginning of the list of unsorted edge weights }

define row_node_size =2 {number of words in a row header node }

134 PART 20: EDGE STRUCTURES METAFONT §326

326. The main header node h for an edge structure has link and knil fields that link it above the topmost
row and below the bottommost row. It also has fields called m_min, m_maz, n_min, and n_max that bound
the current extent of the edge data: All m values in edge-weight nodes should lie between m_min (h)—4096 and
m_maz (h) — 4096, inclusive. Furthermore the topmost row header, pointed to by knil(h), is for row number
n_maz (h) — 4096; the bottommost row header, pointed to by link (), is for row number n_min(h) — 4096.

The offset constant ¢ that’s used in all of the edge-weight data is represented implicitly in m_offset (h); its
actual value is

¢ = min_halfword + zero_w + 8 x m_offset (h).

Notice that it’s possible to shift an entire edge structure by an amount (Am, An) by adding An to n_min(h)
and n_maz(h), adding Am to m_min(h) and m_maz(h), and subtracting Am from m_offset(h); none of
the other edge data needs to be modified. Initially the m_offset field is 4096, but it will change if the user
requests such a shift. The contents of these five fields should always be positive and less than 8192; n_mazx
should, in fact, be less than 8191. Furthermore m_min + m_offset — 4096 and m_mazx + m_offset — 4096 must
also lie strictly between 0 and 8192, so that the info fields of edge-weight nodes will fit in a halfword.

The header node of an edge structure also contains two somewhat unusual fields that are called last_window (h)]}
and last_window_time (h). When this structure is displayed in window & of the user’s screen, after that win-
dow has been updated ¢ times, METAFONT sets last_window (h) < k and last_window_time(h) < t; it also
sets unsorted (p) + void for all row headers p, after merging any existing unsorted weights with the sorted
ones. A subsequent display in the same window will be able to avoid redisplaying rows whose unsorted list
is still void, if the window hasn’t been used for something else in the meantime.

A pointer to the row header of row n_pos(h) — 4096 is provided in n_rover(h). Most of the algorithms
that update an edge structure are able to get by without random row references; they usually access rows
that are neighbors of each other or of the current n_pos row. Exception: If link(h) = h (so that the edge
structure contains no rows), we have n_rover(h) = h, and n_pos(h) is irrelevant.

define zero_field = 4096 {amount added to coordinates to make them positive }
define n_min(#) = info(# +1) {minimum row number present, plus zero_field }
define n_maz (#) = link(#+4+ 1) {maximum row number present, plus zero_field }
define m_min(#) = info(#+2) { minimum column number present, plus zero_field }
define m_maz (#) = link (# 4+ 2) {maximum column number present, plus zero_field }
define m_offset (#) = info(# +3) {translation of m data in edge-weight nodes }
define last_window (#) = link(# + 3) { the last display went into this window }
define last_window_time (#) = mem[# + 4].int { after this many window updates }
define n_pos(#) = info(# +5) {the row currently in n_rover, plus zero_field }
define n_rover(#) = link(# +5) {a row recently referenced }

define edge_header_size = 6 {number of words in an edge-structure header }

define valid_range (#) = (abs(# — 4096) < 4096) {is # strictly between 0 and 81927 }
define empty_edges(#) = link(#) = # {are there no rows in this edge header? }

procedure init_edges(h : pointer); {initialize an edge header to null values }
begin knil(h) < h; link(h) < h;
n_min(h) < zero_field + 4095; n_max (h) < zero_field — 4095; m_min(h) < zero_field + 4095;
m-maz (h) < zero_field — 4095; m_offset(h) < zero_field;
last_window (h) < 0; last-window_time (h) < 0;
n_rover(h) < h; n_pos(h) < 0;
end;

8327 METAFONT PART 20: EDGE STRUCTURES 135

327. When a lot of work is being done on a particular edge structure, we plant a pointer to its main header
in the global variable cur_edges. This saves us from having to pass this pointer as a parameter over and over
again between subroutines.

Similarly, cur_wt is a global weight that is being used by several procedures at once.

(Global variables 13) +=
cur_edges: pointer; {the edge structure of current interest }
cur_wt: integer; {the edge weight of current interest }

328. The fiz_offset routine goes through all the edge-weight nodes of cur_edges and adds a constant to
their info fields, so that m_offset(cur_edges) can be brought back to zero_field. (This is necessary only in
unusual cases when the offset has gotten too large or too small.)

procedure fiz_offset;
var p, q: pointer; {list traversers }
delta: integer; {the amount of change }
begin delta < 8 x (m_offset (cur_-edges) — zero_field); m_offset(cur_edges) < zero_field;
q < link (cur_edges);
while ¢ # cur_edges do
begin p < sorted(q);
while p # sentinel do
begin info(p) < info(p) — delta; p < link(p);
end;
p + unsorted(q);
while p > void do
begin info(p) < info(p) — delta; p < link(p);
end;
q < link(q);
end;
end;

329. The edge_prep routine makes the cur_edges structure ready to accept new data whose coordinates
satisfy ml < m < mr and nl < n < nr — 1, assuming that —4096 < ml < mr < 4096 and —4096 < nl <
nr < 4096. It makes appropriate adjustments to m_min, m_-maz, n-min, and n-maz, adding new empty
rows if necessary.
procedure edge_prep (ml, mr, nl, nr : integer);
var delta: halfword; {amount of change }
p,q: pointer; {for list manipulation }
begin ml < ml + zero_field; mr < mr + zero_field; nl < nl + zero_field; nr < nr — 1 + zero_field;
if ml < m_min(cur_edges) then m_min(cur_edges) < ml;
if mr > m_maz (cur_edges) then m_maz (cur_edges) <— mr;
if —walid_range (m_min (cur_edges) + m_offset (cur_edges) — zero_field) V
—walid_range (m_-maz (cur_edges) + m_offset (cur_edges) — zero_field) then fiz_offset;
if empty_edges(cur_edges) then {there are no rows }
begin n_min (cur_edges) < nr 4+ 1; n_maz (cur_edges) < nr;
end;
if nl < n_min(cur_edges) then (Insert exactly n_min(cur_edges) — nl empty rows at the bottom 330);
if nr > n_maz (cur_edges) then (Insert exactly nr — n_maz (cur_edges) empty rows at the top 331);
end;

136 PART 20: EDGE STRUCTURES METAFONT 8330

330. (Insert exactly n-min(cur_edges) — nl empty rows at the bottom 330) =
begin delta < n_min(cur_edges) — nl; n-min(cur_edges) < nl; p < link(cur_edges);
repeat g < get_node(row_node_size); sorted(q) < sentinel; unsorted(q) < void; knil(p) < ¢;
link(q) + p; p + q; decr(delta);
until delta = 0;
knil(p) < cur_edges; link (cur_edges) < p;
if n_rover(cur_edges) = cur_edges then n_pos(cur_edges) < nl — 1;
end

This code is used in section 329.

331. (Insert exactly nr — n-maz (cur-edges) empty rows at the top 331) =
begin delta < nr — n_maz (cur_edges); n-max (cur-edges) < nr; p < knil (cur_edges);
repeat g « get_node(row_node_size); sorted(q) < sentinel; unsorted(q) < void; link(p) + g;
knil(q) < p; p < q; decr(delta);
until delta = 0;
link (p) < cur_edges; knil(cur_edges) < p;
if n_rover(cur_edges) = cur_edges then n_pos(cur_edges) < nr + 1;
end

This code is used in section 329.

332. The print_edges subroutine gives a symbolic rendition of an edge structure, for use in ‘show’ com-
mands. A rather terse output format has been chosen since edge structures can grow quite large.
{ Declare subroutines for printing expressions 257) +=
(Declare the procedure called print_weight 333)
procedure print_edges(s : str-number; nuline : boolean; xz_off , y-off : integer);
var p, q,r: pointer; {for list traversal }
n: integer; {row number }
begin print_diagnostic("Edge structure", s, nuline); p < knil (cur_edges);
n < n_max (cur_edges) — zero_field;
while p # cur_edges do
begin q < unsorted(p); r + sorted(p);
if (¢ > void) V (r # sentinel) then
begin print_nl("row,"); print-int(n + y_off); print_char(":");
while ¢ > void do
begin print_weight (q, z_off); q < link(q);
end;
print("L1");
while r # sentinel do
begin print_weight (r, z_off); r < link(r);
end;
end;
p < knil(p); decr(n);
end;
end_diagnostic(true);
end;

)

6333 METAFONT PART 20: EDGE STRUCTURES 137

333. (Declare the procedure called print_weight 333) =
procedure print_weight(q : pointer; z_off : integer);
var w, m: integer; {unpacked weight and coordinate }
d: integer; {temporary data register }
begin d < ho(info(q)); w < dmod 8; m < (d div 8) — m_offset (cur_edges);
if file_offset > maz_print_line — 9 then print_nl(",")
else print_char("");
print_int (m + z_off);
while w > zero_w do
begin print_char ("+"); decr(w);
end;
while w < zero_w do
begin print_char("-"); incr(w);
end;
end;

This code is used in section 332.

334. Here’s a trivial subroutine that copies an edge structure. (Let’s hope that the given structure isn’t
too gigantic.)
function copy_edges(h : pointer): pointer;
var p,r: pointer; {variables that traverse the given structure }
hh,pp,qq,rr,ss: pointer; {variables that traverse the new structure }
begin hh + get_node(edge_header_size); mem[hh + 1] <= mem[h + 1]; mem[hh + 2] < mem/[h + 2];
mem/[hh + 3] <— mem[h + 3]; mem[hh + 4] < mem[h + 4];
{ we’ve now copied n_min, n-mazx, m_min, m_max, m_offset, last_window, and last_window_time }
n_pos(hh) + n_max (hh) + 1; n_rover(hh) < hh;
p < link(h); qq < hh;
while p # h do
begin pp + get_node(row_node_size); link(qq) < pp; knil(pp) < qq;
(Copy both sorted and unsorted lists of p to pp 335);
p « link(p); qq < pp;
end;
link(qq) < hh; knil(hh) < qq; copy_edges < hh;
end;
335. (Copy both sorted and unsorted lists of p to pp 335) =
r < sorted (p); rr « sorted_loc(pp); {link(rr) = sorted(pp) }
while r # sentinel do
begin ss « get_avail; link(rr) < ss; rr + ss; info(rr) < info(r);
r < link(r);
end;
link (rr) < sentinel;
r < unsorted (p); rr + temp_head;
while r > void do
begin ss « get_avail; link(rr) < ss; rr < ss; info(rr) < info(r);
r < link(r);
end;
link (rr) < r; unsorted (pp) + link (temp_head)

This code is used in sections 334 and 341.

138 PART 20: EDGE STRUCTURES METAFONT $336

336. Another trivial routine flips cur_edges about the z-axis (i.e., negates all the y coordinates), assuming
that at least one row is present.

procedure y_reflect_edges;
var p, q,r: pointer; {list manipulation registers }
begin p < n_min(cur_edges); n_min(cur_edges) < zero_field + zero_field — 1 — n_mazx (cur_edges);
n_maz (cur_edges) < zero_field + zero_field — 1 — p;
n_pos(cur_edges) < zero_field + zero_field — 1 — n_pos(cur_edges);
p + link (cur_edges); q < cur_edges; {we assume that p # q}
repeat r + link(p); link(p) < q; knil(q) < p; q < p; p+r;
until g = cur_edges;
last_window_time (cur_edges) «+ 0;
end;

337. It’s somewhat more difficult, yet not too hard, to reflect about the y-axis.

procedure x_reflect_edges;
var p, q,r,s: pointer; {list manipulation registers }
m: integer; {info fields will be reflected with respect to this number }
begin p < m_min(cur_edges); m_min(cur_edges) « zero_field + zero_field — m_maz (cur_edges);
m_maz (cur_edges) < zero_field + zero_field — p;
m < (zero_field + m_offset (cur_edges)) * 8 + zero_w + min_halfword + zero_w + min_halfword;
m_offset (cur_edges) « zero_field; p link (cur_edges);
repeat (Reflect the edge-and-weight data in sorted(p) 339);
(Reflect the edge-and-weight data in unsorted(p) 338);
p < link(p);
until p = cur_edges;
last_window_time (cur_edges) < 0;
end;

338. We want to change the sign of the weight as we change the sign of the x coordinate. Fortunately, it’s
easier to do this than to negate one without the other.
(Reflect the edge-and-weight data in unsorted (p) 338) =
q + unsorted (p);
while ¢ > void do
begin info(q) < m — info(q); q < link(q);
end

This code is used in section 337.

339. Reversing the order of a linked list is best thought of as the process of popping nodes off one stack
and pushing them on another. In this case we pop from stack ¢ and push to stack r.
(Reflect the edge-and-weight data in sorted(p) 339) =
q + sorted(p); r < sentinel;
while g # sentinel do
begin s « link(q); link(q) < r; r < q; info(r) < m —info(q); q « s;
end;
sorted (p) < r

This code is used in section 337.

6340 METAFONT PART 20: EDGE STRUCTURES 139

340. Now let’s multiply all the y coordinates of a nonempty edge structure by a small integer s > 1:
procedure y_scale_edges(s : integer);
var p, q, pp,r, 1, ss: pointer; {list manipulation registers }
t: integer; {replication counter }
begin if (s (n_max (cur_edges) + 1 — zero_field) > 4096) V (s * (n-min (cur_edges) — zero_field) < —4096)
then
begin print_err("Scaled picture would be too_big");
help3 ("I can "t yscale the picture as requested-—-it_ would")
("make._lsome._lcoordinatesutooulargeuorutoousmall . ")
("Proceed, ,and I 11 omit, the transformation."); put_get_error;
end
else begin n_maz (cur_edges) <+ s * (n_max (cur_edges) + 1 — zero_field) — 1 + zero_field;
n-min(cur_edges) < s * (n-min(cur_edges) — zero_field) + zero_field;
(Replicate every row exactly s times 341);
last_window_time (cur_edges) < 0;
end;
end;
341. (Replicate every row exactly s times 341) =
p < cur_edges;
repeat g < p; p < link(p);
for t + 2to s do
begin pp + get_node(row_node_size); link(q) < pp; knil(p) < pp; link(pp) + p; knil(pp) + q;
q < pp; (Copy both sorted and unsorted lists of p to pp 335);
end;
until link(p) = cur_edges

This code is used in section 340.

342. Scaling the = coordinates is, of course, our next task.

procedure z_scale_edges (s : integer);
var p,q: pointer; {list manipulation registers }
t: 0..65535; {unpacked info field }
w: 0..7; {unpacked weight }
delta: integer; {amount added to scaled info }
begin if (s * (m_maz (cur_edges) — zero_field) > 4096) V (s x (m_min (cur_edges) — zero_field) < —4096)
then
begin print_err("Scaled picture would, be too_big");
help3 ("I can "t xscale the picture as requested-—-it_ would")
("make._lsome._lcoordinatesutooulargeuorutoousmall . ")
("Proceed, ,and I 11 omit, the transformation."); put_get_error;
end
else if (m_maz (cur_edges) # zero_field) V (m_min (cur_edges) # zero_field) then
begin m_maz (cur_edges) < s * (m-mazx (cur-edges) — zero_field) + zero_field;
m_min (cur_edges) < s x (m_min (cur_edges) — zero_field) + zero_field;
delta + 8 x (zero_field — s x m_offset (cur_edges)) + min_halfword; m_offset(cur_edges) + zero_field;
(Scale the z coordinates of each row by s 343);
last_window_time (cur_edges) < 0;
end;
end;

140 PART 20: EDGE STRUCTURES METAFONT

343. The multiplications cannot overflow because we know that s < 4096.

(Scale the = coordinates of each row by s 343) =
q < link (cur_edges);
repeat p < sorted(q);
while p # sentinel do
begin t « ho(info(p)); w < t mod 8; info(p) < (t — w) * s + w + delta; p < link(p);
end;
p < unsorted(q);
while p > void do
begin t + ho(info(p)); w < t mod 8; info(p) < (t — w) * s + w + delta; p « link(p);
end;
q < link(q);
until ¢ = cur_edges

This code is used in section 342.

344. Here is a routine that changes the signs of all the weights, without changing anything else.

procedure negate_edges(h : pointer);
label done;
var p,q,r,s,t,u: pointer; {structure traversers}
begin p < link(h);
while p # h do
begin ¢ < unsorted (p);
while ¢ > void do
begin info(q) + 8 — 2 x ((ho(info(q))) mod 8) + info(q); g + link(q);
end;
q + sorted (p);
if g # sentinel then
begin repeat info(q) < 8 — 2 x ((ho(info(q))) mod 8) + info(q); q + link(q);
until ¢ = sentinel;
(Put the list sorted(p) back into sort 345);
end;
p « link(p);
end;
last_window_time (h) + 0;
end;

§343

§345 METAFONT PART 20: EDGE STRUCTURES 141

345. METAFONT would work even if the code in this section were omitted, because a list of edge-and-
weight data that is sorted only by m but not w turns out to be good enough for correct operation. However,
the author decided not to make the program even trickier than it is already, since negate_edges isn’t needed
very often. The simpler-to-state condition, “keep the sorted list fully sorted,” is therefore being preserved
at the cost of extra computation.

(Put the list sorted(p) back into sort 345) =
u < sorted_loc(p); q < link(u); v <+ q; s« link(r); {q= sorted(p)}
loop if info(s) > info(r) then
begin link (u) < g;
if s = sentinel then goto done;
U Ty g8 T q; s link(r);
end
else begin t < s; s < link(t); link(t) < q; q + t;
end;
done: link(r) « sentinel

This code is used in section 344.

346. The unsorted edges of a row are merged into the sorted ones by a subroutine called sort_edges. It
uses simple insertion sort, followed by a merge, because the unsorted list is supposedly quite short. However,
the unsorted list is assumed to be nonempty.

procedure sort_edges(h : pointer); {h is a row header }
label done;
var k: halfword; {key register that we compare to info(q) }
p,q,T,s: pointer;
begin r + unsorted (h); unsorted(h) < null; p < link(r); link(r) < sentinel; link (temp_head) < r;
while p > void do {sort node p into the list that starts at temp_head }
begin k « info(p); q « temp_head;
repeat r « q; q + link(r);
until k& < info(q);
link(r) < p; v < link(p); link(p) < q; p < r;
end;
(Merge the temp_head list into sorted (h) 347);
end;

347. 1In this step we use the fact that sorted (h) = link (sorted_loc(h)).

{Merge the temp_head list into sorted (h) 347) =
begin r < sorted_loc(h); q + link(r); p « link(temp_head);
loop begin k + info(p);

while k > info(q) do
begin r « q; q + link(r);
end;
link (r) < p; s « link(p); link(p) < q;
if s = sentinel then goto done;
T p; P S
end;
done: end

This code is used in section 346.

142 PART 20: EDGE STRUCTURES METAFONT §348

348. The cull_edges procedure “optimizes” an edge structure by making all the pixel weights either w_out
or w_in. The weight will be w_in after the operation if and only if it was in the closed interval [w_lo, w_hi]
before, where w_lo < w_hi. Either w_out or w_in is zero, while the other is +1, +2, or £3. The parameters
will be such that zero-weight pixels will remain of weight zero. (This is fortunate, because there are infinitely
many of them.)

The procedure also computes the tightest possible bounds on the resulting data, by updating m_min,
m-mazx, n-min, and n_maz.

procedure cull_edges(w_-lo, w_hi, w_out, w_in : integer);
label done;
var p, q,r,s: pointer; {for list manipulation }
w: integer; {new weight after culling }
d: integer; {data register for unpacking }
m: integer; {the previous column number, including m-offset }
mm: integer; {the next column number, including m_offset }
ww: integer; {accumulated weight before culling }
prev_w: integer; {value of w before column m }
n, min_n, maz_n: pointer; {current and extreme row numbers }
min-d, maz_d: pointer; {extremes of the new edge-and-weight data }
begin min_d + maz_halfword; max_d < min_halfword; min_n < max_halfword;
maz_n < min_halfword;
p < link (cur_edges); n < n_min(cur_edges);
while p # cur_edges do
begin if unsorted(p) > void then sort_edges(p);
if sorted(p) # sentinel then (Cull superfluous edge-weight entries from sorted(p) 349);
p « link(p); incr(n);
end;
{Delete empty rows at the top and/or bottom; update the boundary values in the header 352);
last_window_time (cur_edges) < 0;
end;

6349 METAFONT PART 20: EDGE STRUCTURES 143

349. The entire sorted list is returned to available memory in this step; a new list is built starting
(temporarily) at temp_head. Since several edges can occur at the same column, we need to be looking
ahead of where the actual culling takes place. This means that it’s slightly tricky to get the iteration started
and stopped.

(Cull superfluous edge-weight entries from sorted (p) 349) =
begin r + temp_head; q < sorted(p); ww + 0; m < 1000000; prev_w < 0;
loop begin if ¢ = sentinel then mm < 1000000
else begin d < ho(info(q)); mm < ddiv 8; ww < ww + (d mod 8) — zero_w;
end;
if mm > m then
begin (Insert an edge-weight for edge m, if the new pixel weight has changed 350);
if ¢ = sentinel then goto done;
end;
m < mm;
if ww > w_lo then
if ww < w_hi then w <« w_in
else w < w_out
else w + w_out;
s < link(q); free_avail(q); q < s;
end;
done: link(r) « sentinel; sorted(p) < link (temp_head);
if r # temp_head then (Update the max/min amounts 351);
end

This code is used in section 348.

350. (Insert an edge-weight for edge m, if the new pixel weight has changed 350) =
if w # prev_w then
begin s < get_avail; link(r) < s; info(s) < 8 x m + min_halfword + zero_w + w — prev_w; T < s;
prev_w < w;
end

This code is used in section 349.

351. (Update the max/min amounts 351) =
begin if min_n = maz_halfword then min_n < n;
Maz-_n < n;
if min_d > info(link (temp_head)) then min_d < info(link(temp_head));
if maz_d < info(r) then maz_d < info(r);
end

This code is used in section 349.

144 PART 20: EDGE STRUCTURES METAFONT §352

352. (Delete empty rows at the top and/or bottom; update the boundary values in the header 352) =
if min_n > maz_n then (Delete all the row headers 353)
else begin n < n_min(cur_edges); n_min(cur_edges) < min_n;
while min_n > n do
begin p < link (cur_edges); link(cur_edges) « link(p); knil(link(p)) < cur_edges;
free_node(p, row_node_size); incr(n);
end;
n + n-mazx (cur-edges); n-max(cur_edges) <— maz_n; n_pos(cur_edges) < maz_n + 1;
n_rover (cur_edges) < cur_edges;
while maz_n < n do
begin p < knil(cur_edges); knil (cur_edges) < knil(p); link (knil(p)) < cur_edges;
free_node (p, row_node_size); decr(n);
end;
m_min (cur_edges) < ((ho(min_d)) div 8) — m_offset (cur_edges) + zero_field;
m_maz (cur_edges) < ((ho(maz_d)) div 8) — m_offset (cur_edges) + zero_field;;
end

This code is used in section 348.

353. We get here if the edges have been entirely culled away.

(Delete all the row headers 353) =
begin p < link (cur_edges);
while p # cur_edges do
begin g < link(p); free_node(p, row_node_size); p + q;
end;
init_edges (cur_edges);
end

This code is used in section 352.

8354 METAFONT PART 20: EDGE STRUCTURES 145

354. The last and most difficult routine for transforming an edge structure—and the most interesting
onel—is zy_swap_edges, which interchanges the roles of rows and columns. Its task can be viewed as the job
of creating an edge structure that contains only horizontal edges, linked together in columns, given an edge
structure that contains only vertical edges linked together in rows; we must do this without changing the
implied pixel weights.

Given any two adjacent rows of an edge structure, it is not difficult to determine the horizontal edges that
lie “between” them: We simply look for vertically adjacent pixels that have different weight, and insert a
horizontal edge containing the difference in weights. Every horizontal edge determined in this way should
be put into an appropriate linked list. Since random access to these linked lists is desirable, we use the
move array to hold the list heads. If we work through the given edge structure from top to bottom, the
constructed lists will not need to be sorted, since they will already be in order.

The following algorithm makes use of some ideas suggested by John Hobby. It assumes that the edge
structure is non-null, i.e., that link (cur_edges) # cur_edges, hence m_mazx (cur_edges) > m_min (cur_edges).

procedure zy_swap_edges; {interchange z and y in cur_edges }

label done;

var m_magic, n_magic: integer; {special values that account for offsets }
p,q,7,s: pointer; {pointers that traverse the given structure }
(Other local variables for zy_swap_edges 357)

begin (Initialize the array of new edge list heads 356);

(Insert blank rows at the top and bottom, and set p to the new top row 355);

(Compute the magic offset values 365);

repeat q < knil(p); if unsorted(q) > void then sort_edges(q);
(Insert the horizontal edges defined by adjacent rows p, ¢, and destroy row p 358);
P < q; n-magic < n-magic — §;

until knil(p) = cur_edges;

free_node (p, row_node_size); {now all original rows have been recycled }

(Adjust the header to reflect the new edges 364);

end;

355. Here we don’t bother to keep the link entries up to date, since the procedure looks only at the knil
fields as it destroys the former edge structure.

(Insert blank rows at the top and bottom, and set p to the new top row 355) =
p + get_node (row_node_size); sorted(p) < sentinel; unsorted(p) < null;
knil(p) < cur_edges; knil(link (cur_edges)) + p; {the new bottom row }
p + get_node (row_node_size); sorted(p) < sentinel; knil(p) < knil (cur_edges); {the new top row }

This code is used in section 354.

356. The new lists will become sorted lists later, so we initialize empty lists to sentinel.

(Initialize the array of new edge list heads 356) =
m_spread < m-maz (cur_edges) — m-min (cur_edges); {this is > 0 by assumption }
if m_spread > move_size then overflow ("move table,size", move_size);
for j + 0 to m_spread do movel[j] + sentinel

This code is used in section 354.

146 PART 20: EDGE STRUCTURES METAFONT 8357

357. (Other local variables for zy_swap_edges 357) =

m_spread: integer; {the difference between m_maz and m_min }
J,Jj: 0.. move_size; {indices into move }

m, mm: integer; {m values at vertical edges }

pd,rd: integer; {data fields from edge-and-weight nodes }
pm,rm: integer; {m values from edge-and-weight nodes }

w: integer; {the difference in accumulated weight }

ww: integer; {as much of w that can be stored in a single node }
dw: integer; {an increment to be added to w }

See also section 363.

This code is used in section 354.

358. At the point where we test w # 0, variable w contains the accumulated weight from edges already
passed in row p minus the accumulated weight from edges already passed in row gq.

(Insert the horizontal edges defined by adjacent rows p, ¢, and destroy row p 358) =
r < sorted (p); free_node(p, row_node_size); p + r;
pd < ho(info(p)); pm <+ pd div 8;
r < sorted(q); rd < ho(info(r)); rm + rd div 8; w <+ 0;
loop begin if pm < rm then mm < pm else mm < rm;
if w # 0 then (Insert horizontal edges of weight w between m and mm 362);
if pd < rd then
begin dw + (pd mod 8) — zero_w;
(Advance pointer p to the next vertical edge, after destroying the previous one 360);
end
else begin if r = sentinel then goto done; {rd = pd = ho(maz_halfword) }
dw < —((rd mod 8) — zero_w); (Advance pointer r to the next vertical edge 359);
end;
m < mm; w <+ w—+ dw;
end;
done:

This code is used in section 354.

359. (Advance pointer r to the next vertical edge 359) =
r < link(r); rd < ho(info(r)); rm < rd div 8

This code is used in section 358.

360. (Advance pointer p to the next vertical edge, after destroying the previous one 360) =
s < link(p); free_avail(p); p < s; pd < ho(info(p)); pm < pd div 8

This code is used in section 358.

361. Certain “magic” values are needed to make the following code work, because of the various offsets
in our data structure. For now, let’s not worry about their precise values; we shall compute m_magic and
n_magic later, after we see what the code looks like.

8362 METAFONT PART 20: EDGE STRUCTURES 147

362. (Insert horizontal edges of weight w between m and mm 362) =
if m # mm then
begin if mm — m_magic > move_size then confusion("xy");
extras < (abs(w) — 1) div 3;
if extras > 0 then
begin if w > 0 then zw < +3 else zw <+ —3;
wWW — W — extras * Tw;
end
else ww + w;
repeat j < m — m_magic;
for k <+ 1 to extras do
begin s + get_avail; info(s) + n-magic + zw; link(s) < move[j|; movelj] + s;
end;
s < get_avail; info(s) < n_magic + ww; link(s) < move[j]; move[j] < s;
incr(m);
until m = mm;
end

This code is used in section 358.

363. (Other local variables for zy_swap_edges 357) +=

extras: integer; {the number of additional nodes to make weights > 3}
zw: —3..3; {the additional weight in extra nodes }

k: integer; {loop counter for inserting extra nodes }

364. At the beginning of this step, move[m_spread] = sentinel, because no horizontal edges will extend to
the right of column m_max (cur_edges).
(Adjust the header to reflect the new edges 364) =
move[m_spread] < 0; j < 0;
while move[j] = sentinel do incr(j);
if j = m_spread then init_edges(cur_edges) {all edge weights are zero }
else begin mm < m_min(cur_edges); m_min(cur_edges) <— n_min(cur-edges);
m_max (cur_edges) < n_maz (cur_edges) + 1; m_offset(cur_edges) < zero_field; jj < m_spread — 1;
while move[jj] = sentinel do decr(jj);
n_min (cur_edges) < j + mm; n_maz (cur_edges) < jj + mm; q < cur_edges;
repeat p < get_node(row_node_size); link(q) < p; knil(p) < q; sorted(p) < moveljl;
unsorted (p) < null; incr(j); q < p;
until j > jj;
link(q) < cur_edges; knil(cur_edges) < q; n_pos(cur_edges) < n_maz (cur_edges) + 1;
n_rover (cur_edges) < cur_edges; last_window_time (cur_edges) «+ 0;
end;

This code is used in section 354.

365. The values of m_magic and n_magic can be worked out by trying the code above on a small example;
if they work correctly in simple cases, they should work in general.
(Compute the magic offset values 365) =

m_magic < m_min (cur_edges) + m_offset (cur_edges) — zero_field;

n_magic < 8 * n_maz (cur_edges) + 8 + zero_w + min_halfword

This code is used in section 354.

148 PART 20: EDGE STRUCTURES METAFONT §366

366. Now let’s look at the subroutine that merges the edges from a given edge structure into cur_edges.
The given edge structure loses all its edges.

procedure merge_edges(h : pointer);
label done;
var p,q,7, pp, qq, rr: pointer; {list manipulation registers }
n: integer; {row number }
k: halfword; {key register that we compare to info(q) }
delta: integer; {change to the edge/weight data }
begin if link(h) # h then
begin if (m_-min(h) < m_min(cur_edges)) V (m-maz (h) > m_-maz (cur_edges)) V
(n_min(h) < n_min(cur_edges)) V (n-max (h) > n_maz (cur_edges)) then
edge_prep (m_min (h)— zero_field, m_max (h) — zero_field , n_min (h) — zero_field , n_max (h) — zero_field +1);
if m_offset(h) # m_offset(cur_edges) then
(Adjust the data of h to account for a difference of offsets 367);
n + n_min(cur_edges); p < link (cur_edges); pp «+ link(h);
while n < n_min(h) do
begin incr(n); p < link(p);
end;
repeat (Merge row pp into row p 368);
pp < link(pp); p < link(p);
until pp = h;
end;
end;

367. (Adjust the data of h to account for a difference of offsets 367) =
begin pp + link(h); delta < 8 x (m_offset(cur_edges) — m_offset(h));
repeat qq < sorted(pp);

while ¢q # sentinel do
begin info(qq) < info(qq) + delta; qq < link(qq);
end;

qq + unsorted (pp);

while gq > void do
begin info(qq) < info(qq) + delta; qq <+ link(qq);

end;
pp < link (pp);
until pp = h;
end

This code is used in section 366.

6368 METAFONT PART 20: EDGE STRUCTURES 149

368. The sorted and unsorted lists are merged separately. After this step, row pp will have no edges
remaining, since they will all have been merged into row p.
(Merge row pp into row p 368) =
qq < unsorted (pp);
if gq > void then
if unsorted (p) < void then unsorted(p) < qq
else begin while link(qq) > void do qq < link(qq);
link (qq) < unsorted(p); unsorted(p) + unsorted (pp);
end;
unsorted (pp) < null; qq + sorted(pp);
if gq # sentinel then
begin if unsorted (p) = void then unsorted(p) < null;
sorted (pp) « sentinel; r < sorted_loc(p); q < link(r); {q = sorted(p)}
if ¢ = sentinel then sorted(p) < qq
else loop begin k + info(qq);
while k > info(q) do
begin r « ¢; q + link(r);
end;
link(r) < qq; mr < link(qq); link(qq) + g;
if mr = sentinel then goto done;
T qq; qq 1T
end;
end;
done:

This code is used in section 366.

369. The total_weight routine computes the total of all pixel weights in a given edge structure. It’s not
difficult to prove that this is the sum of (—w) times x taken over all edges, where w and x are the weight
and x coordinates stored in an edge. It’s not necessary to worry that this quantity will overflow the size of
an integer register, because it will be less than 23! unless the edge structure has more than 174,762 edges.
However, we had better not try to compute it as a scaled integer, because a total weight of almost 12 x 212
can be produced by only four edges.

function total_weight(h : pointer): integer; {h is an edge header }

var p, q: pointer; {variables that traverse the given structure }
n: integer; {accumulated total so far }
m: 0..65535; {packed x and w values, including offsets }

begin n < 0; p < link(h);

while p # h do
begin ¢ < sorted(p);
while g # sentinel do (Add the contribution of node ¢ to the total weight, and set ¢ + link(q) 370);
q + unsorted (p);
while ¢ > void do (Add the contribution of node ¢ to the total weight, and set ¢ + link(q) 370);
p « link(p);
end;

total_weight <— n;

end;

)

150 PART 20: EDGE STRUCTURES METAFONT §370

370. It’s not necessary to add the offsets to the x coordinates, because an entire edge structure can be
shifted without affecting its total weight. Similarly, we don’t need to subtract zero_field.

(Add the contribution of node ¢ to the total weight, and set g < link(q) 370) =
begin m « ho(info(q)); n + n — ((m mod 8) — zero_w) x (m div 8); ¢ « link(q);
end

This code is used in sections 369 and 369.

371. So far we’ve done lots of things to edge structures assuming that edges are actually present, but we
haven’t seen how edges get created in the first place. Let’s turn now to the problem of generating new edges.

METAFONT will display new edges as they are being computed, if tracing_edges is positive. In order to
keep such data reasonably compact, only the points at which the path makes a 90° or 180° turn are listed.

The tracing algorithm must remember some past history in order to suppress unnecessary data. Three vari-
ables trace_z, trace_y, and trace_yy provide this history: The last coordinates printed were (trace_z, trace_y),
and the previous edge traced ended at (trace-z, trace_yy). Before anything at all has been traced, trace-z =
—4096.

(Global variables 13) +=

trace_z: integer; {x coordinate most recently shown in a trace }
trace_y: integer; {y coordinate most recently shown in a trace }
trace_yy: integer; {y coordinate most recently encountered }

372. Edge tracing is initiated by the begin_edge_tracing routine, continued by the trace_a_corner routine,
and terminated by the end_edge_tracing routine.

procedure begin_edge_tracing;

begin print_diagnostic("Tracing edges","", true); print(",(weight,"); print_int(cur-wt);
print_char(")"); trace_z + —4096;
end;

procedure trace_a_corner;
begin if file_offset > maz_print_line — 13 then print_-nl("");
print_char (" ("); print_int (trace_z); print_char(","); print_int(trace_yy); print_char(")");
trace_y < trace_yy;
end;
procedure end_edge_tracing;
begin if trace.z = —4096 then print_nl(" (No_ new_edges added.)")
else begin trace_a_corner; print_char(".");
end;
end_diagnostic(true);
end;

)

§373 METAFONT PART 20: EDGE STRUCTURES 151

373. Just after a new edge weight has been put into the info field of node r, in row n, the following routine
continues an ongoing trace.

procedure trace_new-edge(r : pointer; n : integer);
var d: integer; {temporary data register }
w: —3..3; {weight associated with an edge transition }
m,n0,nl: integer; {column and row numbers }
begin d < ho(info(r)); w < (d mod 8) — zero_w; m < (d div 8) — m_offset (cur_edges);
if w = cur_wt then
begin n0 < n+1; nl + n;
end
else begin n0 < n; nl + n—+1;
end; {the edges run from (m,n0) to (m,n1)}
if m # trace_r then
begin if trace.x = —4096 then
begin print_-nl(""); trace_yy < n0;
end
else if trace_yy # n0 then print_char("?") {shouldn’t happen }
else trace_a_corner;
trace_x <— m; trace_a_corner;
end
else begin if n0 # trace_yy then print_char("!"); {shouldn’t happen }
if (n0 < nl) A (trace_y > trace_yy)) V ((n0 > nl) A (trace_y < trace_yy)) then trace_a_corner;
end;
trace_yy < nl;
end;

152 PART 20: EDGE STRUCTURES METAFONT §374

374. One way to put new edge weights into an edge structure is to use the following routine, which simply
draws a straight line from (z0,y0) to (z1,yl). More precisely, it introduces weights for the edges of the
discrete path ([t[zo, z1] + 5 + €], [t[yo, 1] + 1 + €6]), as t varies from O to 1, where € and § are extremely
small positive numbers.

The structure header is assumed to be cur_edges; downward edge weights will be cur_wt, while upward
ones will be —cur_wt.

Of course, this subroutine will be called only in connection with others that eventually draw a complete
cycle, so that the sum of the edge weights in each row will be zero whenever the row is displayed.

procedure line_edges(z0,y0,x1,yl : scaled);

label done, donel;

var m0,n0,m1,nl: integer; {rounded and unscaled coordinates }
delx, dely: scaled; {the coordinate differences of the line }
yt: scaled; {smallest y coordinate that rounds the same as y0 }
tr: scaled; {tentative change in z }
p,r: pointer; {list manipulation registers }
base: integer; {amount added to edge-and-weight data }
n: integer; {current row number }

begin n0 + round_unscaled(y0); nl < round_unscaled (y1);

if n0 # ni1 then
begin m0 + round_unscaled(x0); m1 + round_unscaled (z1); delx + z1 — z0; dely + y1 — y0;
yt < n0 * unity — half-unit; y0 < y0 — yt; y1 « yl — yt;
if n0 < n1 then (Insert upward edges for a line 375)
else (Insert downward edges for a line 376);
n_rover (cur_edges) < p; n_pos(cur_edges) < n + zero_field;
end;

end;

375. Here we are careful to cancel any effect of rounding error.

(Insert upward edges for a line 375) =
begin base < 8 x m_offset (cur_edges) + min_halfword + zero_w — cur_wt;
if m0 < m1 then edge_prep(m0,m1,n0,nl) else edge_prep(m1,m0,n0,nl);
(Move to row n0, pointed to by p 377);
y0 < unity — y0;
loop begin r « get_avail; link (r) + unsorted (p); unsorted(p) < r;
tx « take_fraction (delr, make_fraction(y0, dely));
if ab_vs_cd(delz,y0, dely, tr) < 0 then decr(tx); {now tzr = |y0 - delx/dely]|}
info(r) < 8 x round-unscaled (z0 + tz) + base;
yl < yl — unity;
if internal[tracing_edges] > 0 then trace_new_edge(r,n);
if yI < unity then goto done;
p < link(p); y0 < y0 + unity; incr(n);
end;
done: end

This code is used in section 374.

§376 METAFONT PART 20: EDGE STRUCTURES 153

376. (Insert downward edges for a line 376) =
begin base <+ 8 * m_offset (cur_edges) + min_halfword + zero_w + cur_-wt;
if m0 < m1 then edge_prep(m0,ml1,nl, n0) else edge_prep(mi1,m0,nl, n0);
decr(n0); (Move to row n0, pointed to by p 377);
loop begin r < get_avail; link(r) < unsorted(p); unsorted(p) < r;
tr < take_fraction(delr, make_fraction(y0, dely));
if ab_vs_cd(delz, y0, dely, tx) < 0 then incr(tz); {now tr = [y0 - delz/dely], since dely < 0}
info(r) < 8 * round_unscaled (0 — tx) + base;
yl < yl + unity;
if internal[tracing_edges] > 0 then trace_new_edge(r,n);
if y1 > 0 then goto donel;
p < knil(p); y0 + y0 + unity; decr(n);
end;
donel: end

This code is used in section 374.

377. (Move to row n0, pointed to by p 377) =
n <+ n_pos(cur_edges) — zero_field; p < n_rover(cur_edges);
if n # n0 then
if n < n0 then
repeat incr(n); p < link(p);
until n = no
else repeat decr(n); p « knil(p);
until n = no
This code is used in sections 375, 376, 381, 382, 383, and 384.

154 PART 20: EDGE STRUCTURES METAFONT §378

378. METAFONT inserts most of its edges into edge structures via the mowve_to_edges subroutine, which
uses the data stored in the move array to specify a sequence of “rook moves.” The starting point (m0, n0)
and finishing point (m1,n1) of these moves, as seen from the standpoint of the first octant, are supplied
as parameters; the moves should, however, be rotated into a given octant. (We're going to study octant
transformations in great detail later; the reader may wish to come back to this part of the program after
mastering the mysteries of octants.)

The rook moves themselves are defined as follows, from a first_octant point of view: “Go right move[k]
steps, then go up one, for 0 < k < nl — n0; then go right move[nl — n0] steps and stop.” The sum of
movelk] for 0 < k < nl — n0 will be equal to m1 — m0.

As in the line_edges routine, we use +cur_wt as the weight of all downward edges and —cur_wt as the
weight of all upward edges, after the moves have been rotated to the proper octant direction.

There are two main cases to consider: fast_case is for moves that travel in the direction of octants 1, 4,
5, and 8, while slow_case is for moves that travel toward octants 2, 3, 6, and 7. The latter directions are
comparatively cumbersome because they generate more upward or downward edges; a curve that travels
horizontally doesn’t produce any edges at all, but a curve that travels vertically touches lots of rows.

define fast_case_up =60 {for octants 1 and 4}
define fast_case_down = 61 {for octants 5 and 8 }
define slow_case_up = 62 {for octants 2 and 3 }
define slow_case_-down = 63 {for octants 6 and 7}

procedure move_to_edges(m0,n0, m1,nl : integer);
label fast_case_up, fast_case_down, slow_case_up, slow_case_down , done;
var delta: 0 .. move_size; {extent of move data}
k: 0..move_size; {index into move }
p,r: pointer; {list manipulation registers }
dz: integer; {change in edge-weight info when x changes by 1}
edge_and_weight: integer; {info to insert }
j: integer; {mnumber of consecutive vertical moves }
n: integer; {the current row pointed to by p}
debug sum: integer; gubed
begin delta < n1 — n0;
debug sum < move[0];
for k + 1 to delta do sum + sum + abs(move[k]);
if sum # m1 — m0 then confusion("0");
gubed
(Prepare for and switch to the appropriate case, based on octant 380);
fast_case_up: (Add edges for first or fourth octants, then goto done 381);
fast_case_down: (Add edges for fifth or eighth octants, then goto done 382);
slow_case_up: { Add edges for second or third octants, then goto done 383);
slow_case_down: { Add edges for sixth or seventh octants, then goto done 384);
done: n_pos(cur_edges) < n + zero_field; n_rover (cur_edges) < p;
end;
379. The current octant code appears in a global variable. If, for example, we have octant = third_octant,
it means that a curve traveling in a north to north-westerly direction has been rotated for the purposes
of internal calculations so that the move data travels in an east to north-easterly direction. We want to
unrotate as we update the edge structure.

(Global variables 13) +=
octant: first_octant .. sizth_octant; {the current octant of interest }

6380 METAFONT PART 20: EDGE STRUCTURES 155

380. (Prepare for and switch to the appropriate case, based on octant 380) =
case octant of

first_octant: begin dz <+ 8; edge_prep(m0,m1,n0,nl); goto fast_case_up;

end;

second_octant: begin dzx < 8; edge_prep(n0,nl,m0,ml1); goto slow_case_up;
end;

third_octant: begin dx <+ —8; edge_prep(—ni1,—n0,m0,ml1); negate(n0); goto slow_case_up;
end;

fourth_octant: begin dx < —8; edge_prep(—ml1,—m0,n0,nl); negate(m0); goto fast_case_up;
end;

fifth_octant: begin dx < —8; edge_prep(—ml1,—m0,—nl,—n0); negate(m0); goto fast_case_down;
end;

sizth_octant: begin dx <+ —8; edge_prep(—nl,—n0,—m1,—m0); negate(n0); goto slow_case_down;
end;

seventh_octant: begin dx < 8; edge_prep(n0,nl,—m1,—m0); goto slow_case_down;
end;

eighth_octant: begin dz + 8; edge_prep(m0, m1,—nl,—n0); goto fast_case_down;
end;

end; {there are only eight octants }

This code is used in section 378.

381. (Add edges for first or fourth octants, then goto done 381) =
(Move to row n0, pointed to by p 377);
if delta > 0 then
begin k + 0; edge_and_weight < 8 * (m0 + m_offset (cur_edges)) + min_halfword + zero_w — cur_wt;
repeat edge_and_weight < edge_and_weight + dz * movelk]; fast_get_avail(r); link(r) < unsorted(p);
info(r) < edge_and_weight;
if internal [tracing-edges] > 0 then trace_new_edge(r,n);
unsorted (p) < r; p < link(p); incr(k); incr(n);
until k = delta;
end;
goto done

This code is used in section 378.

382. (Add edges for fifth or eighth octants, then goto done 382) =
n0 < —n0 —1; {Move to row n0, pointed to by p 377);
if delta > 0 then
begin k + 0; edge_and_weight < 8 x (m0 + m_offset (cur_edges)) + min_halfword + zero_w + cur_wt;
repeat edge_and-weight < edge_and_weight + dz * movelk]; fast_get_avail(r); link(r) < unsorted (p);
info(r) + edge_and_weight;
if internal [tracing-edges] > 0 then trace_new_edge(r,n);
unsorted (p) < r; p < knil(p); incr(k); decr(n);
until k£ = delta;
end;
goto done

This code is used in section 378.

156 PART 20: EDGE STRUCTURES METAFONT §383

383. (Add edges for second or third octants, then goto done 383) =
edge_and_weight < 8 x (n0 + m_offset (cur_edges)) + min_halfword + zero_w — cur_wt; n0 < m0; k + 0;
(Move to row n0, pointed to by p 377);
repeat j < movelk];
while j > 0 do
begin fast_get_avail (r); link(r) < unsorted (p); info(r) < edge_and_weight;
if internal[tracing-edges] > 0 then trace_new_edge(r,n);
unsorted (p) < r; p < link(p); decr(j); incr(n);
end;
edge_and_weight <+ edge_and_weight + dx; incr(k);
until k > delta;
goto done

This code is used in section 378.

384. (Add edges for sixth or seventh octants, then goto done 384) =
edge_and_weight < 8 x (n0 + m_offset (cur_edges)) + min_halfword + zero_w + cur_wt; nl + —m0 — 1;
k < 0; (Move to row n0, pointed to by p 377);
repeat j + move[k];

while j > 0 do
begin fast_get_avail (r); link(r) < unsorted (p); info(r) < edge_and_weight;
if internal[tracing_edges] > 0 then trace_new_edge(r,n);
unsorted (p) < r; p < knil(p); decr(j); decr(n);
end;
edge_and_weight < edge_and_weight + dz; incr(k);
until k > delta;
goto done

This code is used in section 378.

385. All the hard work of building an edge structure is undone by the following subroutine.

(Declare the recycling subroutines 268) +=
procedure toss_edges(h : pointer);
var p, q: pointer; {for list manipulation }
begin q « link(h);
while ¢ # h do
begin flush_list (sorted (q));
if unsorted(q) > void then flush_list(unsorted(q));
p < q; q < link(q); free_node(p, row-node_size);
end;
free_node(h, edge_header_size);
end;

)

§386 METAFONT PART 21: SUBDIVISION INTO OCTANTS 157

386. Subdivision into octants. When METAFONT digitizes a path, it reduces the problem to the
special case of paths that travel in “first octant” directions; i.e., each cubic z(t) = (z(t),y(t)) being digitized
will have the property that 0 < y/(¢) < 2/(¢). This assumption makes digitizing simpler and faster than if
the direction of motion has to be tested repeatedly.

When z(t) is cubic, 2/(¢) and y'(t) are quadratic, hence the four polynomials z/(¢), ¥'(¢t), '(t) — v/ (¢),
and /() + y'(t) cross through 0 at most twice each. If we subdivide the given cubic at these places, we
get at most nine subintervals in each of which z/(t), ¥/ (¢), 2'(t) — ¥'(t), and z’'(t) + ¢/ (¢) all have a constant
sign. The curve can be transformed in each of these subintervals so that it travels entirely in first octant
directions, if we reflect x +» —z, y <> —y, and/or x <> y as necessary. (Incidentally, it can be shown that a
cubic such that 2/(t) = 16(2t — 1)2 +2(2t — 1) — 1 and ¢/(t) = 8(2t — 1)? + 4(2t — 1) does indeed split into
nine subintervals.)

387. The transformation that rotates coordinates, so that first octant motion can be assumed, is defined
by the skew subroutine, which sets global variables cur_x and cur_y to the values that are appropriate in a
given octant. (Octants are encoded as they were in the n_arg subroutine.)

This transformation is “skewed” by replacing (z,y) by (z — y,y), once first octant motion has been
established. It turns out that skewed coordinates are somewhat better to work with when curves are actually
digitized.

define set_two_end (#) = cur_y < #; end

define set_two(#) =

begin cur_z < #; set_two_end

procedure skew(x,y : scaled; octant : small_number);
begin case octant of
first_octant: set_two(x — y)(y);

second_octant: set_two(y — x)(x);
third_octant: set_two (y + :E)(x);
fourth_octant: set_two(—x — y)(y);

fifth-octant: set_two(—x + y)(Y);
sizth_octant: set_two(—y + x)(x);
seventh_octant: set_two(—y — x)(x);
eighth_octant: set_two(x + y)(Y);
end; {there are no other cases }
end;

388. Conversely, the following subroutine sets cur_z and cur_y to the original coordinate values of a point,
given an octant code and the point’s coordinates (x,y) after they have been mapped into the first octant
and skewed.

(Declare subroutines for printing expressions 257) +=
procedure unskew (x,y : scaled; octant : small_number);

begin case octant of

first_octant: set_two(x + y)(y);

second_octant: set_two(y)(xz + y);

third_octant: set_two(—y)(x + y);

fourth_octant: set_two(—z — y)(y);

fifth_octant: set_two(—x — y)(—y);

sixzth_octant: set_two(—y)(—xz — y);

seventh_octant: set_two(y)(—xz — y);

eighth_octant: set_two(x + y)(—y);

end; {there are no other cases }

end;

158 PART 21: SUBDIVISION INTO OCTANTS METAFONT §389

389. (Global variables 13) +=
cur_x, cur_y: scaled; {outputs of skew, unskew, and a few other routines }

390. The conversion to skewed and rotated coordinates takes place in stages, and at one point in the
transformation we will have negated the x and/or y coordinates so as to make curves travel in the first
quadrant. At this point the relevant “octant” code will be either first_octant (when no transformation
has been done), or fourth_octant = first_octant + negate_x (when z has been negated), or fifth_octant =
first_octant + negate_x + negate_y (when both have been negated), or eighth_octant = first_octant + negate_y
(when y has been negated). The abnegate routine is sometimes needed to convert from one of these
transformations to another.

procedure abnegate(x,y : scaled; octant_before, octant_after : small_number);

begin if odd (octant_before) = odd (octant_after) then cur_z + x

else cur_x + —ux;

if (octant_before > negate_y) = (octant_after > negate_y) then cur-y + y

else cur_y < —y;

end;
391. Now here’s a subroutine that’s handy for subdivision: Given a quadratic polynomial B(a, b, c;t), the
crossing-point function returns the unique fraction value ¢ between 0 and 1 at which B(a,b, c;t) changes
from positive to negative, or returns t = fraction_one + 1 if no such value exists. If a < 0 (so that B(a, b, ¢;t)
is already negative at ¢ = 0), crossing_point returns the value zero.

define no_crossing =
begin crossing_point < fraction_one + 1; return;
end

define one_crossing =
begin crossing_point < fraction_one; return;
end

define zero_crossing =
begin crossing_point < 0; return;
end

function crossing_point(a,b,c : integer): fraction;
label exit;
var d: integer; {recursive counter }
x,zx,20,x1,x2: integer; {temporary registers for bisection }
begin if a < 0 then zero_crossing;
if ¢ > 0 then
begin if b > 0 then
if ¢ > 0 then no_crossing
else if (a =0) A (b= 0) then no_crossing
else one_crossing;
if a = 0 then zero_crossing;
end
else if a = 0 then
if b < 0 then zero_crossing;
(Use bisection to find the crossing point, if one exists 392);
exit: end;

8392 METAFONT PART 21: SUBDIVISION INTO OCTANTS 159

392. The general bisection method is quite simple when n = 2, hence crossing_point does not take much
time. At each stage in the recursion we have a subinterval defined by [and j such that B(a,b,c;2 ! (j +1)) =
B(xg,x1,x2;t), and we want to “zero in” on the subinterval where xg > 0 and min(x,z2) < 0.

It is convenient for purposes of calculation to combine the values of [and j in a single variable d = 2! + j,
because the operation of bisection then corresponds simply to doubling d and possibly adding 1. Furthermore
it proves to be convenient to modify our previous conventions for bisection slightly, maintaining the variables
Xo = 2wy, X1 = 2Y(zo — 1), and Xy = 2!(x; — x5). With these variables the conditions zo > 0 and
min(z1,22) < 0 are equivalent to max(Xy, X7 + Xa) > Xy > 0.

The following code maintains the invariant relations 0 < 20 < max(z1,z1 + 22), |z1| < 230, |22| < 230;
it has been constructed in such a way that no arithmetic overflow will occur if the inputs satisfy a < 239,
la —b] <239 and [b— c| < 2%0.

(Use bisection to find the crossing point, if one exists 392) =
d<1; 20 <~ a; 21 < a—0b; 22 < b—c
repeat x + half (z1 + 22);
if 1 — 20 > z0 then
begin 22 < x; double(z0); double(d);
end
else begin zx + z1 +x — 20;
if 2z > 20 then
begin 22 + x; double(z0); double(d);
end
else begin z0 < z0 — zz;
if x < z0 then
if x + 22 < 20 then no_crossing;
]l < x; d<—d+d+1;
end;
end;
until d > fraction_one;
crossing_point < d — fraction_one

This code is used in section 391.

160 PART 21: SUBDIVISION INTO OCTANTS METAFONT 8393

393. Octant subdivision is applied only to cycles, i.e., to closed paths. A “cycle spec” is a data structure
that contains specifications of cubic curves and octant mappings for the cycle that has been subdivided
into segments belonging to single octants. It is composed entirely of knot nodes, similar to those in the
representation of paths; but the ezplicit type indications have been replaced by positive numbers that give
further information. Additional endpoint data is also inserted at the octant boundaries.

Recall that a cubic polynomial is represented by four control points that appear in adjacent nodes p and ¢
of a knot list. The a coordinates are z_coord (p), right_x (p), left_z(q), and z_coord(q); the y coordinates are
similar. We shall call this “the cubic following p” or “the cubic between p and ¢” or “the cubic preceding ¢.”

Cycle specs are circular lists of cubic curves mixed with octant boundaries. Like cubics, the octant
boundaries are represented in consecutive knot nodes p and ¢. In such cases right_type (p) = left_type(q) =
endpoint, and the fields right_x(p), right_y(p), left_x(q), and left_y(q) are replaced by other fields called
right_octant (p), right_transition(p), left_octant(q), and left_transition(q), respectively. For example, when the
curve direction moves from the third octant to the fourth octant, the boundary nodes say right_octant(p) =
third_octant, left_octant(q) = fourth_octant, and right_transition(p) = left_transition(q) = diagonal. A
diagonal transition occurs when moving between octants 1 & 2, 3 & 4, 5 & 6, or 7 & 8; an axis transition
occurs when moving between octants 8 & 1,2 & 3,4 & 5, 6 & 7. (Such transition information is redundant
but convenient.) Fields z_coord(p) and y_coord(p) will contain coordinates of the transition point after
rotation from third octant to first octant; i.e., if the true coordinates are (z,y), the coordinates (y, —z) will
appear in node p. Similarly, a fourth-octant transformation will have been applied after the transition, so
we will have z_coord(q) = —x and y_coord(q) = y.

The cubic between p and ¢ will contain positive numbers in the fields right_type (p) and left_type(q); this
makes cubics distinguishable from octant boundaries, because endpoint = 0. The value of right_type (p) will
be the current octant code, during the time that cycle specs are being constructed; it will refer later to a
pen offset position, if the envelope of a cycle is being computed. A cubic that comes from some subinterval
of the kth step in the original cyclic path will have left_type(q) = k.

define right_octant = right_z { the octant code before a transition }
define left_octant = left_x { the octant after a transition }

define right_transition = right_y { the type of transition }

define left_transition = left.y { ditto, either azis or diagonal }
define azis =0 {a transition across the a’- or y’-axis }

define diagonal =1 {a transition where y' = £z’ }

6394 METAFONT PART 21: SUBDIVISION INTO OCTANTS 161

394. Here’s a routine that prints a cycle spec in symbolic form, so that it is possible to see what subdivision
has been made. The point coordinates are converted back from METAFONT’s internal “rotated” form to
the external “true” form. The global variable cur_spec should point to a knot just after the beginning of an
octant boundary, i.e., such that left_type(cur_spec) = endpoint.

define print_two_true (#) = unskew (#, octant); print_two (cur_z, cur_y)

procedure print_spec(s : str_number);
label not_found, done;
var p, q: pointer; {for list traversal }
octant: small_number; {the current octant code }
begin print_diagnostic("Cycle spec", s, true); p « cur-spec; octant < left_octant(p); print_In;
print_two_true (z_coord (cur_spec), y_coord (cur_spec)); print("_ %, beginning in octant, ");
loop begin print(octant_dir[octant]); print_char (" ");
loop begin ¢ < link(p);
if right_type (p) = endpoint then goto not_found;
(Print the cubic between p and g 397);
P g
end;
not_found: if ¢ = cur_spec then goto done;
p <+ q; octant < left_octant(p); print_nl("%,entering octant, ");
end;
done: print-nl (" &ucycle"); end_diagnostic(true);
end;

395. Symbolic octant direction names are kept in the octant_dir array.

(Global variables 13) +=
octant_dir: array [first_octant .. sizth_octant] of str_number;

396. (Set initial values of key variables 21) +=
octant_dir [first_octant] < "ENE"; octant_dir [second_octant] < "NNE"; octant_dir[third_octant] < "NNW";
octant_dir [fourth_octant] < "WNW"; octant_dir [fifth_octant] < "WSW"; octant_dir|sizth_octant] + "SSW";
octant_dir [seventh_octant] < "SSE"; octant_dir|eighth_octant] < "ESE";

397. (Print the cubic between p and ¢ 397) =
begin print_nl("LLy. . controls,"); print_two_true(right_z (p), right-y(p)); print("Land,");
print_two_true (left_z (q), left-y (q)); print-nl("y.."); print_two_true(x_coord(q), y-coord(q));
print ("Uhusegment,"); print_int (left_type(q) — 1);
end

This code is used in section 394.

162 PART 21: SUBDIVISION INTO OCTANTS METAFONT

398. A much more compact version of a spec is printed to help users identify “strange paths.”

procedure print_strange(s : str-number);
var p: pointer; {for list traversal }
f: pointer; {starting point in the cycle }
q: pointer; {octant boundary to be printed }
t: integer; {segment number, plus 1}
begin if interaction = error_stop_mode then wake_up_terminal;
print_nl(">"); (Find the starting point, f 399);
(Determine the octant boundary ¢ that precedes f 400);
t <« 0;
repeat if left_type(p) # endpoint then
begin if left_type(p) # t then
begin t <+ left_type(p); print_char("u"); print_int(t — 1);
end;
if ¢ # null then
begin (Print the turns, if any, that start at ¢, and advance ¢ 401);
print_char ("u"); print(octant_dir[left_octant (q)]); q + null;
end;
end
else if ¢ = null then q < p;
p < link(p);
until p = f;
print_char ("y"); print_int (left_type (p) — 1);
if ¢ # null then (Print the turns, if any, that start at ¢, and advance g 401);
print_err(s);
end;

§398

399. If the segment numbers on the cycle are 1, ta, ..., t, and if m < maz_quarterword, we have
ti_1 <ty except for at most one value of k. If there are no exceptions, f will point to ¢1; otherwise it will

point to the exceptional t.

There is at least one segment number (i.e., we always have m > 0), because print_strange is never called

upon to display an entirely “dead” cycle.
(Find the starting point, f 399) =
p + cur_spec; t < mazx_quarterword + 1;
repeat p < link(p);
if left_type (p) # endpoint then
begin if left_type(p) < t then f « p;
t < left_type(p);
end;
until p = cur_spec

This code is used in section 398.

400. (Determine the octant boundary ¢ that precedes f 400) =
D ¢ cur_spec; q < p;
repeat p < link(p);
if left_type (p) = endpoint then ¢ < p;
until p=f

This code is used in section 398.

8401 METAFONT PART 21: SUBDIVISION INTO OCTANTS 163

401. When two octant boundaries are adjacent, the path is simply changing direction without moving.
Such octant directions are shown in parentheses.

(Print the turns, if any, that start at ¢, and advance ¢ 401) =
if left_type (link(q)) = endpoint then

begin print (", ("); print(octant_dir[left_octant(q)]); q + link(q);

while left_type (link(q)) = endpoint do
begin print_char("u"); print(octant_dir[left_octant(q)]); q < link(q);
end;

print_char(")");

end

This code is used in sections 398 and 398.

402. The make_spec routine is what subdivides paths into octants: Given a pointer cur_spec to a cyclic
path, make_spec mungs the path data and returns a pointer to the corresponding cyclic spec. All “dead”
cubics (i.e., cubics that don’t move at all from their starting points) will have been removed from the result.

The idea of make_spec is fairly simple: Each cubic is first subdivided, if necessary, into pieces belonging to
single octants; then the octant boundaries are inserted. But some of the details of this transformation are
not, quite obvious.

If autorounding > 0, the path will be adjusted so that critical tangent directions occur at “good” points
with respect to the pen called cur_pen.

The resulting spec will have all and y coordinates at most — half-unit — 1 — safety_margin in absolute
value. The pointer that is returned will start some octant, as required by print_spec.

228

{ Declare subroutines needed by make_spec 405)
function make_spec(h : pointer; safety-margin : scaled; tracing : integer): pointer;
{ converts a path to a cycle spec }

label continue, done;
var p,q,r,s: pointer; {for traversing the lists }

k: integer; {serial number of path segment, or octant code }

chopped: integer; {positive if data truncated, negative if data dangerously large }

(Other local variables for make_spec 453)
begin cur_spec < h;
if tracing > 0 then print_path(cur_spec, ", before subdivision into octants", true);
maz_allowed < fraction_one — half-unit — 1 — safety_margin; (Truncate the values of all coordinates that

exceed maz_allowed, and stamp segment numbers in each left_type field 404);

quadrant_subdivide; { subdivide each cubic into pieces belonging to quadrants }
if (internallautorounding] > 0) A (chopped = 0) then zy_round;
octant_subdivide; { complete the subdivision }
if (internalautorounding] > unity) A (chopped = 0) then diag-round;
(Remove dead cubics 447);
(Insert octant boundaries and compute the turning number 450);
while left_type (cur_spec) # endpoint do cur_spec + link (cur_spec);
if tracing > 0 then

if (internallautorounding] < 0) V (chopped # 0) then print_spec(", after subdivision")

else if internal[autorounding] > unity then

print_spec (",paftersubdivision and double aut orounding")
else pm’nt,spec(" s L,afterusubdivisionuand._,autorounding");

make_spec < cur_spec;
end;

164 PART 21: SUBDIVISION INTO OCTANTS METAFONT 8403

403. The make_spec routine has an interesting side effect, namely to set the global variable turning_number
to the number of times the tangent vector of the given cyclic path winds around the origin.

Another global variable cur_spec points to the specification as it is being made, since several subroutines
must go to work on it.

And there are two global variables that affect the rounding decisions, as we’ll see later; they are called
cur_pen and cur_path_type. The latter will be double_path_code if make_spec is being applied to a double
path.

define double_path_code =0 {command modifier for ‘doublepath’}
define contour_code =1 {command modifier for ‘contour’ }
define also_code =2 {command modifier for ‘also’ }

{ Global variables 13) +=

cur_spec: pointer; {the principal output of make_spec }

turning_number: integer; {another output of make_spec }

cur_pen: pointer; {an implicit input of make_spec, used in autorounding }
cur_path_type: double_path_code .. contour_code; {likewise }

maz-allowed: scaled; {coordinates must be at most this big }

404. First we do a simple preprocessing step. The segment numbers inserted here will propagate to all
descendants of cubics that are split into subintervals. These numbers must be nonzero, but otherwise they
are present merely for diagnostic purposes. The cubic from p to ¢ that represents “time interval” (t —1) .. ¢
usually has left_type(q) = t, except when ¢ is too large to be stored in a quarterword.

define procrustes(#) = if abs(#) > dmaz then
if abs(#) > maz_allowed then
begin chopped < 1;
if # > 0 then # < maz_allowed else # < —maz_allowed;;
end
else if chopped = 0 then chopped < —1

{ Truncate the values of all coordinates that exceed max_allowed, and stamp segment numbers in each
left_type field 404) =

p « cur_spec; k < 1; chopped < 0; dmaz < half (maz_allowed);

repeat procrustes(left-z(p)); procrustes(left_y(p)); procrustes(xz—coord(p)); procrustes(y-coord(p));
procrustes (right_z (p)); procrustes(right_y(p));
p < link(p); left_type(p) < k;
if k < maz_quarterword then incr(k) else k « 1;

until p = cur_spec;

if chopped > 0 then
begin print_err("Curve out of range");
help4 ("Atuleastl_,oneuofutheucoordinatesuinuthel_,path._lI 'muabout._lto")
("digitize was_ really huge (potentially bigger than 4095).")
("So, I veycut it back to,the maximum size.")
("The,results will probably be pretty wild."); put_get_error;
end

This code is used in section 402.

8405 METAFONT PART 21: SUBDIVISION INTO OCTANTS 165

405. We may need to get rid of constant “dead” cubics that clutter up the data structure and interfere
with autorounding.

(Declare subroutines needed by make_spec 405) =

procedure remove_cubic(p : pointer); {removes the cubic following p }
var ¢: pointer; {the node that disappears }
begin g « link(p); right_type(p) < right_type(q); link(p) < link(q);
z_coord (p) < x_coord (q); y-coord(p) < y_coord(q);
right_x (p) < right_z(q); right-y(p) < right_y(q)
free_node(q, knot_node_size);
end;

See also sections 406, 419, 426, 429, 431, 432, 433, 440, and 451.

This code is used in section 402.

)

406. The subdivision process proceeds by first swapping x <+ —z, if necessary, to ensure that 2’ > 0; then
swapping y <+ —, if necessary, to ensure that 3’ > 0; and finally swapping x <> y, if necessary, to ensure
that =’ > 1/,

Recall that the octant codes have been defined in such a way that, for example, third_octant = first_octant+
negate_xr + switch_z_and_y. The program uses the fact that negate_x < megate.y < switch_z_and_.y to
handle “double negation”: If ¢ is an octant code that possibly involves negate_r and/or negate_y, but not
switch_z_and_y, then negating y changes c¢ either to ¢ + negate_y or ¢ — negate_y, depending on whether
¢ < negate_y or ¢ > negate_y. Octant codes are always greater than zero.

The first step is to subdivide on x and y only, so that horizontal and vertical autorounding can be done
before we compare z’ to y'.

{ Declare subroutines needed by make_spec 405) +=
(Declare the procedure called split_cubic 410)
procedure quadrant_subdivide;
label continue, exit;
var p,q,7, S, pp, qq: pointer; {for traversing the lists }
first_z, first_y: scaled; {unnegated coordinates of node cur_spec }
dell, del2, del3, del, dmax: scaled;
{ proportional to the control points of a quadratic derived from a cubic }
t: fraction; {where a quadratic crosses zero }
dest_z, dest_y: scaled; {final values of z and y in the current cubic }
constant_x: boolean; {is x constant between p and ¢7 }
begin p < cur_spec; first_x + x_coord (cur_spec); first_y <+ y_coord (cur_spec);
repeat continue: q + link(p);
(Subdivide the cubic between p and ¢ so that the results travel toward the right halfplane 407);
(Subdivide all cubics between p and ¢ so that the results travel toward the first quadrant; but return
or goto continue if the cubic from p to ¢ was dead 413);
PG
until p = cur_spec;
exrit: end;

166 PART 21: SUBDIVISION INTO OCTANTS METAFONT 8407

407. All three subdivision processes are similar, so it’s possible to get the general idea by studying the
first one (which is the simplest). The calculation makes use of the fact that the derivatives of Bernshtein
polynomials satisfy B'(zo, 21, .-+, 2n;t) =nB(21 — 20y - -+ 2n — Zn—1;1)-

When this routine begins, right_type(p) is explicit; we should set right_type (p) < first_octant. However,
no assignment is made, because explicit = first_octant. The author apologizes for using such trickery here;
it is really hard to do redundant computations just for the sake of purity.

(Subdivide the cubic between p and ¢ so that the results travel toward the right halfplane 407) =
if ¢ = cur_spec then
begin dest_x + first_z; dest_y < first_y;
end
else begin dest_z + x_coord(q); dest_y + y_coord(q);
end;
dell < right_z(p) — x_coord (p); del2 < left_z(q) — right_z(p);
del3 + dest_x — left_z(q); (Scale up dell, del2, and del3 for greater accuracy; also set del to the first
nonzero element of (dell, del2, del3) 408);
if del =0 then constant_x < true
else begin constant_x <+ false;
if del < 0 then (Complement the x coordinates of the cubic between p and ¢ 409);
t < crossing_point(dell , del2, del3);
if ¢ < fraction_one then (Subdivide the cubic with respect to 2/, possibly twice 411);
end

This code is used in section 406.

408. If dell = del2 = del3 = 0, it’s impossible to obey the title of this section. We just set del = 0 in
that case.

(Scale up dell, del2, and del8 for greater accuracy; also set del to the first nonzero element of
(dell, del2, del3) 408) =
if dell # 0 then del < dell
else if del2 # 0 then del + del2
else del + del3;
if del # 0 then
begin dmax < abs(dell);
if abs(del2) > dmaz then dmaz < abs(del2);
if abs(del3) > dmaz then dmax < abs(del3);
while dmaz < fraction_half do
begin double(dmax); double(dell); double(del2); double(del3);
end;
end
This code is used in sections 407, 413, and 420.

409. During the subdivision phases of make_spec, the z_coord and y_coord fields of node ¢ are not
transformed to agree with the octant stated in right_type(p); they remain consistent with right_type(q).
But left_z(q) and left_y(q) are governed by right_type (p).
(Complement the x coordinates of the cubic between p and g 409) =

begin negate (z_coord(p)); negate(right_z(p)); negate(left_z(q));

negate(dell); negate(del2); negate(del3);

negate (dest_z); right_type(p) < first_octant 4+ negate_x;

end

This code is used in section 407.

8410 METAFONT PART 21: SUBDIVISION INTO OCTANTS 167

410. When a cubic is split at a fraction value ¢, we obtain two cubics whose Bézier control points are

obtained by a generalization of the bisection process: The formula ‘z(J = %(z,(cj) + z,(cjll)’ becomes
UYL G)
2k t[zy 7zk+1] .

It is convenient to define a WEB macro t_of-the_way such that t_of-the_way(a)(b) expands to a — (a —b) *t,
i.e., to t[a,b].

If 0 <t < 1, the quantity t[a,b] is always between a and b, even in the presence of rounding errors. Our
subroutines also obey the identity tla,b] + t[b,a] = a + b.

define ¢ of the_way_end (#) = # t.

define t_of -the_way (#) = # — take_fraction | (|# — t_of_the_way_end
(Declare the procedure called split_cubic 410) =
procedure split_cubic(p : pointer; t : fraction; xq, yq : scaled); {splits the cubic after p }

var v: scaled; {an intermediate value }

q,r: pointer; {for list manipulation }

begin g « link(p); r < get_node(knot_node_size); link(p) < r; link(r) + q;

left_type (r) < left_type(q); right_type(r) < right_type (p);

v — t_of -the_way (right_x (p))(left_x (q)); right_z(p) + t_of the_way(x_coord (p))(right_z (p));

left_x(q) < t-of-the_way (left_x (q))(zq); left_z(r) < t_of-the_way (right-z (p))(v);

right_x (r) < t_of-the_way (v)(left-x (q)); z-coord(r) « t_of-the_way (left_z (r))(right_z(r));

v — t_of -the_way (right_y (p))(left_y(q)); right_y(p) < t_of_the_way(y_coord (p))(right_y(p));
left-y(q) < t-of-the-way (left-y(9))(yq); left-y(r) < t-of the-way(righty(p))(v);

right_y (r) < t_of-the_way (v)(left-y (q)); y-coord(r) + t-of-the_way (left_y (r))(right_y(r));

end;

This code is used in section 406.

411. Since 2/ (t) is a quadratic equation, it can cross through zero at most twice. When it does cross zero,
we make doubly sure that the derivative is really zero at the splitting point, in case rounding errors have
caused the split cubic to have an apparently nonzero derivative. We also make sure that the split cubic is
monotonic.

{ Subdivide the cubic with respect to 2/, possibly twice 411) =
begin split_cubic(p,t, dest_z, dest_y); r < link(p);
if right_type (r) > negate_x then right_type(r) < first_octant
else right_type(r) < first_octant + negate_z;
if 2_coord(r) < z_coord(p) then x_coord(r) < z_coord (p);
left_x (r) < z_coord (r);
if right_z(p) > x_coord(r) then right_z(p) < z_coord(r); {we always have z_coord (p) < right_z(p) }
negate (x_coord (r)); right_z (r) « z_coord (r); negate(left_z(q)); negate(dest_z);
del2 < t_of-the_way(del2)(del3); {now 0, del2, del3 represent x’ on the remaining interval }
if del2 > 0 then del2 < 0;
t + crossing_point (0, —del2, —del3);
if ¢ < fraction_one then (Subdivide the cubic a second time with respect to z’ 412)
else begin if z_coord(r) > dest_z then
begin z_coord (r) + dest_x; left_x(r) + —x_coord(r); right_x(r) < z_coord(r);
end;
if left_x(q) > dest_x then left_x(q) + dest-z
else if left_z(q) < z_coord(r) then left_z(q) < z_coord(r);
end;
end

This code is used in section 407.

168 PART 21: SUBDIVISION INTO OCTANTS METAFONT §412

412. (Subdivide the cubic a second time with respect to ' 412) =
begin split_cubic(r,t, dest_z, dest_y); s < link(r);
if 2_coord(s) < dest_z then z_coord(s) < dest_x;
if 2_coord(s) < xz_coord(r) then z_coord(s) < x_coord (r);
right_type(s) < right_type (p); left-x(s) < x_coord(s); {now z_coord(r) = right_z(r) < left_z(s) }
if left_x(q) < dest_x then left_z(q) + —dest-x
else if left_z(q) > x_coord(s) then left_z(q) + —z_coord(s)
else negate(left_x(q));
negate (z_coord (s)); right_z(s) < z_coord(s);
end

This code is used in section 411.

413. The process of subdivision with respect to 4’ is like that with respect to x’, with the slight additional
complication that two or three cubics might now appear between p and gq.

(Subdivide all cubics between p and ¢ so that the results travel toward the first quadrant; but return or
goto continue if the cubic from p to ¢ was dead 413) =
pp < p;
repeat qq < link(pp); abnegate(z_coord(qq), y_coord(qq), right_type(qq), right_type (pp));
dest_x < cur_x; dest_y < cur-y;
dell < right_y(pp) — y-coord(pp); del2 < left-y(qq) — right-y(pp);
del3 + dest_y — left_y(qq); (Scale up dell, del2, and del3 for greater accuracy; also set del to the
first nonzero element of (dell, del2, del3) 408);
if del # 0 then {they weren’t all zero }
begin if del < 0 then (Complement the y coordinates of the cubic between pp and gq 414);
t « crossing_point (dell , del2, del3);
if ¢ < fraction_one then (Subdivide the cubic with respect to y’, possibly twice 415);
end
else (Do any special actions needed when y is constant; return or goto continue if a dead cubic from
p to ¢ is removed 417);
pp < qq;
until pp = ¢q;
if constant_z then (Correct the octant code in segments with decreasing y 418)

This code is used in section 406.

414. (Complement the y coordinates of the cubic between pp and gq 414) =

begin negate (y-coord (pp)); negate(right-y(pp)); negate(left-y(qq));
negate(dell); negate(del2); negate(del3);

negate(dest_y); right_type(pp) < right_type(pp) + negate_y;

end

This code is used in sections 413 and 417.

8415 METAFONT PART 21: SUBDIVISION INTO OCTANTS 169

415. (Subdivide the cubic with respect to ¢, possibly twice 415) =
begin split_cubic(pp,t, dest_x, dest_y); r + link(pp);
if right_type (r) > negate_y then right_type(r) < right_type (r) — negate_y
else right_type(r) < right_type (r) + negate_y;
if y_coord (r) < y-coord(pp) then y_coord(r) « y-coord (pp);
left_y (r) < y_coord (r);
if right_y(pp) > y-coord(r) then right_y(pp) < y-coord (r);
{ we always have y_coord (pp) < right_y(pp) }
negate (y_coord(r)); right_y(r) + y_coord(r); negate(left_y(qq)); negate(dest_y);
if 2_coord(r) < z_coord (pp) then z_coord(r) < z_coord(pp)
else if z_coord(r) > dest_z then z_coord(r) < dest_z;
if left_z(r) > z_coord (r) then
begin left_z(r) < xz_coord (r);
if right_z(pp) > xz_coord(r) then right_z(pp) < z_coord (r);
end;
if right_x(r) < z_coord(r) then
begin right_z (r) < x_coord (r);
if left-x(qq) < x_coord(r) then left_z(qq) < x_coord (r);
end;
del2 < t_of-the_way(del2)(del3); {now 0, del2, del3 represent y' on the remaining interval }
if del2 > 0 then del2 «+ 0;
t < crossing_point (0, —del2, —del3);
if ¢ < fraction_one then (Subdivide the cubic a second time with respect to 3 416)
else begin if y_coord(r) > dest_y then
begin y_coord(r) < dest_y; left_y(r) + —y_coord(r); right_y(r) < y_coord (r);
end;
if left_y(qq) > dest_y then left_y(qq) < dest_y
else if left_y(qq) < y-coord(r) then left_y(qq) < y-coord (r);
end;
end

This code is used in section 413.

170 PART 21: SUBDIVISION INTO OCTANTS METAFONT §416

416. (Subdivide the cubic a second time with respect to y’' 416) =
begin split_cubic(r,t, dest_z, dest_y); s < link(r);
if y_coord(s) < dest_y then y_coord(s) < dest_y;
if y_coord(s) < y_coord(r) then y_coord(s) < y_coord(r);
right_type (s) < right_type (pp); left_y(s) < y-coord(s); {now y_coord(r) = right-y(r) < left_y(s) }
if left_y(qq) < dest_y then left_y(qq) < —dest_y
else if left_y(qq) > y-coord(s) then left_y(qq) + —y-coord(s)
else negate(left-y(qq));
negate (y_coord(s)); right_y(s) < y_coord(s);
if 2_coord(s) < z_coord(r) then z_coord(s) < z_coord(r)
else if z_coord(s) > dest_z then z_coord(s) < dest_z;
if left_z(s) > x_coord(s) then
begin left_z(s) < x_coord(s);
if right_z(r) > z_coord(s) then right_x(r) < x_coord(s);
end;
if right_x(s) < x_coord(s) then
begin right_z(s) « z_coord(s);
if left-x(qq) < x_coord(s) then left_z(qq) <+ x_coord (s);
end;
end

This code is used in section 415.

417. If the cubic is constant in y and increasing in x, we have classified it as traveling in the first octant. If
the cubic is constant in y and decreasing in z, it is desirable to classify it as traveling in the fifth octant (not
the fourth), because autorounding will be consistent with respect to doublepaths only if the octant number
changes by four when the path is reversed. Therefore we negate the y coordinates when they are constant
but the curve is decreasing in x; this gives the desired result except in pathological paths.

If the cubic is “dead,” i.e., constant in both x and y, we remove it unless it is the only cubic in the entire
path. We goto continue if it wasn’t the final cubic, so that the test p = cur_spec does not falsely imply that
all cubics have been processed.

(Do any special actions needed when y is constant; return or goto continue if a dead cubic from p to ¢ is
removed 417) =
if constant_z then {p= pp, ¢ = qq, and the cubic is dead }
begin if ¢ # p then
begin remove_cubic(p); {remove the dead cycle and recycle node ¢ }
if cur_spec # q then goto continue
else begin cur_spec < p; return;
end; {the final cubic was dead and is gone }
end;
end
else if —odd (right_type(pp)) then {the z coordinates were negated }
(Complement the y coordinates of the cubic between pp and gq 414)

This code is used in section 413.

8418 METAFONT PART 21: SUBDIVISION INTO OCTANTS 171

418. A similar correction to octant codes deserves to be made when z is constant and y is decreasing.

{ Correct the octant code in segments with decreasing y 418) =
begin pp « p;
repeat qq < link(pp);
if right_type (pp) > negate_y then {the y coordinates were negated }
begin right_type(pp) + right_type(pp) + negate_z; negate(z_coord(pp)); negate(right-z(pp));
negate (left-z(qq));
end;
pp < qq;
until pp = ¢q;
end

This code is used in section 413.

419. Finally, the process of subdividing to make x’ > %/ is like the other two subdivisions, with a few new
twists. We skew the coordinates at this time.

(Declare subroutines needed by make_spec 405) +=
procedure octant_subdivide;
var p, q,r,s: pointer; {for traversing the lists }
dell, del2, del3, del, dmax: scaled;
{ proportional to the control points of a quadratic derived from a cubic }
t: fraction; {where a quadratic crosses zero }
dest_z, dest_y: scaled; {final values of x and y in the current cubic }
begin p + cur_spec;
repeat g « link(p);
x_coord (p) < x_coord (p) — y_coord (p); right_z(p) < right_z (p) — right_y (p);
left-z(q) < left-z(q) — left-y(q);
(Subdivide the cubic between p and ¢ so that the results travel toward the first octant 420);
PG
until p = cur_spec;
end;
420. (Subdivide the cubic between p and ¢ so that the results travel toward the first octant 420) =
(Set up the variables (dell, del2, del8) to represent ' —y’ 421);
(Scale up dell, del2, and del3 for greater accuracy; also set del to the first nonzero element of
(dell , del2, del3) 408);
if del # 0 then {they weren’t all zero }
begin if del < 0 then (Swap the z and y coordinates of the cubic between p and ¢ 423);
t <+ crossing_point (dell , del2, del3);
if ¢ < fraction_one then (Subdivide the cubic with respect to 2’ — g, possibly twice 424);
end

This code is used in section 419.

421. (Set up the variables (dell, del2, del3) to represent &’ —y' 421) =

if ¢ = cur_spec then
begin unskew (z_coord(q), y-coord (q), right_type(q)); skew(cur_z, cur_y, right_type (p));
dest_x < cur_x; dest_y < cur-y;
end

else begin abnegate (x_coord(q), y-coord (q), right_type (q), right_type (p)); dest_x < cur-t — cur_y;
dest_y + cur_y;
end;

dell < right_z(p) — x_coord (p); del2 < left_z(q) — right_z(p); del8 + dest_z — left_z(q)

This code is used in section 420.

172 PART 21: SUBDIVISION INTO OCTANTS METAFONT §422

422. The swapping here doesn’t simply interchange x and y values, because the coordinates are skewed.
It turns out that this is easier than ordinary swapping, because it can be done in two assignment statements
rather than three.

423. (Swap the z and y coordinates of the cubic between p and ¢ 423) =
begin y_coord (p) < z_coord (p) + y-coord (p); negate(xz_coord (p));
right_y (p) < right_z (p) + right_y (p); negate(right_z (p));
left-y(q) < left-z(q) + left-y(q); negate(left-z(q));
negate(dell); negate(del2); negate(del3);
dest_y <+ dest_z + dest_y; negate(dest_x);
right_type (p) < right_type(p) + switch_z_and_y;
end

This code is used in section 420.

8424 METAFONT PART 21: SUBDIVISION INTO OCTANTS 173

424. A somewhat tedious case analysis is carried out here to make sure that nasty rounding errors don’t
destroy our assumptions of monotonicity.

(Subdivide the cubic with respect to 2’ — y’, possibly twice 424) =

begin split_cubic(p,t, dest_z, dest_y); r < link(p);
if right_type (r) > switch_z_and_y then right_type(r) < right_type (r) — switch_z_and_y
else right_type (r) < right_type (r) + switch_z_and_y;
if y_coord(r) < y_coord(p) then y_coord(r) < y_coord (p)
else if y_coord(r) > dest_y then y_coord(r) < dest_y;
if z_coord (p) + y-coord (r) > dest_z + dest_y then y_coord(r) < dest_x + dest_y — z_coord (p);
if left_y(r) > y_coord(r) then

begin left_y(r) + y_coord(r);

if right_y(p) > y_coord(r) then right_y(p) + y_coord(r);

end;
if right_y(r) < y_coord(r) then

begin right_y(r) < y-coord (r);

if left_y(q) < y_coord(r) then left_y(q) < y_coord(r);

end;
if 2_coord(r) < z_coord (p) then z_coord(r) < z_coord (p)
else if z_coord (r) + y-coord (r) > dest_z + dest_y then z_coord(r) < dest_x + dest_y — y_coord (r);
left_z (r) < a_coord (r);
if right_x(p) > z_coord(r) then right_z(p) + z_coord(r); {we always have z_coord (p) < right_z (p) }
y_coord (r) < y_coord (r) + x_coord (r); right_y(r) < right_y(r) + x_coord (r);
negate (z_coord (r)); right_z (r) < z_coord (r);
left-y(q) < left-y(q) + left-z(q); negate(left-z(q));
dest_y + dest_y + dest_z; negate(dest_z);
if right_y(r) < y_coord(r) then

begin right_y(r) < y_coord (r);

if left_y(q) < y_coord(r) then left_y(q) < y_coord(r);

end;
del2 «+ t_of-the_way(del2)(del8); {now 0, del2, del8 represent =’ —y’ on the remaining interval }
if del2 > 0 then del2 + 0;
t < crossing_point (0, —del2, —del3);
if ¢ < fraction_one then (Subdivide the cubic a second time with respect to ' — ' 425)
else begin if z_coord(r) > dest_z then

begin z_coord (r) + dest_x; left_x(r) < —z_coord(r); right-z(r) < z_coord(r);
end;

if left_x(q) > dest_x then left_x(q) + dest_x

else if left_x(q) < z_coord(r) then left_x(q) < z_coord(r);

end;
end

This code is used in section 420.

174 PART 21: SUBDIVISION INTO OCTANTS METAFONT §425

425. (Subdivide the cubic a second time with respect to a’ — ¢y’ 425) =
begin split_cubic(r,t, dest_z, dest_y); s < link(r);
if y_coord(s) < y_coord(r) then y_coord(s) + y_coord(r)
else if y_coord(s) > dest_y then y_coord(s) < dest_y;
if 2_coord(r) 4+ y_coord(s) > dest_x + dest_y then y_coord(s) < dest_z + dest_y — x_coord (r);
if left_y(s) > y_coord(s) then
begin left_y(s) < y_coord(s);
if right_y(r) > y_coord(s) then right_y(r) < y-coord(s);
end;
if right_y(s) < y-coord(s) then
begin right_y(s) < y-coord(s);
if left-y(q) < y-coord(s) then left_y(q) + y-coord(s);
end;
if z_coord(s) + y_coord(s) > dest_x + dest_y then x_coord(s) < dest_r + dest_y — y_coord(s)
else begin if z_coord(s) < dest_z then x_coord(s) < dest_x;
if 2_coord(s) < x_coord(r) then z_coord(s) < x_coord(r);
end;
right_type (s) < right_type (p); left_x(s) < z_coord(s); {mnow z_coord(r) = right_z(r) < left_z(s) }
if left_z(q) < dest_x then
begin left_y(q) « left_y(q) + dest_x; left x(q) + —dest_z; end
else if left_z(q) > x_coord(s) then
begin left_y(q) < left-y(q) + z_coord(s); left-z(q) < —z-coord(s); end
else begin left_y(q) + left_y(q) + left_z(q); negate(left_x(q)); end;
y-coord (s) < y-coord(s) + x_coord(s); right_y(s) < right_y(s) + z_coord(s);
negate (z_coord (s)); right_z(s) < z_coord(s);
if right_y(s) < y-coord(s) then
begin right_y(s) < y-coord(s);
if left_y(q) < y-coord(s) then left_y(q) < y-coord(s);
end;
end

This code is used in section 424.

8426 METAFONT PART 21: SUBDIVISION INTO OCTANTS 175

426. It’s time now to consider “autorounding,” which tries to make horizontal, vertical, and diagonal
tangents occur at places that will produce appropriate images after the curve is digitized.

The first job is to fix things so that x(¢) plus the horizontal pen offset is an integer multiple of the current
“granularity” when the derivative a’(t) crosses through zero. The given cyclic path contains regions where
2'(t) > 0 and regions where z'(¢t) < 0. The quadrant_subdivide routine is called into action before any
of the path coordinates have been skewed, but some of them may have been negated. In regions where
a'(t) > 0 we have right_type = first_octant or right_type = eighth_octant; in regions where 2’(t) < 0, we have
right_type = fifth_octant or right_type = fourth_octant.

Within any such region the transformed x values increase monotonically from, say, x¢ to z;. We want to
modify things by applying a linear transformation to all z coordinates in the region, after which the x values
will increase monotonically from round(zg) to round(zq).

This rounding scheme sounds quite simple, and it usually is. But several complications can arise that
might make the task more difficult. In the first place, autorounding is inappropriate at cusps where x’
jumps discontinuously past zero without ever being zero. In the second place, the current pen might be
unsymmetric in such a way that x coordinates should round differently in different parts of the curve. These
considerations imply that round(zg) might be greater than round(x;), even though 2y < z1; in such cases we
do not want to carry out the linear transformation. Furthermore, it’s possible to have round(z;) —round(x)
positive but much greater than x; — xo; then the transformation might distort the curve drastically, and
again we want to avoid it. Finally, the rounded points must be consistent between adjacent regions, hence
we can’t transform one region without knowing about its neighbors.

To handle all these complications, we must first look at the whole cycle and choose rounded z values
that are “safe.” The following procedure does this: Given m values (bg, by, ..., b,,—1) before rounding and
m corresponding values (ag,a1,...,amn—1) that would be desirable after rounding, the make_safe routine
sets a’s to b’s if necessary so that 0 < (ag4+1 — ax)/(bg+1 — br) < 2 afterwards. It is symmetric under cyclic
permutation, reversal, and/or negation of the inputs. (Instead of a, b, and m, the program uses the names
after, before, and cur_rounding_ptr.)

{ Declare subroutines needed by make_spec 405) +=
procedure make_safe;
var k: 0 .. maz_wiggle; {runs through the list of inputs }
all_safe: boolean; {does everything look OK so far? }
next-a: scaled; { after[k] before it might have changed }
delta_a, delta_b: scaled; { after[k + 1] — after[k] and before[k + 1] — before[k] }
begin before[cur_rounding_ptr] < before[0]; {wrap around }
node_to_round [cur_rounding_ptr] <— node_to_round|0];
repeat after|cur_rounding_ptr] < after[0]; all_safe < true; next_a < after|0];
for k + 0 to cur_rounding_ptr — 1 do
begin delta_b < before[k + 1] — before[k];
if delta_b > 0 then delta_a < after[k + 1] — next_a
else delta_a < next_a — after[k + 1];
next_a < after[k + 1J;
if (delta_a < 0)V (delta_a > abs(delta_b + delta_b)) then
begin all_safe + false; after[k] < beforelk];
if k = cur_rounding_ptr — 1 then after|[0] < before[0]
else after [k + 1] « before[k + 1];
end;
end;
until all_safe;
end;

)

176 PART 21: SUBDIVISION INTO OCTANTS METAFONT 8427

427. The global arrays used by make_safe are accompanied by an array of pointers into the current knot
list.

{ Global variables 13) +=

before, after: array [0 .. maz_wiggle] of scaled; {data for make_safe }
node_to_round: array [0 .. maz_wiggle] of pointer; {reference back to the path }
cur_rounding_ptr: 0 .. maz_wiggle; {how many are being used }
maz_rounding_ptr: 0 .. maz_wiggle; {how many have been used }

428. (Set initial values of key variables 21) +=
maz_rounding_ptr < 0;

429. New entries go into the tables via the before_and_after routine:

(Declare subroutines needed by make_spec 405) +=
procedure before_and_after (b, a : scaled; p : pointer);
begin if cur_rounding_ptr = max_rounding_ptr then
if maz_rounding_ptr < maz_wiggle then incr(maz_rounding_ptr)
else overflow ("rounding, table size", maz_wiggle);
after[cur_rounding_ptr] < a; before[cur_rounding_ptr] < b; node_to_round[cur_rounding_ptr] < p;
incr (cur_rounding_ptr);
end;

430. A global variable called cur_gran is used instead of internal[granularity], because we want to work
with a number that’s guaranteed to be positive.

(Global variables 13) +=
cur_gran: scaled; {the current granularity (which normally is unity) }

431. The good_val function computes a number a that’s as close as possible to b, with the property that
a + o is a multiple of cur_gran.

If we assume that cur_gran is even (since it will in fact be a multiple of unity in all reasonable applications),
we have the identity good_val(—b— 1, —0) = —good_val (b, 0).

(Declare subroutines needed by make_spec 405) +=
function good_val (b, o : scaled): scaled;
var a: scaled; {accumulator }
begin a < b+ o;
if @ > 0 then a < a — (a mod cur_gran) — o
else a + a+ ((—(a+ 1)) mod cur_gran) — cur_gran + 1 — o;
if b —a < a+ cur_gran — b then good_val < a
else good_val < a + cur_gran;
end;

432. When we're rounding a doublepath, we might need to compromise between two opposing tendencies,
if the pen thickness is not a multiple of the granularity. The following “compromise” adjustment, suggested
by John Hobby, finds the best way out of the dilemma. (Only the value modulo cur_gran is relevant in our
applications, so the result turns out to be essentially symmetric in u and v.)

{ Declare subroutines needed by make_spec 405) +=
function compromise (u,v : scaled): scaled;
begin compromise < half (good_val (u + u, —u — v));
end;

8433 METAFONT PART 21: SUBDIVISION INTO OCTANTS 177

433. Here, then, is the procedure that rounds x coordinates as described; it does the same for y coordinates
too, independently.

(Declare subroutines needed by make_spec 405) +=
procedure xy_round;
var p, q: pointer; {list manipulation registers }
b,a: scaled; {before and after values }
pen_edge: scaled; {offset that governs rounding }
alpha: fraction; {coefficient of linear transformation }
begin cur_gran < abs(internal [granularity]);
if cur_gran = 0 then cur_gran < unity;
p 4 cur_spec; cur_rounding_ptr < 0;
repeat g < link(p); (If node ¢ is a transition point for = coordinates, compute and save its
before-and-after coordinates 434);
PG
until p = cur_spec;
if cur_rounding_ptr > 0 then (Transform the x coordinates 436);
p <« cur_spec; cur_rounding_ptr < 0;
repeat g < link(p); (If node ¢ is a transition point for y coordinates, compute and save its
before-and-after coordinates 437);
P q;
until p = cur_spec;
if cur_rounding_ptr > 0 then (Transform the y coordinates 439);
end;

434. When z has been negated, the octant codes are even. We allow for an error of up to .01 pixel (i.e.,
655 scaled units) in the derivative calculations at transition nodes.

(If node ¢ is a transition point for x coordinates, compute and save its before-and-after coordinates 434) =
if odd (right_type (p)) # odd (right_type(q)) then
begin if odd (right_type(q)) then b < x_coord(q) else b < —z_coord(q);
if (abs(z_coord(q) — right_z(q)) < 655) V (abs(z_coord(q) + left_z(q)) < 655) then
(Compute before-and-after x values based on the current pen 435)
else a <+ b;
if abs(a) > maz_allowed then
if a > 0 then a + maz_allowed else a < —mazx_allowed;
before_and_after (b, a, q);
end

This code is used in section 433.

178 PART 21: SUBDIVISION INTO OCTANTS METAFONT §435

435. When we study the data representation for pens, we’ll learn that the x coordinate of the current
pen’s west edge is
y_coord (link (cur_pen + seventh_octant)),

and that there are similar ways to address other important offsets.

define north_edge (#) = y_coord (link (# + fourth_octant))
define south_edge (#) = y_coord (link (# + first_octant))
define east_edge (#) = y_coord (link (# + second_octant))
define west_edge (#) = y-coord (link (# + seventh_octant))

{ Compute before-and-after x values based on the current pen 435) =
begin if cur_pen = null_pen then pen_edge < 0
else if cur_path_type = double_path_code then
pen_edge < compromise (east_edge (cur_pen), west_edge (cur_pen))
else if odd(right_type(q)) then pen_edge < west_edge (cur_pen)
else pen_edge + east_edge(cur_pen);
a < good_val (b, pen_edge);
end

This code is used in section 434.

436. The monotone transformation computed here with fixed-point arithmetic is guaranteed to take
consecutive before values (b, b') into consecutive after values (a, a’), even in the presence of rounding errors,
as long as |b—b'| < 228,
(Transform the x coordinates 436) =
begin make_safe;
repeat decr(cur_rounding_ptr);
if (after|[cur_rounding_ptr] # before|cur_rounding_ptr]) Vv
(after[cur_rounding_ptr + 1] # before[cur_rounding_ptr + 1]) then
begin p < node_to_round|[cur_rounding_ptr];
if odd (right_type(p)) then
begin b < before[cur_rounding_ptr]; a < after|cur_rounding_ptr];
end
else begin b <+ —before|[cur_rounding_ptr]; a + —after|cur_rounding_ptr];
end;
if before[cur_rounding_ptr] = before|cur_rounding_ptr + 1] then alpha < fraction_one
else alpha < make_fraction (after|[cur_rounding_ptr + 1] — after|[cur_rounding_ptr],
before[cur_rounding_ptr + 1] — before[cur_rounding_ptr]);
repeat z_coord (p) < take_fraction(alpha, z_coord (p) — b) + a;
right_z (p) < take_fraction (alpha, right_z (p) — b) + a; p + link(p);
left_x (p) < take_fraction (alpha, left_x (p) — b) + a;
until p = node_to_round[cur_rounding_ptr + 1];
end;
until cur_rounding_ptr = 0;
end

This code is used in section 433.

8437 METAFONT PART 21: SUBDIVISION INTO OCTANTS 179

437. When y has been negated, the octant codes are > negate_y. Otherwise these routines are essentially
identical to the routines for x coordinates that we have just seen.

(If node ¢ is a transition point for y coordinates, compute and save its before-and-after coordinates 437) =
if (right_type(p) > negate_y) # (right_type(q) > negate_y) then
begin if right_type(q) < negate_y then b < y_coord(q) else b + —y_coord(q);
if (abs(y-coord(q) — right_y(q)) < 655) V (abs(y-coord (q) + left_y(q)) < 655) then
(Compute before-and-after y values based on the current pen 438)
else a <+ b;
if abs(a) > maz_allowed then
if a > 0 then a + maz_allowed else a < —mazx_allowed;
before_and_after (b, a, q);
end

This code is used in section 433.

438. (Compute before-and-after y values based on the current pen 438) =
begin if cur_pen = null_pen then pen_edge + 0
else if cur_path_type = double_path_code then
pen_edge < compromise (north_edge (cur_pen), south_edge (cur_pen))
else if right_type(q) < negate_y then pen_edge < south_edge(cur_pen)
else pen_edge < north_edge(cur_pen);
a + good_val (b, pen_edge);
end

This code is used in section 437.

439. (Transform the y coordinates 439) =
begin make_safe;
repeat decr (cur_rounding_ptr);
if (after[cur_rounding_ptr] # before|cur_rounding_ptr]) Vv
(after|cur_rounding_ptr + 1] # before|cur_rounding_ptr + 1]) then
begin p < node_to_round |cur_rounding_ptr];
if right_type (p) < negate_y then
begin b + before[cur_rounding_ptr|; a + after|cur_rounding_ptr];
end
else begin b < —before[cur_rounding_ptr]; a < —after|cur_rounding_ptr];
end;
if before|cur_rounding_ptr| = before|cur_rounding_ptr + 1] then alpha «+ fraction_one
else alpha < make_fraction (after|[cur_rounding_ptr + 1] — after [cur_rounding_ptr],
before [cur_rounding_ptr 4+ 1] — before|cur_rounding_ptr]);
repeat y_coord(p) < take_fraction (alpha,y_coord(p) — b) + a;
right_y (p) < take_fraction (alpha, right_y(p) — b) + a; p <+ link(p);
left_y (p) < take_fraction (alpha, left_y (p) — b) + q;
until p = node_to_round [cur_rounding_ptr + 1;
end;
until cur_rounding_ptr = 0;
end

This code is used in section 433.

180 PART 21: SUBDIVISION INTO OCTANTS METAFONT §440

440. Rounding at diagonal tangents takes place after the subdivision into octants is complete, hence after
the coordinates have been skewed. The details are somewhat tricky, because we want to round to points
whose skewed coordinates are halfway between integer multiples of the granularity. Furthermore, both
coordinates change when they are rounded; this means we need a generalization of the make_safe routine,
ensuring safety in both x and y.

In spite of these extra complications, we can take comfort in the fact that the basic structure of the routine
is the same as before.

(Declare subroutines needed by make_spec 405) +=
procedure diag_round;
var p, q, pp: pointer; {list manipulation registers }
b,a,bb,aa,d,c,dd, cc: scaled; {before and after values }
pen_edge: scaled; {offset that governs rounding }
alpha, beta: fraction; {coefficients of linear transformation }
next_a: scaled; { after[k] before it might have changed }
all_safe: boolean; {does everything look OK so far? }
k: 0 .. maz_wiggle; {runs through before-and-after values }
first_x, first_y: scaled; {coordinates before rounding }
begin p « cur_spec; cur_rounding-ptr < 0;
repeat q < link(p);
(If node ¢ is a transition point between octants, compute and save its before-and-after coordinates 441);
p<q;
until p = cur_spec;
if cur_rounding_ptr > 0 then (Transform the skewed coordinates 444);
end;

441. We negate the skewed x coordinates in the before-and-after table when the octant code is greater
than switch_z_and_y.

(If node ¢ is a transition point between octants, compute and save its before-and-after coordinates 441) =
if right_type (p) # right_type(q) then
begin if right_type(q) > switch_z_and_y then b < —z_coord(q)
else b < z_coord (q);
if abs(right_type(q) — right_type (p)) = switch-z_and_y then
if (abs(z-coord(q) — right_z(q)) < 655) V (abs(z_coord (q) + left_z(g)) < 655) then
{ Compute a good coordinate at a diagonal transition 442)
elsea <+ b
else a < b;
before_and_after (b, a, q);
end

This code is used in section 440.

8442 METAFONT PART 21: SUBDIVISION INTO OCTANTS 181

442. 1In octants whose code number is even, z has been negated; we want to round ambiguous cases
downward instead of upward, so that the rounding will be consistent with octants whose code number is
odd. This downward bias can be achieved by subtracting 1 from the first argument of good_val.

define diag_offset (#) = x_coord (knil (link (cur_pen + #)))

(Compute a good coordinate at a diagonal transition 442) =
begin if cur_pen = null_pen then pen_edge + 0
else if cur_path_type = double_path_code then (Compute a compromise pen_edge 443)
else if right_type(q) < switch_z_and_y then pen_edge < diag_offset(right_type(q))

else pen_edge < —diag_offset (right_type(q));

if odd (right_type(q)) then a <+ good_val (b, pen_edge + half (cur_gran))

else a < good_val (b — 1, pen_edge + half (cur_gran));

end

This code is used in section 441.

443. (It seems a shame to compute these compromise offsets repeatedly. The author would have stored
them directly in the pen data structure, if the granularity had been constant.)

(Compute a compromise pen_edge 443) =
case right_type(q) of
first_octant, second_octant: pen_edge < compromise (diag-offset (first_octant), —diag-offset (fifth-octant));
fifth_octant, sizth_octant: pen_edge < —compromise (diag_offset (first_octant), — diag_offset (fifth_octant));
third_octant, fourth_octant: pen_edge <— compromise (diag-offset (fourth_octant),
—diag_offset (eighth_octant));
seventh_octant, eighth_octant: pen_edge < —compromise (diag_offset (fourth_octant),
—diag-offset (eighth_octant));
end {there are no other cases }

This code is used in section 442.

444. (Transform the skewed coordinates 444) =
begin p < node_to_round|[0]; first_x < z_coord(p); first_y + y_coord(p);
(Make sure that all the diagonal roundings are safe 446);
for k < 0 to cur_rounding_ptr — 1 do
begin a + after[k]; b < before[k]; aa < after[k + 1]; bb < before[k + 1];
if (a #0b)V (aa # bb) then
begin p < node_to_round[k]; pp + node_to_round[k + 1];
(Determine the before-and-after values of both coordinates 445);
if b = bb then alpha < fraction_one
else alpha + make_fraction(aa — a, bb —b);
if d = dd then beta < fraction_one
else beta < make_fraction(cc — ¢, dd — d);
repeat x_coord (p) « take_fraction (alpha, z_coord(p) — b) + «;
y-coord (p) < take_fraction(beta, y_coord(p) — d) + ¢;
right_z (p) < take_fraction (alpha, right_z (p) — b) + a;
right_y (p) < take_fraction(beta, right_y(p) — d) + ¢; p + link(p);
left_x (p) < take_fraction (alpha, left_x (p) — b) + a; left_y(p) < take_fraction(beta, left_y (p) — d) + ¢;
until p = pp;
end;
end;
end

This code is used in section 440.

182 PART 21: SUBDIVISION INTO OCTANTS METAFONT §445
445. In node p, the coordinates (b, d) will be rounded to (a,c); in node pp, the coordinates (bb, dd) will
be rounded to (aa, cc). (We transform the values from node pp so that they agree with the conventions of
node p.)
If aa # bb, we know that abs(right_type(p) — right_type(pp)) = switch_z_and_y.
(Determine the before-and-after values of both coordinates 445) =
if aa = bb then
begin if pp = node_to_round[0] then unskew (first_z, first_y, right_type(pp))
else unskew (z_coord (pp), y-coord (pp), right_type (pp));
skew (cur_z, cur_y, right_type (p)); bb + cur_z; aa + bb; dd + cur_y; cc « dd;
if right_type(p) > switch_x_and_y then
begin b + —b; a < —a;
end;
end
else begin if right_type(p) > switch-z_and_y then
begin bb + —bb; aa < —aa; b+ —b; a + —a;
end;
if pp = node_to_round[0] then dd < first_y — bb else dd < y_coord(pp) — bb;
if odd(aa — bb) then
if right_type (p) > switch-z_and_y then cc < dd — half (aa — bb + 1)
else cc <+ dd — half (aa — bb — 1)
else cc < dd — half (aa — bb);
end;
d < y_coord (p);
if odd(a — b) then
if right_type(p) > switch-z_and_y then ¢ + d — half (a —b—1)
else c <~ d— half (a —b+1)
else ¢ < d — half (a — b)
This code is used in sections 444 and 446.

446. (Make sure that all the diagonal roundings are safe 446) =
before [cur_rounding_ptr] < before[0]; {cf. make_safe }
node_to_round [cur_rounding_ptr] < node_to_round|0];
repeat after|cur_rounding_ptr] < after[0]; all_safe < true; next_a < after[0];
for k < 0 to cur_rounding_ptr — 1 do
begin a < next_a; b < before[k]; next_a + after[k + 1]; aa < next_a; bb < before[k + 1];
if (a #b)V (aa # bb) then
begin p < node_to_round[k]; pp + node_to_round[k + 1];
(Determine the before-and-after values of both coordinates 445);
if (aa <a)V(cc <c)V(aa —a>2x%(bb—0))V (cc—c>2x(dd —d)) then
begin all_safe < false; after[k] < before[k];
if k = cur_rounding_ptr — 1 then after[0] + before|0]
else after [k + 1] < beforelk + 1];
end;
end;
end;
until all_safe

This code is used in section 444.

8447 METAFONT PART 21: SUBDIVISION INTO OCTANTS 183

447. Here we get rid of “dead” cubics, i.e., polynomials that don’t move at all when ¢ changes, since the
subdivision process might have introduced such things. If the cycle reduces to a single point, however, we
are left with a single dead cubic that will not be removed until later.

(Remove dead cubics 447) =
D+ cur_spec;
repeat continue: q < link(p);
if p # ¢ then
begin if z_coord (p) = right_z (p) then
if y_coord(p) = right_y(p) then
if 2_coord(p) = left_z(q) then
if y_coord(p) = left_y(q) then
begin unskew (z_coord (q), y_coord(q), right_type(q)); skew (cur_z, cur_y, right_type (p));
if z_coord(p) = cur_z then
if y_coord(p) = cur_y then
begin remove_cubic(p); {remove the cubic following p }
if q # cur_spec then goto continue;
Cur_spec < p; q < p;
end;
end;
end;
p<q;
until p = cur_spec;

This code is used in section 402.

448. Finally we come to the last steps of make_spec, when boundary nodes are inserted between cubics
that move in different octants. The main complication remaining arises from consecutive cubics whose
octants are not adjacent; we should insert more than one octant boundary at such sharp turns, so that the
envelope-forming routine will work.

For this purpose, conversion tables between numeric and Gray codes for octants are desirable.

(Global variables 13) +=
octant_number: array [first_octant .. sizth_octant] of 1..8;
octant_code: array [1 .. 8] of first_octant .. sizth_octant;

449. (Set initial values of key variables 21) +=
octant_code[l] < first_octant; octant_code[2] < second_octant; octant_code[3] < third_octant;
octant_code[4] < fourth_octant; octant_code[5] < fifth_octant; octant_code[6] < sixth_octant;
octant_code[7] <— seventh_octant; octant_code[8] < eighth_octant;
for k < 1 to 8 do octant_number|[octant_code k]| < k;

450. The main loop for boundary insertion deals with three consecutive nodes p, q,r.

(Insert octant boundaries and compute the turning number 450) =
turning_number < 0; p < cur_spec; q + link(p);
repeat r < link(q);
if (right_type (p) # right_type(q)) V (¢ = r) then
(Insert one or more octant boundary nodes just before g 452);
P q g T
until p = cur_spec;

This code is used in section 402.

184 PART 21: SUBDIVISION INTO OCTANTS METAFONT §451

451. The new_boundary subroutine comes in handy at this point. It inserts a new boundary node just
after a given node p, using a given octant code to transform the new node’s coordinates. The “transition”
fields are not computed here.

{ Declare subroutines needed by make_spec 405) +=
procedure new_boundary(p : pointer; octant : small_number);
var ¢,r: pointer; {for list manipulation }
begin g « link(p); { we assume that right_type(q) # endpoint }
r < get_node (knot_node_size); link(r) < q; link(p) < r; left_type(r) < left_type(q);
{ but possibly left_type(q) = endpoint }
left_x(r) < left-x(q); leftuy(r) < left_y(q); right_type(r) < endpoint; left_type(q) < endpoint;
right_octant (r) < octant; left_octant(q) < right_type(q); unskew (z_coord(q), y_coord(q), right_type(q));
skew (cur_z, cur_y, octant); x_coord (r) < cur_z; y_coord(r) < cur_y;
end;

452. The case ¢ = r occurs if and only if p = ¢ = r = cur_spec, when we want to turn 360° in eight steps
and then remove a solitary dead cubic. The program below happens to work in that case, but the reader
isn’t expected to understand why.

(Insert one or more octant boundary nodes just before ¢ 452) =
begin new_boundary (p, right_type (p)); s < link(p); ol + octant_number|right_type (p)];
02 <+ octant_number [right_type (q)];
case 02 — ol of
1,-7,7,—1: goto done;
2, —6: clockwise + false;
3,—5,4,—4,5,—3: ({Decide whether or not to go clockwise 454);
6, —2: clockwise < true;
0: clockwise < rev_turns;
end; {there are no other cases }
(Insert additional boundary nodes, then goto done 458);
done: if ¢ =r then
begin g < link(q); r < q; p + s; link(s) < ¢; left_octant(q) < right_octant(q);
left_type(q) < endpoint; free_node (cur_spec, knot_node_size); cur_spec < g;
end;
(Fix up the transition fields and adjust the turning number 459);
end

This code is used in section 450.

453. (Other local variables for make_spec 453) =

0l,02: small_number; {octant numbers }

clockwise: boolean; {should we turn clockwise? }

dzl, dyl, dx2, dy2: integer; {directions of travel at a cusp }
dmaz, del: integer; {temporary registers }

This code is used in section 402.

8454 METAFONT PART 21: SUBDIVISION INTO OCTANTS 185

454. A tricky question arises when a path jumps four octants. We want the direction of turning to be
counterclockwise if the curve has changed direction by 180°, or by something so close to 180° that the
difference is probably due to rounding errors; otherwise we want to turn through an angle of less than 180°.
This decision needs to be made even when a curve seems to have jumped only three octants, since a curve
may approach direction (—1,0) from the fourth octant, then it might leave from direction (41,0) into the
first.

The following code solves the problem by analyzing the incoming direction (dz!,dy!) and the outgoing
direction (dz2, dy2).
(Decide whether or not to go clockwise 454) =

begin (Compute the incoming and outgoing directions 457);

unskew (dz1, dyl , right_type(p)); del « pyth_add(cur_z, cur_y);

dzl < make_fraction(cur_z, del); dyl < make_fraction(cur_y,del); {cos6, and sin6; }

unskew (dz2, dy2, right_type(q)); del < pyth_add (cur_z, cur_y);

dz2 + make_fraction(cur_z, del); dy2 + make_fraction(cur_y, del); {cosf and sinfs }

del + take_fraction(dz1, dy2) — take_fraction(dz2,dyl); {sin(62 —61)}

if del > 4684844 then clockwise < false

else if del < —4684844 then clockwise < true {228 -sin1° ~ 4684844.68 }

else clockwise < rev_turns;
end

This code is used in section 452.

455. Actually the turnarounds just computed will be clockwise, not counterclockwise, if the global variable
rev_turns is true; it is usually false.

(Global variables 13) +=

rev_turns: boolean; {should we make U-turns in the English manner? }

456. (Set initial values of key variables 21) +=
rev_turns < false;

186 PART 21: SUBDIVISION INTO OCTANTS METAFONT

457. (Compute the incoming and outgoing directions 457) =
dzl «+ z_coord(s) — left_z(s); dyl <+ y_coord(s) — left_y(s);
if dz1 =0 then
if dyl =0 then
begin dz! < x_coord(s) — right_z (p); dyl <+ y-coord(s) — right_y(p);
if dz1 =0 then
if dy1 =0 then
begin dr! + z_coord(s) — z_coord (p); dyl < y-_coord(s) — y-coord(p);

end; {and they can’t both be zero }
end;
dmaz < abs(dzl); if abs(dyl) > dmaz then dmaz < abs(dyl);
while dmaz < fraction_one do
begin double(dmaz); double(dzl); double(dyl);
end;
dz2 « right_z(q) — z_coord(q); dy2 <+ right_y(q) — y_coord(q);
if dz2 =0 then
if dy2 =0 then
begin dz2 « left_x(r) — x_coord(q); dy2 <« left_y(r) — y_coord(q);
if dz2 =0 then
if dy2 =0 then
begin if right_type(r) = endpoint then
begin cur-z < z_coord(r); cur-y < y-coord(r);
end

else begin unskew (z_coord (r), y_coord (r), right_type (r)); skew (cur_z, cur_y, right_type (q));

end;

dz2 < cur_z — z_coord(q); dy2 «+ cur-y — y_coord(q);
end; {and they can’t both be zero }
end;
dmaz < abs(dz2); if abs(dy2) > dmaz then dmaz + abs(dy2);
while dmaz < fraction_one do
begin double(dmaz); double(dz2); double(dy2);
end

This code is used in section 454.

458. (Insert additional boundary nodes, then goto done 458) =
loop begin if clockwise then
if of =1 then of < 8 else decr(o1)
else if 01 =8 then oI + 1 else incr(ol);
if o1 = 02 then goto done;

new_boundary (s, octant_code[o1]); s « link(s); left_octant(s) < right_octant(s);
end

This code is used in section 452.

§457

8459 METAFONT PART 21: SUBDIVISION INTO OCTANTS 187

459. Now it remains to insert the redundant transition information into the left_transition and right_transitionli
fields between adjacent octants, in the octant boundary nodes that have just been inserted between link (p)
and g. The turning number is easily computed from these transitions.

(Fix up the transition fields and adjust the turning number 459) =
p < link(p);
repeat s < link(p); ol < octant_number [right_octant(p)]; 02 < octant_number[left_octant (s)];
if abs(ol — 02) =1 then
begin if 02 < 01 then 02 + o1;
if odd(02) then right_transition(p) < axis
else right_transition(p) < diagonal;
end
else begin if 0! = 8 then incr(turning_number) else decr (turning_number);
right_transition (p) < axis;
end;
left_transition (s) « right_transition(p); p < s;
until p =g¢

This code is used in section 452.

188 PART 22: FILLING A CONTOUR METAFONT §460

460. Filling a contour. Given the low-level machinery for making moves and for transforming a cyclic
path into a cycle spec, we're almost able to fill a digitized path. All we need is a high-level routine that
walks through the cycle spec and controls the overall process.

Our overall goal is to plot the integer points (round(z(t)),round(y(t))) and to connect them by rook
moves, assuming that round(z(¢)) and round(y(t)) don’t both jump simultaneously from one integer to
another as ¢ varies; these rook moves will be the edge of the contour that will be filled. We have reduced this
problem to the case of curves that travel in first octant directions, i.e., curves such that 0 < ¢/(t) < 2/(t),
by transforming the original coordinates.

Another transformation makes the problem still simpler. We shall say that we are working with biased
coordinates when (z,y) has been replaced by (Z,9) = (z — y,y + %) When a curve travels in first octant
directions, the corresponding curve with biased coordinates travels in first quadrant directions; the latter
condition is symmetric in x and y, so it has advantages for the design of algorithms. The make_spec routine
gives us skewed coordinates (x — y,y), hence we obtain biased coordinates by simply adding % to the second
component.

The most important fact about biased coordinates is that we can determine the rounded unbiased path
(round(z(t)), round(y(t))) from the truncated biased path (|Z(t)], |§(t)]) and information about the initial
and final endpoints. If the unrounded and unbiased path begins at (zo,yo) and ends at (z1,y1), it’s possible
to prove (by induction on the length of the truncated biased path) that the rounded unbiased path is obtained
by the following construction:

1) Start at (round(z), round(yp)).
2) If (zo +) mod 1 > (yo + 3) mod 1, move one step right.

3) Whenever the path ([Z(t)], |§(t)]) takes an upward step (i.e., when |Z(t+€)] = [Z(t)] and |g(t+¢€)] =
[7(t)] + 1), move one step up and then one step right.

4) Whenever the path ([Z(t)], |4(t)]) takes a rightward step (i.e., when |Z(t + €)] = [Z(t)] + 1 and
lg(t +€)] = [§(t)]), move one step right.

5) Finally, if (z1 + 3) mod 1 > (y1 + 3) mod 1, move one step left (thereby cancelling the previous move,
which was one step right). You will now be at the point (round(z1), round(y;)).

461. In order to validate the assumption that round(z(t)) and round(y(t)) don’t both jump simultaneously,
we shall consider that a coordinate pair (z,y) actually represents (z + €,y + €d), where € and § are extremely
small positive numbers—so small that their precise values never matter. This convention makes rounding
unambiguous, since there is always a unique integer point nearest to any given scaled numbers (z,y).

When coordinates are transformed so that METAFONT needs to work only in “first octant” directions, the
transformations involve negating x, negating y, and/or interchanging x with y. Corresponding adjustments
to the rounding conventions must be made so that consistent values will be obtained. For example, suppose
that we're working with coordinates that have been transformed so that a third-octant curve travels in
first-octant directions. The skewed coordinates (x,y) in our data structure represent unskewed coordinates
(—y,x +y), which are actually (—y + ¢,z + y + €5). We should therefore round as if our skewed coordinates
were (x + € + €d,y — €) instead of (z,y). The following table shows how the skewed coordinates should be
perturbed when rounding decisions are made:

first_octant (x+e—€d,y+ €d) fifth_octant (xr — e+ €d,y — €d)
second_octant (x — e+ €0,y + ¢€) sizth_octant (x+e—e€dy—ce)
third_octant (x + €+ €0,y — ¢€) seventh_octant (x —e — €d,y + €)
fourth_octant (x — € — €d,y + €0) eighth_octant (x4 € + €d,y — €)

Four small arrays are set up so that the rounding operations will be fairly easy in any given octant.

(Global variables 13) +=
y_corr, zy_corr, z_corr: array [first_octant .. sizth_octant] of 0 .. 1;
x_corr: array [first_octant .. sizth_octant] of —1 ..1;

§462 METAFONT PART 22: FILLING A CONTOUR 189

462. Here zy_corr is 1 if and only if the z component of a skewed coordinate is to be decreased by an
infinitesimal amount; y_corr is similar, but for the y components. The other tables are set up so that the
condition

(z + y + half-unit) mod unity > (y + half_unit) mod unity

is properly perturbed to the condition

(z + y + half-unit — z_corr — y_corr) mod unity > (y + half_unit — y_corr) mod unity + z_corr.

(Set initial values of key variables 21) +=
x_corr [first_octant] < 0; y_corr|[first_octant] < 0; xy_corr[first_octant] + 0;
z_corr [second_octant] < 0; y_corr[second_octant] < 0; xy_corr[second_octant] + 1;
x_corr [third_octant] <— —1; y_corr[third_octant] <— 1; xy_corr[third_octant] < 0O;
z_corr[fourth_octant] < 1; y_corr|[fourth-octant] < 0; xy_corr|fourth_octant]| + 1;
z_corr [fifth-octant] < 0; y_corr|[fifth-octant] < 1; zy_corr[fifth_octant] + 1;
z_corr [sixth_octant] < 0; y_corr[sizth_octant] < 1; xy_corr|[sixth_octant] « 0;
z_corr [seventh_octant] « 1; y_corr|[seventh_octant] < 0; zy_corr[seventh_octant] < 1;
x_corr|eighth_octant] < —1; y_corr[eighth_octant] < 1; xy_corr[eighth_octant] < 0;
for k < 1to 8 do zcorr[k] < xy_corr[k] — z_corr[k];

463. Here’s a procedure that handles the details of rounding at the endpoints: Given skewed coordinates
(x,y), it sets (m1,nl) to the corresponding rounded lattice points, taking the current octant into account.
Global variable d1 is also set to 1 if (z 4+ y+) mod 1 > (y + 1) mod 1.

procedure end_round(z,y : scaled);
begin y < y + half-unit — y_corr|octant]; x < x + y — z_corr[octant]; m1 + floor_unscaled (x);
nl <« floor_unscaled (y);
if © — unity x m1 >y — unity * nl + z_corr[octant] then dI + 1 else d1 + 0;
end;

464. The outputs (ml1,nl,d1) of end_round will sometimes be moved to (m0,n0, d0).

(Global variables 13) +=
m0,n0,ml,nl: integer; {lattice point coordinates }
d0,d1: 0..1; {displacement corrections }

465. We're ready now to fill the pixels enclosed by a given cycle spec h; the knot list that represents the
cycle is destroyed in the process. The edge structure that gets all the resulting data is cur_edges, and the
edges are weighted by cur_wt.

procedure fill_spec(h : pointer);

var p, q,r,s: pointer; {for list traversal }

begin if internal[tracing_edges] > 0 then begin_edge_tracing;

p < h; {we assume that left_type(h) = endpoint }

repeat octant < left_octant(p); (Set variable ¢ to the node at the end of the current octant 466);

if ¢ # p then

begin (Determine the starting and ending lattice points (m0,n0) and (m1,nl) 467);
(Make the moves for the current octant 468);
move_to_edges (m0,n0, m1,nl);

end;
p <+ link(q);
until p = h;

toss_knot_list (h);
if internal [tracing_edges] > 0 then end_edge_tracing;
end;

190 PART 22: FILLING A CONTOUR METAFONT §466

466. (Set variable ¢ to the node at the end of the current octant 466) =
q < D;
while right_type(q) # endpoint do q « link(q)

This code is used in sections 465, 506, and 506.

467. (Determine the starting and ending lattice points (m0,n0) and (m1,nl1) 467) =
end_round (z_coord (p), y-coord (p)); m0 < ml1; n0 < nl; d0 < dI;
end_round (z_coord (q), y-coord (q))

This code is used in section 465.

468. Finally we perform the five-step process that was explained at the very beginning of this part of the
program.
(Make the moves for the current octant 468) =
if n1 — n0 > move_size then overflow("move table size", move_size);
move 0] < d0; move_ptr < 0; r + p;
repeat s + link(r);
make_moves (x_coord (r), right_z (r), left_z (s), x_coord (s),
y_coord (r) + half_unit, right_y (r) + half-unit, left_y (s) + half_unit, y_coord (s) + half_unit,
xy_corr|octant], y_corr[octant]); T < s;
until r = g;
move [move_ptr| < move[move_ptr| — dI ;
if internal[smoothing] > 0 then smooth-moves (0, move_ptr)

This code is used in section 465.

§469 METAFONT PART 23: POLYGONAL PENS 191

469. Polygonal pens. The next few parts of the program deal with the additional complications
associated with “envelopes,” leading up to an algorithm that fills a contour with respect to a pen whose
boundary is a convex polygon. The mathematics underlying this algorithm is based on simple aspects of
the theory of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi [“A kinetic framework for
computational geometry,” Proc. IEEE Symp. Foundations of Computer Science 24 (1983), 100-111].

If the vertices of the polygon are wg, wy, ..., Wh_1, Wy = Wy, in counterclockwise order, the convexity
condition requires that “left turns” are made at each vertex when a person proceeds from wg to wy to ---
to w,. The envelope is obtained if we offset a given curve z(¢) by wy when that curve is traveling in a
direction 2'(t) lying between the directions wy — wi—1 and w41 — wg. At times ¢t when the curve direction
Z'(t) increases past wg41 — wg, we temporarily stop plotting the offset curve and we insert a straight line
from z(t) + wg to z(t) + wr41; notice that this straight line is tangent to the offset curve. Similarly, when
the curve direction decreases past wy — wi—_1, we stop plotting and insert a straight line from z(¢) + wy to
z(t) + wgi—1; the latter line is actually a “retrograde” step, which won’t be part of the final envelope under
METAFONT’s assumptions. The result of this construction is a continuous path that consists of alternating
curves and straight line segments. The segments are usually so short, in practice, that they blend with the
curves; after all, it’s possible to represent any digitized path as a sequence of digitized straight lines.

The nicest feature of this approach to envelopes is that it blends perfectly with the octant subdivision
process we have already developed. The envelope travels in the same direction as the curve itself, as we plot
it, and we need merely be careful what offset is being added. Retrograde motion presents a problem, but we
will see that there is a decent way to handle it.

192 PART 23: POLYGONAL PENS METAFONT 8470

470. We shall represent pens by maintaining eight lists of offsets, one for each octant direction. The offsets
at the boundary points where a curve turns into a new octant will appear in the lists for both octants. This
means that we can restrict consideration to segments of the original polygon whose directions aim in the
first octant, as we have done in the simpler case when envelopes were not required.

An example should help to clarify this situation: Consider the quadrilateral whose vertices are wy =
(0,—1), wy = (3,—1), wy = (6,1), and wg = (1,2). A curve that travels in the first octant will be offset by
wy or ws, unless its slope drops to zero en route to the eighth octant; in the latter case we should switch to
wp as we cross the octant boundary. Our list for the first octant will contain the three offsets wq, wy, ws.
By convention we will duplicate a boundary offset if the angle between octants doesn’t explicitly appear; in
this case there is no explicit line of slope 1 at the end of the list, so the full list is

Wo W1 W Wy = (O, —1) (37 —1) (6, 1) (6, 1).
With skewed coordinates (u — v,v) instead of (u,v) we obtain the list

Wo W1 Wo Wy > (1, —1) (4, —1) (5,].) (5, 1),
which is what actually appears in the data structure. In the second octant there’s only one offset; we list it
twice (with coordinates interchanged, so as to make the second octant look like the first), and skew those
coordinates, obtaining

W Wy > (—576) (—576)

as the list of transformed and skewed offsets to use when curves travel in the second octant. Similarly, we
will have

wy wy > (7,—6) (7, —6) in the third;
wy we w3z wy — (=7,1) (=7,1) (=3,2) (—3,2) in the fourth;
wsz wy = (1,-2) (1,-2) in the fifth;
ws ws wo wo — (—1,1) (=1,1) (1,0) (1,0) in the sixth;
wo wo — (1,0) (1,0) in the seventh;
wo wo — (—1,1) (=1,1) in the eighth.

Notice that w; is considered here to be internal to the first octant; it’s not part of the eighth. We could
equally well have taken wg out of the first octant list and put it into the eighth; then the first octant list
would have been

w1 w1 W2 w2 (47 71) (47 71) (5a 1) (57 1)

and the eighth octant list would have been
W Wy W1 (—1, 1) (—1, 1) (2, 1).

Actually, there’s one more complication: The order of offsets is reversed in even-numbered octants, because
the transformation of coordinates has reversed counterclockwise and clockwise orientations in those octants.
The offsets in the fourth octant, for example, are really ws, w3, wa, we, Not wsy, wa, W3, W3.

8471 METAFONT PART 23: POLYGONAL PENS 193

471. In general, the list of offsets for an octant will have the form
wo w1 ... Wy Wp41

(if we renumber the subscripts in each list), where wy and w,11 are offsets common to the neighboring
lists. We’'ll often have wg = wy and/or w, = wy41, but the other w’s will be distinct. Curves that travel
between slope 0 and direction wy — wy will use offset wy; curves that travel between directions wy — wg_1
and wgy1 — wg will use offset wy, for 1 < k < n; curves between direction w,, — w,_1 and slope 1 (actually
slope oo after skewing) will use offset w,,. In even-numbered octants, the directions are actually wy — wg41
instead of wyy1 — wg, because the offsets have been listed in reverse order.

Each offset wy, is represented by skewed coordinates (uyp — vk, vy), where (ug,vg) is the representation of
wy after it has been rotated into a first-octant disguise.

472. The top-level data structure of a pen polygon is a 10-word node containing a reference count followed
by pointers to the eight offset lists, followed by an indication of the pen’s range of values.

If p points to such a node, and if the offset list for, say, the fourth octant has entries wgy, wq, ...,
W, Wpt1, then info(p+ fourth_octant) will equal n, and link (p + fourth_octant) will point to the offset node
containing wg. Memory location p+ fourth_octant is said to be the header of the pen-offset list for the fourth
octant. Since this is an even-numbered octant, wq is the offset that goes with the fifth octant, and w41
goes with the third.

The elements of the offset list themselves are doubly linked 3-word nodes, containing coordinates in their
z_coord and y_coord fields. The two link fields are called link and knil; if w points to the node for wy, then
link (w) and knil (w) point respectively to the nodes for w1 and wg_1. If h is the list header, link (h) points
to the node for wg and knil (link (h)) to the node for wy41.

The tenth word of a pen header node contains the maximum absolute value of an x or y coordinate among
all of the unskewed pen offsets.

The link field of a pen header node should be null if and only if the pen is a single point.

define pen_node_size = 10
define coord_node_size = 3
define maz_offset (#) = mem/[# + 9].sc

194 PART 23: POLYGONAL PENS METAFONT 8473

473. The print_pen subroutine illustrates these conventions by reconstructing the vertices of a polygon
from METAFONT’s complicated internal offset representation.

(Declare subroutines for printing expressions 257) +=
procedure print_pen(p : pointer; s : str_number; nuline : boolean);
var nothing_printed: boolean; {has there been any action yet? }
k:1..8; {octant number }
h: pointer; {offset list head }
m,n: integer; {offset indices }
w, ww: pointer; { pointers that traverse the offset list }
begin print_diagnostic("Pen_polygon", s, nuline); nothing_printed <+ true; print_ln;
for k< 1to 8 do
begin octant < octant_code[k]; h < p+ octant; n < info(h); w < link(h);
if —odd (k) then w «+ knil(w); {in even octants, start at wy4+1 }
for m<~1ton+1do
begin if odd (k) then ww + link(w) else ww <+ knil(w);
if (z_coord (ww) # x_coord (w)) V (y-coord (ww) # y_coord (w)) then
(Print the unskewed and unrotated coordinates of node ww 474);
W 4— ww;
end;
end;
if nothing_printed then
begin w + link(p + first_octant); print_two (z_coord(w) + y_coord (w), y_coord (w));
end;
print_nl("y. .ucycle"); end-diagnostic(true);
end;

474. (Print the unskewed and unrotated coordinates of node ww 474) =
begin if nothing_printed then nothing_printed < false
else print-nl("y..u");
print_two_true (z_coord (ww), y_coord (ww));
end

This code is used in section 473.

475. A null pen polygon, which has just one vertex (0,0), is predeclared for error recovery. It doesn’t need
a proper reference count, because the toss_pen procedure below will never delete it from memory.

(Initialize table entries (done by INIMF only) 176) +=
ref_count (null_pen) <+ null; link(null_pen) + null;
info(null_pen + 1) < 1; link(null_pen + 1) < null_coords;
for k + null_pen + 2 to null_pen + 8 do mem/[k] < mem[null_pen + 1]J;
maz_offset (null_pen) < 0;
link (null_coords) < null_coords; knil (null_coords) < null_coords;
z_coord (null_coords) < 0; y_coord (null_coords) < 0;

476. Here’s a trivial subroutine that inserts a copy of an offset on the link side of its clone in the doubly
linked list.

procedure dup_offset(w : pointer);
var r: pointer; {the new node }
begin r < get_node(coord_node_size); x_coord(r) < z_coord(w); y_coord(r) + y_coord(w);
link (r) « link(w); knil (link (w)) < r; knil(r) < w; link(w) < r;
end;

8477 METAFONT PART 23: POLYGONAL PENS 195

477. The following algorithm is somewhat more interesting: It converts a knot list for a cyclic path into a
pen polygon, ignoring everything but the xz_coord, y_coord, and link fields. If the given path vertices do not
define a convex polygon, an error message is issued and the null pen is returned.

function make_pen(h : pointer): pointer;
label done, donel , not_found, found;
var o, 00, k: small_number; {octant numbers—old, new, and current }
p: pointer; {top-level node for the new pen }
q,7,8,w, hh: pointer; {for list manipulation }
n: integer; {offset counter }
dz,dy: scaled; {polygon direction }
mc: scaled; {the largest coordinate }
begin (Stamp all nodes with an octant code, compute the maximum offset, and set hh to the node that
begins the first octant; goto not_found if there’s a problem 479);
if mc > fraction_one — half_unit then goto not_found;
p < get_node(pen_node_size); q < hh; maz_offset(p) < mc; ref-count(p) + null;
if link(q) # ¢ then link(p) < null + 1;
for k < 1 to 8 do (Construct the offset list for the kth octant 481);
goto found;
not_found: p < null_pen; { Complain about a bad pen path 478);
found: if internal[tracing_pens] > 0 then print_pen(p, ", (newly created)", true);
make_pen < p;
end;
478. (Complain about a bad pen path 478) =
if mc > fraction_one — half-unit then
begin print_err ("Pen too large");
help2 ("Theucycleuyouuspecif ied_ has a ,coordinate 0f, 4095.5 jo0r more. ")
("So,I ve replaced it by, the trivial path,”(0,0)..cycle .");
end
else begin print_err ("Pen,cycle must be convex");
help3 ("The ,cycle you specified either has consecutive equal points ")
("oruturnsurightuoruturnsL,throughumoreuthanu360|_,degrees . ")
("So,I ve replaced it by, the trivial path;”(0,0)..cycle .");
end;
put_get_error

This code is used in section 477.

196 PART 23: POLYGONAL PENS METAFONT 8479

479. There should be exactly one node whose octant number is less than its predecessor in the cycle; that
is node hh.

The loop here will terminate in all cases, but the proof is somewhat tricky: If there are at least two distinct
y coordinates in the cycle, we will have 0 > 4 and o < 4 at different points of the cycle. Otherwise there are
at least two distinct « coordinates, and we will have o > 2 somewhere, 0 < 2 somewhere.

{Stamp all nodes with an octant code, compute the maximum offset, and set hh to the node that begins
the first octant; goto not_found if there’s a problem 479) =
q < h; r < link(q); mc < abs(z_coord (h));
if ¢ =r then
begin hh + h; right_type(h) < 0; {this trick is explained below }
if mc < abs(y_coord(h)) then mc < abs(y_coord(h));
end
else begin o < 0; hh < null;
loop begin s + link(r);
if me < abs(z_coord(r)) then mc < abs(z_coord(r));
if me < abs(y_coord(r)) then mc < abs(y_coord(r));
dz + z_coord (r) — x_coord(q); dy < y_coord(r) — y_coord(q);
if dz = 0 then
if dy = 0 then goto not_found; {double point }
if ab_vs_cd(dz, y-coord(s) — y-coord(r), dy, z_coord(s) — z_coord(r)) < 0 then goto not_found;
{right turn }
(Determine the octant code for direction (dz, dy) 480);
right_type(q) < octant; oo <+ octant_number|octant];
if 0 > oo then
begin if hh # null then goto not_found; {> 360°}
hh < q;
end;
0+ 00;
if (¢ =h) A (hh # null) then goto done;
g1 TS
end;
done: end

This code is used in section 477.

480. We want the octant for (—dz, —dy) to be exactly opposite the octant for (dz, dy).

(Determine the octant code for direction (dz, dy) 480) =
if dz > 0 then octant < first_octant
else if dz = 0 then
if dy > 0 then octant <+ first_octant else octant < first_octant + negate_x
else begin negate (dz); octant < first_octant + negate_x;
end;
if dy < 0 then
begin negate(dy); octant < octant + negate_y;
end
else if dy =0 then
if octant > first_octant then octant < first_octant 4+ negate_x + negate_y;
if dz < dy then octant < octant + switch_x_and_y

This code is used in section 479.

8481 METAFONT PART 23: POLYGONAL PENS 197

481. Now ¢ points to the node that the present octant shares with the previous octant, and right_type(q)
is the octant code during which ¢ should advance. We have set right_type(q) = 0 in the special case that ¢
should never advance (because the pen is degenerate).

The number of offsets n must be smaller than maz_quarterword, because the fill_envelope routine stores
n + 1 in the right_type field of a knot node.

(Construct the offset list for the kth octant 481) =
begin octant < octant_code[k]; n < 0; h < p+ octant;
loop begin r < get_node(coord_node_size); skew(z-coord(q), y-coord(q), octant); x_coord(r) < cur_z;
y_coord (r) < cur_y;
if n =0 then link(h) « r
else (Link node r to the previous node 482);
w4 T
if right_type(q) # octant then goto donel;
q < link(q); incr(n);
end;
donel : {Finish linking the offset nodes, and duplicate the borderline offset nodes if necessary 483);
if n > maz_quarterword then overflow ("pen polygon size", maz_quarterword);
info(h) < n;
end

This code is used in section 477.

482. Now w points to the node that was inserted most recently, and k is the current octant number.

(Link node r to the previous node 482) =
if odd (k) then
begin link (w) « r; knil(r) < w;
end
else begin knil(w) < r; link(r) < w;
end

This code is used in section 481.

483. We have inserted n + 1 nodes; it remains to duplicate the nodes at the ends, if slopes 0 and oo aren’t
already represented. At the end of this section the total number of offset nodes should be n + 2 (since we
call them wq, w1, ..., Wpt1).

(Finish linking the offset nodes, and duplicate the borderline offset nodes if necessary 483) =
r < link(h);
if odd (k) then
begin link (w) « r; knil(r) + w;
end
else begin knil(w) < r; link(r) < w; link(h) + w; r + w;
end;
if (y_coord(r) # y_coord (link(r))) V (n = 0) then
begin dup_offset(r); incr(n);
end;
r < knil (r);
if z_coord (r) # x_coord (knil(r)) then dup_offset(r)
else decr(n)

This code is used in section 481.

198 PART 23: POLYGONAL PENS METAFONT §484

484. Conversely, make_path goes back from a pen to a cyclic path that might have generated it. The
structure of this subroutine is essentially the same as print_pen.

(Declare the function called trivial_knot 486)
function make_path(pen_head : pointer): pointer;
var p: pointer; {the most recently copied knot }
k: 1..8; {octant number }
h: pointer; {offset list head }
m,n: integer; {offset indices }
w, ww: pointer; { pointers that traverse the offset list }
begin p + temp_head;
for k< 1to 8 do
begin octant <+ octant_codelk]; h < pen_head + octant; n < info(h); w < link(h);
if —odd (k) then w «+ knil(w); {in even octants, start at wy4+1 }
for m<1ton+1do
begin if odd (k) then ww + link(w) else ww <+ knil(w);
if (z_coord (ww) # x_coord (w)) V (y-coord (ww) # y_coord (w)) then
(Copy the unskewed and unrotated coordinates of node ww 485);
w — ww;
end;
end;
if p = temp_head then
begin w «+ link(pen_head + first_octant); p < trivial_knot(x_coord (w) + y_coord (w), y_coord (w));
link (temp_head) < p;
end;
link (p) < link (temp_head); make_path <+ link (temp_head);
end;

485. (Copy the unskewed and unrotated coordinates of node ww 485) =
begin unskew (z_coord (ww), y_coord (ww), octant); link(p) < trivial_knot (cur_z, cur-y); p < link(p);
end

This code is used in section 484.

486. (Declare the function called trivial_knot 486) =
function trivial_knot (x,y : scaled): pointer;
var p: pointer; {a new knot for explicit coordinates x and y }
begin p < get_node(knot_node_size); left_type(p) < explicit; right_type(p) < explicit;
z_coord (p) + x; left_x(p) + x; right_z(p) + x;
y-coord (p) < y; left-y(p) < y; right_y(p) < y;
trivial_knot < p;
end;

This code is used in section 484.

§487 METAFONT PART 23: POLYGONAL PENS 199

487. That which can be created can be destroyed.

define add_pen_ref (#) = incr(ref-count (#))
define delete_pen_ref (#) =
if ref-count(#) = null then toss_pen(#)
else decr(ref_count (#))

(Declare the recycling subroutines 268) +=
procedure toss_pen(p : pointer);
var k: 1..8; {relative header locations }
w,ww: pointer; { pointers to offset nodes }
begin if p # null_pen then
begin for £ <+ 1 to 8 do
begin w + link(p + k);
repeat ww < link(w); free_node(w, coord_node_size); w + ww;
until w = link(p + k);
end;
free_node (p, pen_node_size);
end;
end;

488. The find_offset procedure sets (cur_x, cur_y) to the offset associated with a given direction (z,y) and
a given pen p. If x = y = 0, the result is (0,0). If two different offsets apply, one of them is chosen arbitrarily.

procedure find_offset(x,y : scaled; p : pointer);
label done, exit;
var octant: first_octant .. sizth_octant; {octant code for (x,y) }
s: —1..41; {sign of the octant }
n: integer; {number of offsets remaining }
h,w,ww: pointer; {list traversal registers }
begin { Compute the octant code; skew and rotate the coordinates (z,y) 489);
if odd (octant_number|[octant]) then s+ —1 else s + +1;
h < p+ octant; w « link(link(h)); ww « link(w); n + info(h);
while n > 1 do
begin if ab_vs_cd(x, y_coord (ww) — y_coord (w),y, z_coord (ww) — z_coord (w)) # s then goto done;
w 4+ ww; ww < link(w); decr(n);
end;
done: unskew (z_coord (w), y-coord (w), octant);
exit: end;

200 PART 23: POLYGONAL PENS METAFONT §489

489. (Compute the octant code; skew and rotate the coordinates (x,y) 489) =
if x > 0 then octant < first_octant
else if © =0 then
if y <0 then
if y =0 then
begin cur_x < 0; cur-y < 0; return,;
end
else octant < first_octant + negate_x
else octant < first_octant
else begin = + —uz;
if y = 0 then octant < first_octant + negate_x + negate_y
else octant < first_octant + negate_z;
end;
if y < 0 then
begin octant < octant 4+ negate_y; y <+ —y;
end;
if t >ythen x+x—y
else begin octant < octant + switch_z_and_y; x <y —x; Yy < y — x;
end

This code is used in section 488.

8490 METAFONT PART 24: FILLING AN ENVELOPE 201

490. Filling an envelope. We are about to reach the culmination of METAFONT’s digital plotting
routines: Almost all of the previous algorithms will be brought to bear on METAFONT’s most difficult task,
which is to fill the envelope of a given cyclic path with respect to a given pen polygon.

But we still must complete some of the preparatory work before taking such a big plunge.

491. Given a pointer ¢ to a nonempty list of cubics, and a pointer h to the header information of a pen
polygon segment, the offset_prep routine changes the list into cubics that are associated with particular pen
offsets. Namely, the cubic between p and ¢ should be associated with the kth offset when right_type (p) = k.

List ¢ is actually part of a cycle spec, so it terminates at the first node whose right_type is endpoint. The
cubics all have monotone-nondecreasing x(t) and y(t).

{ Declare subroutines needed by offset_prep 493)
procedure offset_prep(c, h : pointer);
label done, not_found;
var n: halfword; {the number of pen offsets }
p,q, 7, Ih, ww: pointer; {for list manipulation }
k: halfword; {the current offset index }
w: pointer; {a pointer to offset wy, }
(Other local variables for offset_prep 495)
begin p < ¢; n + info(h); lh < link(h); {now Ih points to wp }
while right_type (p) # endpoint do
begin g < link(p); (Split the cubic between p and g, if necessary, into cubics associated with single
offsets, after which ¢ should point to the end of the final such cubic 494);
(Advance p to node ¢, removing any “dead” cubics that might have been introduced by the splitting
process 492);
end;
end;

492. (Advance p to node ¢, removing any “dead” cubics that might have been introduced by the splitting
process 492) =
repeat r + link(p);
if x_coord (p) = right_z(p) then
if y_coord(p) = right_y(p) then
if z_coord(p) = left_z(r) then
if y_coord (p) = left_y(r) then
if z_coord(p) = x_coord(r) then
if y_coord (p) = y-coord(r) then
begin remove_cubic(p);
if r = g then ¢ < p;
e p;
end;
P
until p=g¢

This code is used in section 491.

202 PART 24: FILLING AN ENVELOPE METAFONT 8493

493. The splitting process uses a subroutine like split_cubic, but (for “bulletproof” operation) we check
to make sure that the resulting (skewed) coordinates satisfy Az > 0 and Ay > 0 after splitting; make_spec
has made sure that these relations hold before splitting. (This precaution is surely unnecessary, now that
make_spec is so much more careful than it used to be. But who wants to take a chance? Maybe the hardware
will fail or something.)

{ Declare subroutines needed by offset_prep 493) =
procedure split_for_offset(p : pointer; t : fraction);
var q: pointer; {the successor of p}
r: pointer; {the new node}
begin q < link(p); split_cubic(p,t, x_coord(q), y-coord(q)); r < link(p);
if y_coord (r) < y_coord(p) then y_coord(r) < y_coord(p)
else if y_coord(r) > y_coord(q) then y_coord(r) < y_coord(q);
if 2_coord(r) < z_coord (p) then z_coord(r) < z_coord(p)
else if x_coord(r) > x_coord(q) then z_coord(r) + z_coord(q);
end;
See also section 497.

This code is used in section 491.

494. If the pen polygon has n offsets, and if wy = (ug, vk) is the kth of these, the kth pen slope is defined

by the formula
Vk41 — U
k:M, for 0 < k < n.
Uk+1 — Uk
In odd-numbered octants, the numerator and denominator of this fraction will be nonnegative; in even-
numbered octants they will both be nonpositive. Furthermore we always have 0 = sy < s7 < --- < s, = 00.
The goal of offset_prep is to find an offset index k to associate with each cubic, such that the slope s(t) of
the cubic satisfies
Sp—1 < s(t) < sg for0 <t <1. (%)

We may have to split a cubic into as many as 2n — 1 pieces before each piece corresponds to a unique offset.

(Split the cubic between p and g, if necessary, into cubics associated with single offsets, after which ¢ should
point to the end of the final such cubic 494) =
if n <1 then right_type(p) < 1 {this case is easy }
else begin (Prepare for derivative computations; goto not_found if the current cubic is dead 496);
(Find the initial slope, dy/dz 501);
if dz =0 then (Handle the special case of infinite slope 505)
else begin (Find the index k such that sp_1 < dy/dz < sp 502);
(Complete the offset splitting process 503);
end;
not_found: end

This code is used in section 491.

8495 METAFONT PART 24: FILLING AN ENVELOPE 203

495. The slope of a cubic B(z0, 21, 22, 233 t) = ((t), y(t)) can be calculated from the quadratic polynomials
%x’(t) = B(x1 —x0, T2 — 21,23 —x2;t) and %y’(t) = B(y1 — Yo, Y2 — Y1, Y3 —Y2; t). Since we may be calculating
slopes from several cubics split from the current one, it is desirable to do these calculations without losing too
much precision. “Scaled up” values of the derivatives, which will be less tainted by accumulated errors than
derivatives found from the cubics themselves, are maintained in local variables z0, z1, and z2, representing
Xo =22y —m0), X1 = 2! (x9—11), and X = 2!(x3—x5); similarly y0, y1, and y2 represent Yy = 2! (y1 — o),
Y =24 (y2 — y1), and Yz = 2!(y3 — y2). To test whether the slope of the cubic is > s or < s, we will test the
sign of the quadratic 32! (y/(t) — sz/(t)) if s <1, or 32!(y/(t)/s — a/(t)) if s > 1.

{ Other local variables for offset_prep 495) =

x20,x1,22,y0,yl,y2: integer; {representatives of derivatives }

t0,t1,t2: integer; { coefficients of polynomial for slope testing }

du, dv, dz, dy: integer; {for slopes of the pen and the curve }

maz_coef : integer; {used while scaling }

z0a, zla,x2a, y0a, yla, y2a: integer; {intermediate values }

t: fraction; {where the derivative passes through zero }

s: fraction; {slope or reciprocal slope }

This code is used in section 491.

496. (Prepare for derivative computations; goto not_found if the current cubic is dead 496) =
z0 < right_z (p) — z_coord (p); {should be >0}
z2 « z_coord(q) — left-z(q); {likewise }
zl « left_x(q) — right_z(p); {but this might be negative }
y0 « right_y(p) — y-coord (p); y2 < y-coord(q) — left-y(q); y1 < left-y(q) — right-y(p);
maz-coef < abs(z0); {we take abs just to make sure }
if abs(xz1) > max_coef then maz_coef < abs(x1);
if abs(22) > max_coef then maz_coef <+ abs(x2);
if abs(y0) > maz_coef then maz_coef < abs(y0);
if abs(y1) > mazx_coef then maz_coef + abs(yl);
if abs(y2) > maz_coef then maz_coef < abs(y2)
if max_coef = 0 then goto not_found;
while max_coef < fraction_half do
begin double(maz_coef); double(z0); double(x1); double(x2); double(y0); double(yl); double(y2);
end

Y

This code is used in section 494.

204 PART 24: FILLING AN ENVELOPE METAFONT 8497

497. Let us first solve a special case of the problem: Suppose we know an index k such that either
(i) s(t) > sk—1 for all t and s(0) < s, or (ii) s(t) < s for all t and s(0) > sx—;. Then, in a sense, we're
halfway done, since one of the two inequalities in (x) is satisfied, and the other couldn’t be satisfied for any
other value of k.

The fin_offset_prep subroutine solves the stated subproblem. It has a boolean parameter called rising that
is true in case (i), false in case (ii). When rising = false, parameters z0 through y2 represent the negative
of the derivative of the cubic following p; otherwise they represent the actual derivative. The w parameter
should point to offset wy.

{ Declare subroutines needed by offset_prep 493) +=
procedure fin_offset_prep (p : pointer; k : halfword; w : pointer; z0,x1,x2,y0,yl,y2 : integer;
rising : boolean; n : integer);
label exit;
var ww: pointer; {for list manipulation }
du, dv: scaled; {for slope calculation }
t0,t1,t2: integer; {test coefficients }
t: fraction; {place where the derivative passes a critical slope }
s: fraction; {slope or reciprocal slope }
v: integer; {intermediate value for updating z0 .. y2 }
begin loop
begin right_type(p) + k;
if rising then
if kK =n then return
else ww « link(w) {a pointer to wii1 }
else if £k =1 then return
else ww « knil(w); {a pointer to wi_1 }
(Compute test coefficients (t0, t1,t2) for s(t) versus sy or Sg—1 498);
t + crossing_point (t0,t1,t2);
if t > fraction_one then return;
(Split the cubic at t, and split off another cubic if the derivative crosses back 499);
if rising then incr(k) else decr(k);
W — Ww;
end;

)

erit: end;

498. (Compute test coefficients (¢0,t1,t2) for s(t) versus s or sp_1 498) =

du + z_coord (ww) — z_coord (w); dv + y_coord (ww) — y_coord (w);

if abs(du) > abs(dv) then {sx_1 <lors,<1}
begin s « make_fraction(dv, du); t0 + take_fraction(z0,s) — y0; t1 <+ take_fraction(x1,s) — y1;
t2 < take_fraction(x2,s) — y2;
end

else begin s + make_fraction(du, dv); t0 < z0 — take_fraction(y0,s); t1 + x1 — take_fraction(yl,s);
t2 < x2 — take_fraction(y2, s);
end

This code is used in sections 497 and 503.

8499 METAFONT PART 24: FILLING AN ENVELOPE 205

499. The curve has crossed sy or si_1; its initial segment satisfies (*), and it might cross again and return
towards sg_1 or s, respectively, yielding another solution of (x).

(Split the cubic at t, and split off another cubic if the derivative crosses back 499) =
begin split_for_offset(p,t); right_type(p) < k; p < link(p);
v t_of-the_way (x0)(x1); x1 <+ t_of-the_way(z1)(x2); z0 + t_of-the_way (v)(z!
v < t_of-the_way (y0)(yl); yl < t-of-the_way(yl)(y2); y0 <« t_of-the_way(v)(yl
t1 < t_of-the_way(t1)(12);
if t1 >0 then tI « 0; {without rounding error, ¢ would be <0}
t < crossing_point (0, —t1, —t2);
if t < fraction_one then
begin split_for_offset(p, t); right_type (link (p)) + k;
v < t_of-the_way(x1)(22); x1 + t_of-the_way(x0)(z1); z2 <+ t_of-the_way(z1)(v);
v < t_of-the-way (y1)(y2); yl < t-of-the_way(y0)(yl); y2 < t-of-the_way(y1)(v);
end;
end

— T

)

This code is used in section 497.

500. Now we must consider the general problem of offset_prep, when nothing is known about a given cubic.
We start by finding its slope s(0) in the vicinity of ¢ = 0.

If 2/(t) = 0, the given cubic is numerically unstable, since the slope direction is probably being influenced
primarily by rounding errors. A user who specifies such cuspy curves should expect to generate rather wild
results. The present code tries its best to believe the existing data, as if no rounding errors were present.

501. (Find the initial slope, dy/dz 501) =
dx < z0; dy < y0;
if dz =0 then
if dy =0 then
begin dr « z1; dy + y1;
if dz =0 then
if dy =0 then
begin dx + z2; dy + y2;
end;
end

This code is used in section 494.

502. The next step is to bracket the initial slope between consecutive slopes of the pen polygon. The most
important invariant relation in the following loop is that dy/dx > s;_1.

(Find the index k such that sp_1 < dy/dz < s 502) =
k<« 1; w <+ link(lh);
loop begin if £ =n then goto done;
ww + link (w);
if ab_vs_cd(dy, abs(z_coord (ww) — z_coord (w)), dz, abs (y_coord (ww) — y_coord (w))) > 0 then
begin incr(k); w <+ ww;
end
else goto done;
end;
done:

This code is used in section 494.

206 PART 24: FILLING AN ENVELOPE METAFONT 8503

503. Finally we want to reduce the general problem to situations that fin_offset_prep can handle. If k =1,
we already are in the desired situation. Otherwise we can split the cubic into at most three parts with
respect to sg_1, and apply fin_offset_prep to each part.

(Complete the offset splitting process 503) =

if Kk =1 then t < fraction_one + 1

else begin ww « knil(w); { Compute test coefficients (t0,t1,t2) for s(t) versus s or sg_1 498);
t «+ crossing_point (—t0,—t1,—t2);
end;

if t > fraction_one then fin_offset_prep(p, k,w,z0,z1,22,y0,yl,y2, true,n)

else begin split_for_offset (p,t); r < link(p);
xla < t_of-the_way(z0)(z1); x1 + t_of the_way(x1)(z2); x2a + t_of the_way(xla)(zl);
yla + tof the_way(y0)(yl); yl « t_of the_way(yl)(y2); y2a + t.of the_way(yla)(yl);
fin_offset_prep (p, k,w, 20, xla,x2a,y0, yla, y2a, true,n); =0 < z2a; y0 + y2a;
t1 + t_of-the_way(t1)(t2);
if t1 <0 then t1 + 0;
t + crossing_point (0, t1,t2);
if t < fraction_one then (Split off another rising cubic for fin_offset_prep 504);
fin_offset_prep(r,k — 1, ww, —z0,—x1,—22,—y0,—yl,—y2, false,n);
end

This code is used in section 494.

504. (Split off another rising cubic for fin_offset_prep 504) =
begin split_for_offset(r,t);
zla < t-of-the_way(z1)(22); 1 < t_of-the_way(z0)(x1); x0a <+ t_of-the_way(z1)(zla);
yla < t_of-the_way(y1)(y2); yl < t-of-the-way(y0)(yl); y0a + t_of-the_way(yl)(yla);
fin_offset_prep (link (r), k,w, x0a, x1a, 22, y0a, yla, y2, true,n); ©2 < z0a; y2 + yOa;
end

This code is used in section 503.

505. (Handle the special case of infinite slope 505) =
fin_offset_prep (p, n, knil (knil (Ih)), —20, —x1,—x2,—y0,—yl,—y2, false,n)

This code is used in section 494.

8506 METAFONT PART 24: FILLING AN ENVELOPE 207

506. OK, it’s time now for the biggie. The fill_envelope routine generalizes fill_spec to polygonal envelopes.
Its outer structure is essentially the same as before, except that octants with no cubics do contribute to the
envelope.

(Declare the procedure called skew_line_edges 510)
(Declare the procedure called dual_moves 518)
procedure fill_envelope (spec_head : pointer);
label done, donel;
var p, q,r,s: pointer; {for list traversal }
h: pointer; {head of pen offset list for current octant }
www: pointer; {a pen offset of temporary interest}
(Other local variables for fill_envelope 511)
begin if internal[tracing_edges] > 0 then begin_edge_tracing;
p < spec_head; {we assume that left_type (spec_head) = endpoint }
repeat octant « left_octant(p); h + cur_pen + octant;
(Set variable ¢ to the node at the end of the current octant 466);
{ Determine the envelope’s starting and ending lattice points (m0,n0) and (m1,nl1) 508);
offset_prep(p,h); {this may clobber node g, if it becomes “dead” }
(Set variable ¢ to the node at the end of the current octant 466);
(Make the envelope moves for the current octant and insert them in the pixel data 512);
p « link(q);
until p = spec_head;
if internal[tracing_edges] > 0 then end_edge_tracing;
toss_knot_list (spec_head);
end;

507. In even-numbered octants we have reflected the coordinates an odd number of times, hence clockwise
and counterclockwise are reversed; this means that the envelope is being formed in a “dual” manner. For
the time being, let’s concentrate on odd-numbered octants, since they’re easier to understand. After we have
coded the program for odd-numbered octants, the changes needed to dualize it will not be so mysterious.

It is convenient to assume that we enter an odd-numbered octant with an azis transition (where the
skewed slope is zero) and leave at a diagonal one (where the skewed slope is infinite). Then all of the offset
points z(t) +w(t) will lie in a rectangle whose lower left and upper right corners are the initial and final offset
points. If this assumption doesn’t hold we can implicitly change the curve so that it does. For example, if
the entering transition is diagonal, we can draw a straight line from zg + wy,41 to zg + wp and continue as if
the curve were moving rightward. The effect of this on the envelope is simply to “doubly color” the region
enveloped by a section of the pen that goes from wg to w; to - - to wy41 to wg. The additional straight line
at the beginning (and a similar one at the end, where it may be necessary to go from 2y + wp11 to 21 + wo)
can be drawn by the line_edges routine; we are thereby saved from the embarrassment that these lines travel
backwards from the current octant direction.

Once we have established the assumption that the curve goes from 2y + wg to z1 + w41, any further
retrograde moves that might occur within the octant can be essentially ignored; we merely need to keep
track of the rightmost edge in each row, in order to compute the envelope.

Envelope moves consist of offset cubics intermixed with straight line segments. We record them in a
separate env_move array, which is something like move but it keeps track of the rightmost position of the
envelope in each row.

(Global variables 13) +=
env_move: array [0 .. move_size] of integer;

208 PART 24: FILLING AN ENVELOPE METAFONT 8508

508. (Determine the envelope’s starting and ending lattice points (m0,n0) and (m1,nl1) 508) =
w < link (h); if left_transition (p) = diagonal then w + knil (w);
stat if internal[tracing_edges] > unity then (Print a line of diagnostic info to introduce this octant 509);
tats
ww < link(h); www < ww; {starting and ending offsets }
if odd (octant_number|octant]) then www « knil(www) else ww + knil (ww);
if w # ww then skew_line_edges(p, w, ww);
end_round (z_coord (p) + x_coord(ww), y_coord (p) + y-coord (ww)); m0 < ml; n0 < ni; d0 + di;
end_round (z_coord (q) + x_coord (www), y_coord (q) + y_coord (www));
if n1 — n0 > move_size then overflow("move_table size", move_size)

This code is used in section 506.

509. (Print a line of diagnostic info to introduce this octant 509) =
begin print_nl("@_ Octant,"); print(octant_dir[octant]); print("u("); print_int(info(h));
print("yoffset");
if info(h) # 1 then print_char("s");
print ("), from,"); print_two_true(z_coord(p) + z_coord (w), y-coord (p) + y-coord (w));
ww link(h); if right_transition(q) = diagonal then ww + knil (ww);
print("utoy"); print_two_true(x_coord(q) + x_coord (ww), y-coord(q) + y-coord (ww));
end

This code is used in section 508.

510. A slight variation of the line_edges procedure comes in handy when we must draw the retrograde
lines for nonstandard entry and exit conditions.

(Declare the procedure called skew_line_edges 510) =
procedure skew_line_edges (p, w, ww : pointer);
var 20,y0,z1,yl: scaled; {from and to}
begin if (z_coord (w) # z_coord (ww)) V (y-coord (w) # y-coord (ww)) then
begin 20 + x_coord (p) + z_coord (w); y0 < y_coord (p) + y_coord (w);
x1 <+ z_coord (p) + x_coord (ww); yl <+ y_coord(p) + y_coord (ww);
unskew (20, y0, octant); { unskew and unrotate the coordinates }
20 + cur_z; y0 + cur_y;
unskew (x1,y1, octant);
stat if internal[tracing_edges] > unity then
begin print_nl("@_retrograde line from "); print_two(z0,y0); print(",to,");
print_two (cur_z, cur-y); print-nl("");
end;
tats
line_edges (20, y0, cur_z, cur-y); {then draw a straight line }
end;
end;

This code is used in section 506.

8511 METAFONT PART 24: FILLING AN ENVELOPE 209

511. The envelope calculations require more local variables than we needed in the simpler case of fill_spec.
At critical points in the computation, w will point to offset wy; m and n will record the current lattice
positions. The values of move_ptr after the initial and before the final offset adjustments are stored in
smooth_bot and smooth_top, respectively.

(Other local variables for fill_envelope 511) =

m,n: integer; {current lattice position }

mm0, mml1: integer; {skewed equivalents of m0 and m1 }

k: integer; {current offset number }

w, ww: pointer; { pointers to the current offset and its neighbor }

smooth_bot, smooth_top: 0 .. move_size; {boundaries of smoothing }

xT, Yy, Tp, yp, delr, dely, tx, ty: scaled; {registers for coordinate calculations }

This code is used in sections 506 and 518.

512. (Make the envelope moves for the current octant and insert them in the pixel data 512) =
if odd (octant_number|octant]) then
begin (Initialize for ordinary envelope moves 513);
r < p; right_type(q) < info(h) + 1;
loop begin if r = g then smooth_top < move_ptr;
while right_type(r) # k do (Insert a line segment to approach the correct offset 515);
if » = p then smooth_bot <+ move_ptr;
if » = g then goto done;
move [move_ptr| < 1; n < move_ptr; s <« link(r);
make_moves (z_coord (r) + z_coord (w), right_x (r) + z_coord (w), left_z (s) + z_coord (w),
z_coord (s) + z_coord (w), y-coord (r) + y-coord (w) + half-unit, right_y (r) + y-coord (w) + half-unit,
left_y(s) + y-coord (w) + half-unit, y_coord (s) + y-coord (w) + half-unit,
zy_corr[octant], y_corr|octant));
(Transfer moves from the move array to env_move 514);
T4 S;
end;
done: (Insert the new envelope moves in the pixel data 517);
end
else dual-moves(h,p, q);
right_type(q) + endpoint

This code is used in section 506.

513. (Initialize for ordinary envelope moves 513) =
k< 0; w < link(h); ww < knil(w); mm0 < floor_unscaled (z_coord (p) + z_coord (w) — zy_corr|octant]);
mml <+ floor_unscaled (x_coord(q) + x_coord (ww) — zy_corr|octant]);
for n < 0to n! —n0 do env_move[n] < mm0;
env_move[nl — n0] < mml; move_ptr < 0; m + mm0

This code is used in section 512.

514. At this point n holds the value of move_ptr that was current when make_moves began to record its
moves.

(Transfer moves from the move array to env_move 514) =
repeat m < m + move[n] — 1;
if m > env_move[n] then env_moveln| + m;
incr(n);
until n > move_ptr

This code is used in section 512.

210 PART 24: FILLING AN ENVELOPE METAFONT 8515

515. Retrograde lines (when k decreases) do not need to be recorded in env_move because their edges are
not the furthest right in any row.

(Insert a line segment to approach the correct offset 515) =
begin zz < x_coord (r) + x_coord (w); yy y-coord(r) + y_coord (w) + half-unit;
stat if internal[tracing_edges] > unity then
begin print_nl("@_ transition line,"); print_int(k); print(", from ");
print_two_true (zz, yy — half_unit);
end;
tats
if right_type(r) > k then
begin incr(k); w < link(w); zp < z_coord(r) + z_coord (w);
yp + y_coord (r) + y_coord (w) + half unit;
if yp # yy then (Record a line segment from (az, yy) to (zp,yp) in env_move 516);
end
else begin decr (k); w + knil(w); zp < x_coord (r) + x_coord (w);
yp < y-coord(r) + y_coord (w) + half-unit;
end;
stat if internal[tracing-edges] > unity then
begin print("utoy"); print_two_true(zp, yp — half-unit); print-nl("");
end;
tats
m < floor_unscaled (zp — xy_corr|octant]); move_ptr < floor_unscaled (yp — y_corr|octant]) — n0;
if m > env_move[move_ptr| then env_move[move_ptr] <— m;
end

This code is used in section 512.

516. In this step we have zp > 2z and yp > yy.

(Record a line segment from (zz, yy) to (zp, yp) in env_move 516) =
begin ty + floor_scaled (yy — y_corr|octant]); dely < yp — yy; yy < yy — ty;
ty < yp — y-corr|octant] — ty;
if ty > unity then

begin delx < xp — xx; yy + unity — yy;
loop begin tz + take_fraction(delx, make_fraction(yy, dely));
if ab_vs_cd (tz, dely, delx, yy) + zy-corr[octant] > 0 then decr(tz);
m < floor_unscaled (zz + tz);
if m > env_move[move_ptr] then env_move[move_ptr] < m;
ty < ty — unity;
if ty < unity then goto donel;
yy < yy + unity; incr(move_ptr);
end;
donel: end;
end

This code is used in section 515.

8517 METAFONT PART 24: FILLING AN ENVELOPE 211

517. (Insert the new envelope moves in the pixel data 517) =
debug if (m # mm1)V (move_ptr # nl — n0) then confusion("1");
gubed
move[0] < d0 + env_move[0] — mm0;
for n < 1 to move_ptr do move[n] < env_move[n| — env_move[n — 1] + 1;
move [move_ptr| < move[move_ptr| — dI ;
if internal[smoothing] > 0 then smooth-moves(smooth_bot, smooth_top);
move_to_edges(m0,n0,m1,nl);
if right_transition(q) = axis then
begin w «+ link(h); skew_line_edges(q, knil(w),w);
end

This code is used in section 512.

518. We'’ve done it all in the odd-octant case; the only thing remaining is to repeat the same ideas, upside
down and/or backwards.

The following code has been split off as a subprocedure of fill_envelope, because some Pascal compilers
cannot handle procedures as large as fill_envelope would otherwise be.

(Declare the procedure called dual_moves 518) =
procedure dual_moves(h,p,q : pointer);
label done, donel;
var r, s: pointer; {for list traversal }
{ Other local variables for fill_envelope 511)
begin (Initialize for dual envelope moves 519);
r < p; {recall that right_type(q) = endpoint = 0 now }
loop begin if » = g then smooth_top < move_ptr;
while right_type(r) # k do (Insert a line segment dually to approach the correct offset 521);
if r = p then smooth_bot < move_ptr;
if r = g then goto done;
move[move_ptr] < 1; n < move_ptr; s + link(r);
make_moves (z-coord (r) + z_coord (w), right_z (r) + z_coord (w), left_z (s) + z_coord (w),
x_coord (s) + x_coord (w), y_coord (r) + y_coord (w) + half-unit, right_y (r) + y_coord (w) + half_unit,
left_y(s) + y-coord (w) + half-unit, y_coord (s) + y-coord (w) + half-unit,
xy_corr [octant), y_corr|octant]); (Transfer moves dually from the move array to env_move 520);
T4 8
end;
done: (Insert the new envelope moves dually in the pixel data 523);
end;

This code is used in section 506.

519. In the dual case the normal situation is to arrive with a diagonal transition and to leave at the awis.
The leftmost edge in each row is relevant instead of the rightmost one.

(Initialize for dual envelope moves 519) =
k < info(h) + 1; ww < link(h); w < knil(ww);
mm0 < floor_unscaled (x_coord (p) + x-coord (w) — zy-_corr [octant]);
mml + floor_unscaled (x_coord(q) + x_coord (ww) — zy_corr|octant]);
for n < 1ton! —n0 +1do env_move[n] < mml;
env_move[0] «<— mm0; move_ptr < 0; m < mm0

This code is used in section 518.

212 PART 24: FILLING AN ENVELOPE METAFONT 8520

520. (Transfer moves dually from the move array to env_move 520) =
repeat if m < env_move[n| then env_move[n] < m;
m < m + move[n] — 1; incr(n);
until n > mowve_ptr

This code is used in section 518.

521. Dual retrograde lines occur when k increases; the edges of such lines are not the furthest left in any
row.

(Insert a line segment dually to approach the correct offset 521) =
begin zz < x_coord (r) + x_coord (w); yy y-coord(r) + y_coord (w) + half-unit;
stat if internal[tracing_edges] > unity then
begin print_nl("@_ transition line,"); print_int(k); print(", from ");
print_two_true (zz, yy — half unit);
end;
tats
if right_type(r) < k then
begin decr(k); w < knil(w); zp < x_coord (r) + z_coord (w);
yp + y_coord (r) + y_coord (w) + half unit;
if yp # yy then (Record a line segment from (2z, yy) to (zp, yp) dually in env-move 522);
end
else begin incr(k); w « link(w); zp + z_coord (r) + z_coord (w);
yp < y-coord (r) + y_coord (w) + half-unit;
end;
stat if internal[tracing_edges] > unity then
begin print("Ltoy"); print_two_true(zp, yp — half-unit); print-nl("");
end;
tats
m < floor_unscaled (xp — xy_corr|octant]); move_ptr < floor_unscaled (yp — y_corr|octant]) — n0;
if m < env_move[move_ptr| then env_move[move_ptr] <— m;
end

This code is used in section 518.

522. Again, zp > zz and yp > yy; but this time we are interested in the smallest m that belongs to a
given move_ptr position, instead of the largest m.

(Record a line segment from (zz, yy) to (zp, yp) dually in env_move 522) =
begin ty + floor_scaled (yy — y_corr|octant]); dely < yp — yy; yy < yy — ty;
ty < yp — y_corr|octant] — ty;
if ty > unity then

begin delx < xp — xx; yy + unity — yy;
loop begin if m < env_move[move_ptr] then env_move[move_ptr]| < m;
tr <+ take_fraction(delr, make_fraction (yy, dely));
if ab_vs_cd(tx, dely, delz, yy) + zy_corr[octant] > 0 then decr(tz);
m < floor_unscaled (zz + tx); ty < ty — unity; incr(move_ptr);
if ty < unity then goto donel;
Yy < yy + unity;
end;
donel: if m < env_move[move_ptr] then env_move[move_ptr] < m;
end;
end

This code is used in section 521.

8523 METAFONT PART 24: FILLING AN ENVELOPE 213

523. Since env_move contains minimum values instead of maximum values, the finishing-up process is
slightly different in the dual case.

(Insert the new envelope moves dually in the pixel data 523) =
debug if (m # mm1)V (move_ptr # nl — n0) then confusion("2");
gubed
move[0] < d0 + env_move[l] — mm0;
for n < 1 to move_ptr do move[n] < env_move[n + 1] — env_move[n] + 1;
move [move_ptr| < move[move_ptr| — dI ;
if internal[smoothing] > 0 then smooth_-moves(smooth_bot, smooth_top);
move_to_edges(m0,n0,ml,nl);
if right_transition(q) = diagonal then
begin w «+ link(h); skew_line_edges(q, w, knil(w));
end

This code is used in section 518.

214 PART 25: ELLIPTICAL PENS METAFONT §524

524. Elliptical pens. To get the envelope of a cyclic path with respect to an ellipse, METAFONT
calculates the envelope with respect to a polygonal approximation to the ellipse, using an approach due
to John Hobby (Ph.D. thesis, Stanford University, 1985). This has two important advantages over trying to
obtain the “exact” envelope:

1) It gives better results, because the polygon has been designed to counteract problems that arise
from digitization; the polygon includes sub-pixel corrections to an exact ellipse that make the results
essentially independent of where the path falls on the raster. For example, the exact envelope with
respect to a pen of diameter 1 blackens a pixel if and only if the path intersects a circle of diameter 1
inscribed in that pixel; the resulting pattern has “blots” when the path is travelling diagonally in
unfortunate raster positions. A much better result is obtained when pixels are blackened only when
the path intersects an inscribed diamond of diameter 1. Such a diamond is precisely the polygon that
METAFONT uses in the special case of a circle whose diameter is 1.

2) Polygonal envelopes of cubic splines are cubic splines, hence it isn’t necessary to introduce completely
different routines. By contrast, exact envelopes of cubic splines with respect to circles are complicated
curves, more difficult to plot than cubics.

525. Hobby’s construction involves some interesting number theory. If w and v are relatively prime integers,
we divide the set of integer points (m,n) into equivalence classes by saying that (m,n) belongs to class
um+vn. Then any two integer points that lie on a line of slope —u /v belong to the same class, because such
points have the form (m + tv,n — tu). Neighboring lines of slope —u/v that go through integer points are
separated by distance 1/4/u? + v? from each other, and these lines are perpendicular to lines of slope v/u.
If we start at the origin and travel a distance k/+/u? + v? in direction (u, v), we reach the line of slope —u/v
whose points belong to class k.

For example, let u = 2 and v = 3. Then the points (0,0), (3,—2), ... belong to class 0; the points (—1, 1),
(2,—1), ... belong to class 1; and the distance between these two lines is 1/4/13. The point (2,3) itself
belongs to class 13, hence its distance from the origin is 13/1/13 = /13 (which we already knew).

Suppose we wish to plot envelopes with respect to polygons with integer vertices. Then the best polygon
for curves that travel in direction (v, —u) will contain the points of class k such that k/+/u? + v? is as close
as possible to d, where d is the maximum distance of the given ellipse from the line ux + vy = 0.

The fillin correction assumes that a diagonal line has an apparent thickness

2f - min(|ul, [v])//u? + v?

greater than would be obtained with truly square pixels. (If a white pixel at an exterior corner is assumed
to have apparent darkness f; and a black pixel at an interior corner is assumed to have apparent darkness
1 — fo, then f = fi1 — fo is the fillin parameter.) Under this assumption we want to choose k so that
(k+2f - min(|ul,|v])) //u® + v? is as close as possible to d.

Integer coordinates for the vertices work nicely because the thickness of the envelope at any given slope
is independent of the position of the path with respect to the raster. It turns out, in fact, that the same
property holds for polygons whose vertices have coordinates that are integer multiples of %, because ellipses
are symmetric about the origin. It’s convenient to double all dimensions and require the resulting polygon to
have vertices with integer coordinates. For example, to get a circle of diameter r, we shall compute integer
coordinates for a circle of radius r. The circle of radius r will want to be represented by a polygon that
contains the boundary points (0,+r) and (£r,0); later we will divide everything by 2 and get a polygon
with (0,+17) and (£3r,0) on its boundary.

8526 METAFONT PART 25: ELLIPTICAL PENS 215

526. In practice the important slopes are those having small values of u and v; these make regular patterns
in which our eyes quickly spot irregularities. For example, horizontal and vertical lines (when v = 0 and
|[v| =1, or |u] =1 and v = 0) are the most important; diagonal lines (when |u| = |v| = 1) are next; and then
come lines with slope +2 or +1/2.

The nicest way to generate all rational directions having small numerators and denominators is to generalize
the Stern-Brocot tree [cf. Concrete Mathematics, section 4.5] to a “Stern-Brocot wreath” as follows: Begin
with four nodes arranged in a circle, containing the respective directions (u,v) = (1,0), (0,1), (-1,0),
and (0, —1). Then between pairs of consecutive terms (u,v) and (u/,v’) of the wreath, insert the direction
(u+ ', v+ v"); continue doing this until some stopping criterion is fulfilled.

It is not difficult to verify that, regardless of the stopping criterion, consecutive directions (u,v) and
(u’,v") of this wreath will always satisfy the relation uv’ — w'v = 1. Such pairs of directions have a nice
property with respect to the equivalence classes described above. Let [be a line of equivalent integer points
(m + tv,n — tu) with respect to (u,v), and let I’ be a line of equivalent integer points (m' + tv',n’ — tu’)
with respect to (u/,v"). Then | and I’ intersect in an integer point (m”;n’), because the determinant of the
linear equations for intersection is uv’ — u’v = 1. Notice that the class number of (m”,n’) with respect to
(u+u',v+v") is the sum of its class numbers with respect to (u,v) and (v’,v"). Moreover, consecutive points
on [and I’ belong to classes that differ by exactly 1 with respect to (u + u/,v + v').

This leads to a nice algorithm in which we construct a polygon having “correct” class numbers for as
many small-integer directions (u,v) as possible: Assuming that lines [and I’ contain points of the correct
class for (u,v) and (u/,v"), respectively, we determine the intersection (m”,n”) and compute its class with
respect to (u + u',v +v’). If the class is too large to be the best approximation, we move back the proper
number of steps from (m”,n”) toward smaller class numbers on both [and !’, unless this requires moving
to points that are no longer in the polygon; in this we arrive at two points that determine a line I” having
the appropriate class. The process continues recursively, until it cannot proceed without removing the last
remaining point from the class for (u,v) or the class for (u/,v").

216 PART 25: ELLIPTICAL PENS METAFONT §527

527. The make_ellipse subroutine produces a pointer to a cyclic path whose vertices define a polygon
suitable for envelopes. The control points on this path will be ignored; in fact, the fields in knot nodes
that are usually reserved for control points are occupied by other data that helps make_ellipse compute the
desired polygon.

Parameters major_axis and minor_axis define the axes of the ellipse; and parameter theta is an angle by
which the ellipse is rotated counterclockwise. If theta = 0, the ellipse has the equation (z/a)? + (y/b)* = 1,
where a = major_azis /2 and b = minor_azis /2. In general, the points of the ellipse are generated in the
complex plane by the formula e (acost + ibsint), as t ranges over all angles. Notice that if major_azis =
minor_axis = d, we obtain a circle of diameter d, regardless of the value of theta.

The method sketched above is used to produce the elliptical polygon, except that the main work is done
only in the halfplane obtained from the three starting directions (0, —1), (1,0), (0,1). Since the ellipse has
circular symmetry, we use the fact that the last half of the polygon is simply the negative of the first half.
Furthermore, we need to compute only one quarter of the polygon if the ellipse has axis symmetry.

function make_ellipse (magjor_azxis, minor_axis : scaled; theta : angle): pointer;
label done, donel , found;
var p,q,r,s: pointer; {for list manipulation }
h: pointer; {head of the constructed knot list }
alpha, beta, gamma, delta: integer; { special points }
¢, d: integer; {class numbers }
u, v: integer; {directions }
symmetric: boolean; {should the result be symmetric about the axes? }
begin (Initialize the ellipse data structure by beginning with directions (0, —1), (1,0), (0,1) 528);
(Interpolate new vertices in the ellipse data structure until improvement is impossible 531);
if symmetric then (Complete the half ellipse by reflecting the quarter already computed 536);
(Complete the ellipse by copying the negative of the half already computed 537);
make_ellipse < h;
end;

)

§528 METAFONT PART 25: ELLIPTICAL PENS 217

528. A special data structure is used only with make_ellipse: The right_z, left_z, right_y, and left_y fields
of knot nodes are renamed right_u, left_v, right_class, and left_length, in order to store information that
simplifies the necessary computations.

If p and g are consecutive knots in this data structure, the z_coord and y_coord fields of p and ¢ contain
current vertices of the polygon; their values are integer multiples of half-unit. Both of these vertices belong
to equivalence class right_class(p) with respect to the direction (right,u (p), left-v (q)) The number of points
of this class on the line from vertex p to vertex ¢ is 1+ left_length(q). In particular, left_length(q) = 0 means
that a_coord (p) = x_coord(q) and y_coord(p) = y-coord(q); such duplicate vertices will be discarded during
the course of the algorithm.

The contents of right_u(p) and left_v(q) are integer multiples of half unit, just like the coordinate fields.
Hence, for example, the point (ar,coord (p) — left-v(q), y-coord (p) + right_u (p)) also belongs to class number
right_class(p). This point is one step closer to the vertex in node ¢; it equals that vertex if and only if
left_length(q) = 1.

The left_type and right_type fields are not used, but link has its normal meaning.

To start the process, we create four nodes for the three directions (0,—1), (1,0), and (0,1). The
corresponding vertices are (—a, —f3), (v, —8), (7, 8), and («,), where («,) is a half-integer approximation
to where the ellipse rises highest above the z-axis, and where « is a half-integer approximation to the
maximum x coordinate of the ellipse. The fourth of these nodes is not actually calculated if the ellipse has
axis symmetry.

define right_u = right-x { u value for a pen edge }

define left v = left.x { v value for a pen edge }

define right_class = right_y { equivalence class number of a pen edge }

define left_length = left.y {length of a pen edge }

(Initialize the ellipse data structure by beginning with directions (0, —1), (1,0), (0,1) 528) =

(Calculate integers «, 3, v for the vertex coordinates 530);

p « get_node (knot_node_size); q < get_node(knot_node_size); r < get_node(knot_node_size);

if symmetric then s < null else s <+ get_node(knot_node_size);

h < p; link(p) < q; link(q) < r; link(r) < s; {s=null or link(s) = null }

(Revise the values of a, 8, v, if necessary, so that degenerate lines of length zero will not be obtained 529);

z_coord (p) < —alpha * half_unit; y_coord(p) < —beta * half_unit; x_coord(q) < gamma * half unit;

y-coord(q) < y-coord (p); x-coord (r) < x_coord(q);

right_u(p) < 0; left_v(q) + —half-unit;

right_u(q) < half-unit; left_v(r) + 0;

right_u(r) < 0; right_class(p) « beta; right_class(q) < gamma; right_class(r) < beta;

left_length(q) < gamma + alpha;

if symmetric then

begin y_coord (r) < 0; left_length(r) < beta;
end

else begin y_coord (r) + —y_coord (p); left_length(r) + beta + beta;

x_coord (s) < —x_coord(p); y_coord(s) < y_coord(r);
left_v(s) < half_unit; left_length(s) < gamma — alpha;
end

Pinging

This code is used in section 527.

218 PART 25: ELLIPTICAL PENS METAFONT 8529

529. One of the important invariants of the pen data structure is that the points are distinct. We may
need to correct the pen specification in order to avoid this. (The result of pencircle will always be at least
one pixel wide and one pixel tall, although makepen is capable of producing smaller pens.)

(Revise the values of a, 3, v, if necessary, so that degenerate lines of length zero will not be obtained 529) =
if beta = 0 then beta + 1;
if gamma = 0 then gamma «+ 1;
if gamma < abs(alpha) then
if alpha > 0 then alpha + gamma — 1
else alpha < 1 — gamma

This code is used in section 528.

530. If @ and b are the semi-major and semi-minor axes, the given ellipse rises highest above the y-axis
at the point ((a? — b?)sinfcosd/p) + ip, where p = /(asin)? + (bcos0)2. It reaches furthest to the right
of the z-axis at the point o + i(a® — b?)sin 6 cos /o, where o = /(acos)2 + (bsin6)2.
(Calculate integers «, 3, 7y for the vertex coordinates 530) =
if (major_azis = minor_azis) V (theta mod ninety_deg = 0) then
begin symmetric < true; alpha < 0;
if odd(theta div ninety_deg) then
begin beta < major_azis; gamma < minor_axis; n_sin < fraction_one; n_cos < 0;
{n_sin and n_cos are used later }
end
else begin beta < minor_azis; gamma < major_azis; theta < 0;
end; {n_sin and n_cos aren’t needed in this case }
end
else begin symmetric « false; n_sin_cos(theta); {set up n_sin =sinf and n_cos = cosf }
gamma < take_fraction(major_azxis, n_sin); delta < take_fraction(minor_axis, n_cos);
beta « pyth_add (gamma, delta);
alpha < take_fraction (take_fraction (major_axis, make_fraction(gamma, beta)), n_cos)
— take_fraction (take_fraction (minor_azis, make_fraction (delta, beta)), n_sin);
alpha + (alpha + half-unit) div unity;
gamma < pyth_add (take_fraction(major_azis, n_cos), take_fraction (minor_azxis, n_sin));
end;
beta < (beta + half-unit) div unity; gamma < (gamma + half-unit) div unity

This code is used in section 528.

8531 METAFONT PART 25: ELLIPTICAL PENS 219

531. Now p, ¢, and r march through the list, always representing three consecutive vertices and two
consecutive slope directions. When a new slope is interpolated, we back up slightly, until further refinement
is impossible; then we march forward again. The somewhat magical operations performed in this part of
the algorithm are justified by the theory sketched earlier. Complications arise only from the need to keep
zero-length lines out of the final data structure.

(Interpolate new vertices in the ellipse data structure until improvement is impossible 531) =
loop begin u « right_u(p) + right_u(q); v < left_v(q) + left_v(r); ¢ < right_class(p) + right_class(q);
{ Compute the distance d from class 0 to the edge of the ellipse in direction (u,v), times /u? + v?,
rounded to the nearest integer 533);
delta < ¢ —d; {we want to move delta steps back from the intersection vertex ¢ }
if delta > 0 then
begin if delta > left_length(r) then delta + left_length(r);
if delta > left_length(q) then
(Remove the line from p to ¢, and adjust vertex ¢ to introduce a new line 534)
else (Insert a new line for direction (u,v) between p and ¢ 535);
end
else p « ¢;
(Move to the next remaining triple (p, ¢, r), removing and skipping past zero-length lines that might
be present; goto done if all triples have been processed 532);
end;
done:

This code is used in section 527.

532. The appearance of a zero-length line means that we should advance p past it. We must not try to
straddle a missing direction, because the algorithm works only on consecutive pairs of directions.

{Move to the next remaining triple (p, g,), removing and skipping past zero-length lines that might be
present; goto done if all triples have been processed 532) =
loop begin g + link(p);
if ¢ = null then goto done;
if left_length(q) = 0 then
begin link (p) + link(q); right_class(p) < right_class(q); right_u(p) < right_u(q);
free_node(q, knot_node_size);
end
else begin r + link(q);
if » = null then goto done;
if left_length(r) = 0 then
begin link (p) < r; free_node(q, knot_node_size); p < r;
end
else goto found;
end;
end;
found:

This code is used in section 531.

220 PART 25: ELLIPTICAL PENS METAFONT 8533

533. The ‘div 8’ near the end of this step comes from the fact that delta is scaled by 2'° and d by 26,
while take_fraction removes a scale factor of 228. We also make sure that d > max(|ul,|v|), so that the pen
will always include a circular pen of diameter 1 as a subset; then it won’t be possible to get disconnected
path envelopes.

(Compute the distance d from class 0 to the edge of the ellipse in direction (u,v), times /u? 4+ v2, rounded
to the nearest integer 533) =
delta <+ pyth_add (u,v);
if major_azis = minor_azis then d < major_azis {circles are easy }
else begin if theta = 0 then
begin alpha < u; beta < v;
end
else begin alpha <+ take_fraction(u, n_cos) + take_fraction (v, n_sin);
beta «+ take_fraction (v, n_cos) — take_fraction (u, n_sin);
end;
alpha < make_fraction (alpha, delta); beta < make_fraction (beta, delta);
d < pyth_add (take_fraction(major_azis, alpha), take_fraction (minor_azis, beta));
end;
alpha < abs(u); beta <+ abs(v);
if alpha < beta then
begin alpha + abs(v); beta < abs(u);
end; {now o =max(|u|,|v|), 8 =min(|ul, |v])}
if internal [fillin] # 0 then d « d — take_fraction (internal [fillin], make_fraction (beta + beta, delta));
d « take_fraction((d + 4) div 8, delta); alpha < alpha div half unit;
if d < alpha then d < alpha

This code is used in section 531.

534. At this point there’s a line of length < delta from vertex p to vertex ¢, orthogonal to direction
(right-u(p), left-v(q)); and there’s a line of length > delta from vertex g to to vertex r, orthogonal to
direction (right-u(q), left_v(r)). The best line to direction (u,v) should replace the line from p to g; this new
line will have the same length as the old.
{Remove the line from p to ¢, and adjust vertex ¢ to introduce a new line 534) =

begin delta < left_length(q);

right_class(p) < ¢ — delta; right_u(p) < u; left-v(q) < v;

z_coord(q) < z_coord(q) — delta * left_v(r); y_coord(q) + y-coord(q) + delta * right_u(q);

left_length (r) < left_length(r) — delta;

end

This code is used in section 531.

535. Here is the main case, now that we have dealt with the exception: We insert a new line of length
delta for direction (u,v), decreasing each of the adjacent lines by delta steps.

(Insert a new line for direction (u,v) between p and ¢ 535) =
begin s « get_node(knot_node_size); link(p) < s; link(s) < g;
z_coord (s) <+ x_coord(q) + delta * left_v(q); y-coord(s) + y_coord(q) — delta x right_u(p);
z_coord(q) < z_coord(q) — delta * left_v(r); y_coord(q) < y-coord(q) + delta * right_u(q);
left_v(s) « left_v(q); right_u(s) < u; leftv(q) < v;
right_class(s) < ¢ — delta;
left_length(s) < left_length(q) — delta; left_length(q) < delta; left_length(r) < left_length(r) — delta;
end

This code is used in section 531.

8536 METAFONT PART 25: ELLIPTICAL PENS 221

536. Only the coordinates need to be copied, not the class numbers and other stuff.

(Complete the half ellipse by reflecting the quarter already computed 536) =
begin s < null; q «+ h;
loop begin r + get_node (knot_node_size); link(r) < s; s < r;
x_coord (8) < xz_coord(q); y-coord(s) < —y_coord(q);
if ¢ = p then goto donel;
q < link(q);
if y_coord(q) = 0 then goto donel;
end;
donel: link(p) < s; beta + —y_coord (h);
while y_coord (p) # beta do p «+ link(p);
q < link(p);
end

This code is used in section 527.

537. Now we use a somewhat tricky fact: The pointer ¢ will be null if and only if the line for the final
direction (0, 1) has been removed. If that line still survives, it should be combined with a possibly surviving
line in the initial direction (0, —1).
(Complete the ellipse by copying the negative of the half already computed 537) =
if ¢ # null then
begin if right_u(h) =0 then
begin p < h; h < link(h); free_node(p, knot_node_size);
z_coord(q) < —x_coord (h);
end;
p<q;
end
else q + p;
r + link(h); {now p = q, z_coord(p) = —z_coord (h), y-coord(p) = —y_coord (h) }
repeat s < get_node (knot_node_size); link(p) < s; p + s;
x_coord (p) < —xz_coord (r); y_coord (p) < —y_coord (r); r < link(r);
until r = g;
link (p) < h

This code is used in section 527.

222 PART 26: DIRECTION AND INTERSECTION TIMES METAFONT 8538

538. Direction and intersection times. A path of length n is defined parametrically by functions x(t)
and y(t), for 0 < t < n; we can regard t as the “time” at which the path reaches the point (z(t),y(t)). In
this section of the program we shall consider operations that determine special times associated with given
paths: the first time that a path travels in a given direction, and a pair of times at which two paths cross
each other.

539. Let’s start with the easier task. The function find_direction_time is given a direction (z,y) and a
path starting at h. If the path never travels in direction (z,y), the direction time will be —1; otherwise it
will be nonnegative.

Certain anomalous cases can arise: If (x,y) = (0,0), so that the given direction is undefined, the direction
time will be 0. If (2/(t),y/(t)) = (0,0), so that the path direction is undefined, it will be assumed to match
any given direction at time t.

The routine solves this problem in nondegenerate cases by rotating the path and the given direction so
that (x,y) = (1,0); i.e., the main task will be to find when a given path first travels “due east.”

function find_direction_time (x,y : scaled; h : pointer): scaled;
label exit, found, not_found, done;
var maz: scaled; {max(|z|,|y)}
p,q: pointer; {for list traversal }
n: scaled; {the direction time at knot p }
tt: scaled; {the direction time within a cubic }
(Other local variables for find_direction_time 542)
begin (Normalize the given direction for better accuracy; but return with zero result if it’s zero 540);
n<+0; p+ h
loop begin if right_type(p) = endpoint then goto not_found;
q + link(p); {Rotate the cubic between p and ¢; then goto found if the rotated cubic travels due east
at some time tt; but goto not_found if an entire cyclic path has been traversed 541);
P q; n <+ n+ unity;
end;
not_found: find_direction_time < —unity; return;
found: find_direction_time < n + tt;
exit: end;

540. (Normalize the given direction for better accuracy; but return with zero result if it’s zero 540) =
if abs(x) < abs(y) then
begin = «+ make_fraction(x, abs(y));
if y > 0 then y <+ fraction_one else y < —fraction_one;
end
else if x =0 then
begin find_direction_time < 0; return;
end
else begin y < make_fraction (y, abs(x));
if £ > 0 then = « fraction_one else x < —fraction_one;
end

This code is used in section 539.

8541 METAFONT PART 26: DIRECTION AND INTERSECTION TIMES 223

541. Since we're interested in the tangent directions, we work with the derivative
1 /
§B (w0, 71, w2, 23;t) = B(x1 — T0, T2 — T1, T3 — T2;1)

instead of B(xg,x1,xa,xs;t) itself. The derived coeflicients are also scaled up in order to achieve better
accuracy.

The given path may turn abruptly at a knot, and it might pass the critical tangent direction at such a
time. Therefore we remember the direction phi in which the previous rotated cubic was traveling. (The
value of phi will be undefined on the first cubic, i.e., when n = 0.)

(Rotate the cubic between p and ¢; then goto found if the rotated cubic travels due east at some time ¢¢;
but goto not_found if an entire cyclic path has been traversed 541) =
tt + 0; (Set local variables x1,z2,z3 and yI,y2,y3 to multiples of the control points of the rotated
derivatives 543);

if y1 =0 then
if z1 > 0 then goto found;
if n > 0 then

begin (Exit to found if an eastward direction occurs at knot p 544);
if p = h then goto not_found;
end;
if (3 #0)V (y3 #0) then phi < n_arg(z3,y3);
(Exit to found if the curve whose derivatives are specified by x1,22,23,yl,y2, y3 travels eastward at
some time #t 546)

This code is used in section 539.

542. (Other local variables for find_direction_time 542) =
xl,22,23,yl,y2,y3: scaled; { multiples of rotated derivatives }
theta, phi: angle; {angles of exit and entry at a knot }

t: fraction; {temp storage }

This code is used in section 539.

543. (Set local variables z1,22,z3 and yI,y2,y3 to multiples of the control points of the rotated
derivatives 543) =
zl < right_z(p) — x_coord (p); x2 « left_x(q) — right-x(p); x3 + x_coord(q) — left-x(q);
yl1 < right_y(p) — y-coord(p); y2 < left-y(q) — right-y(p); y3 < y-coord(q) — left-y(q);
max < abs(xl);
if abs(22) > max then maz < abs(z
if abs(xz3) > max then maz < abs(x
if abs(yl) > max then maz < abs(
if abs(y2) > max then maz < abs(
if abs(y3) > max then maz < abs(
if maz = 0 then goto found;
while max < fraction_half do
begin double(max); double(z1); double(x2); double(z3); double(yl); double(y2); double(y3);
end;
t < x1; zl «+ take_fraction(z1,x) + take_fraction(yl,y); yl « take_fraction(yl,x) — take_fraction(t,y);
t + z2; 12 + take_fraction(x2,x) + take_fraction(y2,y); y2 < take_fraction(y2,x) — take_fraction(t,y);
t + z3; x3 « take_fraction(z8,x) + take_fraction(y3,y); y3 < take_fraction(y3,x) — take_fraction(t,y)

2);
3);
1);
)

Y
Y=)s
y3);

3

This code is used in section 541.

224 PART 26: DIRECTION AND INTERSECTION TIMES METAFONT 8544

544. (Exit to found if an eastward direction occurs at knot p 544) =
theta < n_arg(z1,yl);
if theta > 0 then
if phi <0 then
if phi > theta — one_eighty_deg then goto found;
if theta < 0 then
if phi > 0 then
if phi < theta + one_eighty_deg then goto found

This code is used in section 541.

545. In this step we want to use the crossing_point routine to find the roots of the quadratic equation
B(y1,y2,ys;t) = 0. Several complications arise: If the quadratic equation has a double root, the curve never
crosses zero, and crossing_point will find nothing; this case occurs iff y1y3 = y2 and y;y2 < 0. If the quadratic
equation has simple roots, or only one root, we may have to negate it so that B(y1,ys2,ys;t) crosses from
positive to negative at its first root. And finally, we need to do special things if B(y1,ye,ys;t) is identically
Zero.

546. (Exit to found if the curve whose derivatives are specified by =1, 22,23, y1,y2, y3 travels eastward
at some time ¢t 546) =
if 1 <0 then
if z2 < 0 then
if 23 < 0 then goto done;
if ab_vs_cd(yl,y3,y2,y2) =0 then
(Handle the test for eastward directions when y1y3 = y3; either goto found or goto done 548);
if y1 <0 then
if y1 <0 then
begin yI < —yl; y2 «+ —y2; y3 + —y3;
end
else if y2 > 0 then
begin y2 +— —y2; y3 + —y3;
end;
(Check the places where B(y1,y2,ys;t) = 0 to see if B(x1,zo,x3;t) > 0 547);
done:

This code is used in section 541.

8547 METAFONT PART 26: DIRECTION AND INTERSECTION TIMES 225

547. The quadratic polynomial B(y1,y2,ys;t) begins > 0 and has at most two roots, because we know
that it isn’t identically zero.

It must be admitted that the crossing_point routine is not perfectly accurate; rounding errors might cause
it to find a root when y;y3 > y2, or to miss the roots when y;y3 < y2. The rotation process is itself subject
to rounding errors. Yet this code optimistically tries to do the right thing.

define we_found_it =
begin ¢t < (t + 4000) div '10000; goto found;
end
(Check the places where B(y1,y2,ys;t) = 0 to see if B(x1,xq,x3;t) >0 547) =
t + crossing_point (y1,y2,y3);
if t > fraction_one then goto done;
y2 « t_of-the_way(y2)(y3); x1 + t-of-the_way(z1)(x2); 2 + t_of-the_way(x2)(z3);
zl < t_of_the_way(x1)(z2);
if 1 > 0 then we_found_it;
if y2 > 0 then 32 < 0;
tt < t; t + crossing_point (0, —y2, —y3);
if ¢t > fraction_one then goto done;
zl « tof-the_way(x1)(xz2); z2 + t_of-the_way(xz2)(z3);
if t_of the_way(z1)(z2) > 0 then
begin t « t_of the_way (tt)(fraction_one); we_found_it;
end

This code is used in section 546.

548. (Handle the test for eastward directions when y,y3 = y3; either goto found or goto done 548) =
begin if ab_vs_cd(y1,y2,0,0) <0 then
begin t «+ make_fraction(yl,yl — y2); x1 < t_of-theway(z1)(z2); 22 + t_of the_way(z2)(z3);
if t_of-the_way(z1)(z2) > 0 then we_found_it;
end
else if y3 =0 then
if y1 =0 then (Exit to found if the derivative B(x1,x2,x3;t) becomes > 0 549)
else if 3 > 0 then
begin it < unity; goto found;
end;
goto done;
end

This code is used in section 546.

549. At this point we know that the derivative of y(¢) is identically zero, and that z1 < 0; but either
z2 > 0 or 3 > 0, so there’s some hope of traveling east.

(Exit to found if the derivative B(x1, xo, x3;t) becomes > 0 549) =
begin t « crossing_point(—z1,—z2,—z3);
if t < fraction_one then we_found_it;
if ab_vs_cd(z1,28,22,22) < 0 then
begin t + make_fraction(z1,z1 — 22); we_found_it;
end;
end

This code is used in section 548.

226 PART 26: DIRECTION AND INTERSECTION TIMES METAFONT 8550

550. The intersection of two cubics can be found by an interesting variant of the general bisection scheme
described in the introduction to make_moves. Given w(t) = B(wq, w1, w2, ws; t) and z(t) = B(zo, 21, 22, 23;t),
we wish to find a pair of times (¢1,t2) such that w(t;) = 2(t2), if an intersection exists. First we find the
smallest rectangle that encloses the points {wp, w1, ws, w3} and check that it overlaps the smallest rectangle
that encloses {zg, 21, 22, 23}; if not, the cubics certainly don’t intersect. But if the rectangles do overlap,
we bisect the intervals, getting new cubics w’ and w”, 2’ and z”; the intersection routine first tries for an
intersection between w’ and z’, then (if unsuccessful) between w’ and z”, then (if still unsuccessful) between
w'” and 2/, finally (if thrice unsuccessful) between w” and 2. After | successful levels of bisection we will
have determined the intersection times t; and ¢y to [bits of accuracy.

As before, it is better to work with the numbers Wy = 2/(wp — wy_1) and Zp = 2!(z, — zx_1) rather
than the coefficients wy and z; themselves. We also need one other quantity, A = 2l(w0 — zp), to determine
when the enclosing rectangles overlap. Here’s why: The x coordinates of w(t) are between umin and tmax,
and the x coordinates of z(t) are between Zmiy and Tmax, if we write wy, = (ug, vx) and z, = (zx, yx) and
Umin = min(ug, u1, ug, us), etc. These intervals of z coordinates overlap if and only if upin < Tmax and
Tmin < Umax- Letting

Umin = min(0, Uy, Uy + Uz, Uy + Uz + Us), Unmax = max(0, Uy, Uy + Us, Uy + Uz + Us),
we have 2"umin = 2'ug + Umin, etc.; the condition for overlap reduces to
Xmin - Umax S QI(UO - SU()) S Xmax - Umin~

Thus we want to maintain the quantity 2l(u0 — xp); similarly, the quantity 2l(vo — yo) accounts for the
y coordinates. The coordinates of A = 2!(wy — zp) must stay bounded as [increases, because of the overlap
condition; i.e., we know that X i, Xmax, and their relatives are bounded, hence X ,ax —Upmin and Xin —Umax
are bounded.

551. Incidentally, if the given cubics intersect more than once, the process just sketched will not necessarily
find the lexicographically smallest pair (¢1,%2). The solution actually obtained will be smallest in “shuffled
order”; i.e., if tl = (.a1a2 PN a16)2 and t2 = (.b1b2 ‘e b16)27 then we will minimize a1b1a2b2 ‘e alﬁblﬁ, not
ayag . ..a1gb1by ... b1g. Shuffled order agrees with lexicographic order if all pairs of solutions (t1,t2) and
(t},t5) have the property that t; <] iff to < t5; but in general, lexicographic order can be quite different,
and the bisection algorithm would be substantially less efficient if it were constrained by lexicographic order.

For example, suppose that an overlap has been found for I = 3 and (¢1,¢2) = (.101,.011) in binary, but
that no overlap is produced by either of the alternatives (.1010,.0110), (.1010,.0111) at level 4. Then there
is probably an intersection in one of the subintervals (.1011,.011x); but lexicographic order would require
us to explore (.1010,.1zxz) and (.1011,.00zz) and (.1011,.010x) first. We wouldn’t want to store all of the
subdivision data for the second path, so the subdivisions would have to be regenerated many times. Such
inefficiencies would be associated with every ‘1’ in the binary representation of ¢;.

552. The subdivision process introduces rounding errors, hence we need to make a more liberal test for
overlap. It is not hard to show that the computed values of U; differ from the truth by at most [, on level [,
hence Upin and Upnax will be at most 31 in error. If 8 is an upper bound on the absolute error in the computed
components of A = (delz, dely) on level I, we will replace the test ‘Xiin — Unax < delz’ by the more liberal
test ‘Xmin — Umax < delx + tol’, where tol = 61 + 3.

More accuracy is obtained if we try the algorithm first with tol = 0; the more liberal tolerance is used only
if an exact approach fails. It is convenient to do this double-take by letting ‘3’ in the preceding paragraph
be a parameter, which is first 0, then 3.

(Global variables 13) +=
tol_step: 0 ..6; {either 0 or 3, usually }

8553 METAFONT PART 26: DIRECTION AND INTERSECTION TIMES 227

553. We shall use an explicit stack to implement the recursive bisection method described above. In
fact, the bisect_stack array is available for this purpose. It will contain numerous 5-word packets like
(U1, Us, Us, Unin, Umax), as well as 20-word packets comprising the 5-word packets for U, V, X, and Y.

The following macros define the allocation of stack positions to the quantities needed for bisection-
intersection.

define stack_1 (#) = bisect_stack[#] {Uy, V1, X1, or Y7 }

define stack_2(#) = bisect_stack[# + 1] {Us, Vo, Xo, or Yo }

define stack_3 (#) = bisect_stack[# +2] {Us, V3, X3, or Y3}

define stack_min (#) = bisect_stack[# + 3] { Umin, Venins Xmins OF Yinin }
define stack_max (#) = bisect_stack[# + 4] { Umax, Vinax, Xmaxs OF Ymax }
define int_packets = 20 {number of words to represent Uy, Vi, X, and Yy }

define u_packet(#) =#—5

define v_packet(#) = # — 10
define z_packet(#) =# — 15
define y_packet (#) = # — 20

define [_packets = bisect_ptr — int_packets
define r_packets = bisect_ptr

define ul_packet = u_packet (I_packets)

define vi_packet = v_packet (I_packets)

define zl_packet = z_packet (I_packets)

()

s

{ base of Uj, variables }
{ base of V} variables }
{ base of X, variables }
{ base of Y} variables }
{ base of U}/ variables }
{ base of V)" variables }
{ base of X}/ variables }
{base of Y} variables }

define yl_packet = y_packet (l_packets
define ur_packet = u_packet(r_packet
define vr_packet = v_packet(r_packets
define zr_packet = x_packet (r_packets
define yr_packet = y_packet(r_packets

define w1l = stack_1 (ul_packet) {Uj}
define u2l = stack_2 (ul_packet) {UL}
define u3l = stack_3 (ul_packet) {Uj}
define v1l = stack_1 (vi_packet) {V]}
define v2l = stack_2 (vl_packet) {V5}
define v3l = stack_3 (vl_packet) {V5}
define z1l = stack_1 (zl_packet) {X7}

()

()

()

()

()

~—_ — —

define 22! = stack_2 (zl_packet) {X}}
define z3] = stack-3 (zl_packet) { X5}
define y1l = stack_1 (yl_packet) {Y{}
define y2l = stack_2 (yl_packet) {Y3}
define y3l = stack_3 (yl_packet) {Yq}
define ulr = stack_1 (ur_packet
define u2r = stack_2 (ur_packet
define u3r = stack_3 (ur_packet
define vir = stack_1 (vr_packet
define v2r = stack_2(vr_packet) {V3'}
define v3r = stack_3 (vr_packet) {V{'}

) {U{'}
()
()
()
()
()

define zIr = stack_1 (zr_packet) {X{}
()
()
()
()
)

{Us'}
{Us'}
{vi'}

define z2r = stack_2(zr_packet) {X4}

define z3r = stack_3 (zr_packet) { XY}
define yIr = stack_1 (yr_packet) {Y{'}
define y2r = stack_2 (yr_packet) {Yy'}

{vs'}
define stack_dz = bisect_stack [bisect_ptr] {stacked value of delz }
define stack_dy = bisect_stack|bisect_ptr + 1] { stacked value of dely }

define y3r = stack_3 (yr_packet

228 PART 26: DIRECTION AND INTERSECTION TIMES METAFONT 8553

define stack_tol = bisect_stack[bisect_ptr + 2] { stacked value of tol }
define stack_uv = bisect_stack [bisect_ptr + 3] {stacked value of uv }
define stack_zy = bisect_stack[bisect_ptr + 4] { stacked value of zy }
define int_increment = int_packets + int_packets +5 {number of stack words per level }

(Check the “constant” values for consistency 14) +=
if int_packets + 17 x int_increment > bistack_size then bad + 32;

554. Computation of the min and max is a tedious but fairly fast sequence of instructions; exactly four
comparisons are made in each branch.

define set_min_maz (#) =
if stack_1(#) < 0 then

if stack_3(#) > 0 then
begin if stack_2(#) < 0 then stack_min(#) < stack_1 (#) + stack_2(#)
else stack_min (#) < stack_1 (#);
stack-max (#) < stack_1 (#) + stack_2 (#) + stack_3 (#);
if stack-maz (#) < 0 then stack-maz (#) < 0;
end

else begin stack-min (#) < stack_1 (#) + stack_2 (#) + stack_3 (#);
if stack_-min(#) > stack_1 (#) then stack-min(#) < stack_1 (#);
stack-max (#) < stack_1 (#) + stack_2 (#);
if stack-maz (#) < 0 then stack-maz (#) < 0;
end

else if stack_3(#) <0 then

begin if stack_2(#) > 0 then stack_max (#) < stack_1 (#) + stack_2 (#)
else stack_max (#) < stack_1 (#);
stack-min (#) < stack_1 (#) + stack_2 (#) + stack_3 (#);
if stack_min(#) > 0 then stack_min(#) < 0;
end

else begin stack-mazx (#) < stack_1 (#) + stack_2 (#) + stack_3 (#);
if stack-mazx (#) < stack_1(#) then stack-maz (#) < stack_1 (#);
stack-min (#) < stack_1 (#) + stack_2 (#);
if stack-min(#) > 0 then stack_min(#) < 0;
end

555. It’s convenient to keep the current values of [, t1, and t in the integer form 2! +2'¢; and 2! +2't,. The
cubic_intersection routine uses global variables cur_t and cur_tt for this purpose; after successful completion,
cur_t and cur_tt will contain unity plus the scaled values of t1 and ts.

The values of cur_-t and cur_tt will be set to zero if cubic_intersection finds no intersection. The routine
gives up and gives an approximate answer if it has backtracked more than 5000 times (otherwise there are
cases where several minutes of fruitless computation would be possible).

define max_patience = 5000
(Global variables 13) +=
cur_t, cur_tt: integer; {controls and results of cubic_intersection }
time_to_go: integer; {this many backtracks before giving up }
maz_t: integer; {maximum of 2!7! so far achieved }

8556 METAFONT PART 26: DIRECTION AND INTERSECTION TIMES 229

556. The given cubics B(wg, w1, ws,w3;t) and B(zg, 21, 22, 23;t) are specified in adjacent knot nodes
(p, link(p)) and (pp, link (pp)), respectively.
procedure cubic_intersection (p, pp : pointer);
label continue, not_found, exit;
var q, qq: pointer; {link(p), link(pp) }
begin time_to_go < max_patience; maz_t < 2; (Initialize for intersections at level zero 558);
loop begin continue: if delr — tol < stack-maz (z_packet(zy)) — stack_min(u_packet(uv)) then
if delz + tol > stack-min (z_packet(zy)) — stack-maz (u_packet (uv)) then
if dely — tol < stack-max (y_packet(zy)) — stack_min(v_packet(uv)) then
if dely + tol > stack_min(y-packet(zy)) — stack-maz (v_packet(uv)) then
begin if cur_t > max_t then
begin if maz_t = two then {we’ve done 17 bisections }
begin cur_t < half (cur-t +1); cur_tt < half (cur_tt + 1); return;
end;
double(max_t); appr_t < cur_t; appr_tt < cur_tt;
end;
(Subdivide for a new level of intersection 559);
goto continue;
end;
if time_to_go > 0 then decr(time_to_go)
else begin while appr_t < unity do
begin double(appr_t); double(appr_tt);

end;
cur_t < appr-t; cur-tt < appr_tt; return;
end;
(Advance to the next pair (cur_t, cur_tt) 560);
end;
erit: end;

557. The following variables are global, although they are used only by cubic_intersection, because it is
necessary on some machines to split cubic_intersection up into two procedures.

(Global variables 13) +=

delz, dely: integer; {the components of A = 2!(wy — zg) }

tol: integer; {bound on the uncertainty in the overlap test }

wv,zy: 0 .. bistack_size; { pointers to the current packets of interest }
three_l: integer; { tol_step times the bisection level }

appr-t, appr-tt: integer; {best approximations known to the answers }

230 PART 26: DIRECTION AND INTERSECTION TIMES METAFONT 8558

558. We shall assume that the coordinates are sufficiently non-extreme that integer overflow will not occur.

(Initialize for intersections at level zero 558) =
q < link(p); qq < link(pp); bisect_ptr < int_packets;
ulr < right_x (p) — z_coord (p); ulr < left_x(q) — right-x(p); udr + z_coord(q) — left_z(q);
set_min_max (ur_packet);
vlr < right_y (p) — y_coord (p); v2r < left_y(q) — right_y(p); v3r < y_coord(q) — left_y(q);
set_min_max (vr_packet);
zlr < right_z (pp) — z_coord (pp); x2r < left_z(qq) — right_z(pp); z3r < x_coord(qq) — left_z(qq);
set_min_maz (xr_packet);
ylIr « right_y(pp) — y-coord (pp); y2r < left_y(qq) — right_y(pp); y3r < y-coord(qq) — left_y(qq);
set_min_max (yr_packet);
delz < x_coord (p) — z_coord(pp); dely < y_coord (p) — y_coord (pp);
tol <= 0; uv < r_packets; zy < r_packets; three_l <— 0; cur_t < 1; cur_tt + 1

This code is used in section 556.

559. (Subdivide for a new level of intersection 559) =
stack_dx < delx; stack_dy < dely; stack_tol < tol; stack_uv < uv; stack_zy < xy;
bisect_ptr < bisect_ptr + int_increment;
double(cur-t); double(cur-tt);
ull < stack_1 (u-packet(uv)); udr < stack-8 (u_packet(uv)); u2l < half (ull + stack_2(u_packet(uv)));
u2r < half (u8r + stack-2 (u_packet(uv))); udl < half (u2l + u2r); ulr < udl; set-min_max (ul_packet);
set_min_max (ur_packet);
v1l « stack_1 (v_packet(uv)); v3r < stack-3 (v_packet(uv)); v2l < half (v1l + stack-2 (v_packet(uv)));
v2r < half (v3r + stack_2 (v_packet(uv))); v3l < half (V21 4+ v2r); vir < v3l; set-min_max (vi_packet);
set_min_max (vr_-packet);
z1l + stack_1 (z_packet (zy)); x3r « stack-3(x_packet(zy)); x2l < half (21l + stack_2 (z_packet(zy)));
x2r + half (x3r + stack_2 (z_packet(zy))); ©3l + half (221 + 22r); xlr < x3l; set_min_maz (xl_packet);
set_min_max (zr_packet);
y1l + stack_1 (y_packet(xy)); ySr + stack_3 (y_packet(xy)); y2l < half (y1l + stack_2 (y_packet(zy)));
y2r < half (y3r + stack-2 (y-packet(zy))); y3l « half (y21 + y2r); ylr < y3l; set-min_maz (yl_packet);
set_min_max (yr_packet);
uv + lpackets; xy < l_packets; double(delr); double(dely);
tol «+ tol — three_l + tol_step; double(tol); three_l < three_l + tol_step

This code is used in section 556.

560. (Advance to the next pair (cur_t, cur_tt) 560) =
not_found: if odd(cur_tt) then
if odd(cur-t) then (Descend to the previous level and goto not_found 561)
else begin incr(cur.t);
delz < delr + stack_1 (u_packet (uv)) + stack_2 (u_packet(uv)) + stack_3 (u_packet (uv));
dely < dely + stack_1 (v_packet (uv)) + stack-2 (v_packet (uv)) + stack-3 (v_packet (uv));
uwv + uv + int_packets; {switch from L_packets to r_packets }
decr(cur_tt); xy + zy — int_packets; {switch from r_packets to l_packets }
delz + delr + stack-1 (z_packet(zy)) + stack_2 (z_packet(zy)) + stack_3 (z_packet (zy));
dely < dely + stack_1 (y_packet(zy)) + stack_2 (y-packet (zy)) + stack_3 (y_packet(zy));
end
else begin incr(cur-tt); tol < tol + three_l;
delr + delr — stack_1 (z_packet(zy)) — stack_2 (z_packet(xy)) — stack_3 (xz_packet (zy));
dely + dely — stack_1 (y_packet(zy)) — stack_2 (y-packet(zy)) — stack_-3 (y_packet (zy));
xy < zy + int_packets; {switch from l_packets to r_packets }
end

This code is used in section 556.

8561 METAFONT PART 26: DIRECTION AND INTERSECTION TIMES 231

561. (Descend to the previous level and goto not_found 561) =
begin cur_t « half (cur_t); cur_tt « half (cur_tt);
if cur_t = 0 then return;
bisect_ptr < bisect_ptr — int_increment; three_l < three_l — tol_step; delx < stack_dx; dely < stack_dy;
tol < stack_tol; wv < stack_uv; xy < stack_zy;
goto not_found;
end

This code is used in section 560.

562. The path_intersection procedure is much simpler. It invokes cubic_intersection in lexicographic order
until finding a pair of cubics that intersect. The final intersection times are placed in cur_t and cur_tt.

procedure path_intersection (h, hh : pointer);
label exit;
var p, pp: pointer; {link registers that traverse the given paths }
n,nn: integer; {integer parts of intersection times, minus unity }
begin (Change one-point paths into dead cycles 563);
tol_step + 0;
repeat n < —unity; p < h;
repeat if right_type (p) # endpoint then
begin nn < —unity; pp < hh;
repeat if right_type (pp) # endpoint then
begin cubic_intersection (p, pp);
if cur_t > 0 then
begin cur_t < cur-t +n; cur_tt < cur_tt + nn; return;
end;
end;
nn < nn + unity; pp < link(pp);
until pp = hh;
end;
n < n + unity; p < link(p);
until p = h;
tol_step < tol_step + 3;
until tol_step > 3;
cur_t <— —unity; cur_tt < —unity;
erit: end;

563. (Change one-point paths into dead cycles 563) =

if right_type (h) = endpoint then
begin right_z(h) + z_coord (h); left_x(h) < x_coord (h); right_y(h) < y_coord (h);
left_y (h) « y-coord (h); right_type(h) + explicit;
end;

if right_type (hh) = endpoint then
begin right_z (hh) « z_coord (hh); left_x(hh) < x_coord (hh); right_y(hh) < y_coord (hh);
left_y (hh) < y_coord (hh); right_type(hh) < explicit;
end;

This code is used in section 562.

232 PART 27: ONLINE GRAPHIC OUTPUT METAFONT 8564

564. Online graphic output. METAFONT displays images on the user’s screen by means of a few
primitive operations that are defined below. These operations have deliberately been kept simple so that they
can be implemented without great difficulty on a wide variety of machines. Since Pascal has no traditional
standards for graphic output, some system-dependent code needs to be written in order to support this
aspect of METAFONT; but the necessary routines are usually quite easy to write.

In fact, there are exactly four such routines:

init_screen does whatever initialization is necessary to support the other operations; it is a boolean function
that returns false if graphic output cannot be supported (e.g., if the other three routines have not
been written, or if the user doesn’t have the right kind of terminal).

blank_rectangle updates a buffer area in memory so that all pixels in a specified rectangle will be set to the
background color.

paint_row assigns values to specified pixels in a row of the buffer just mentioned, based on “transition”
indices explained below.

update_screen displays the current screen buffer; the effects of blank_rectangle and paint_row commands may
or may not become visible until the next update_screen operation is performed. (Thus, update_screen
is analogous to update_terminal.)

The Pascal code here is a minimum version of init_screen and update_screen, usable on METAFONT instal-
lations that don’t support screen output. If init_screen is changed to return true instead of false, the other
routines will simply log the fact that they have been called; they won’t really display anything. The standard
test routines for METAFONT use this log information to check that METAFONT is working properly, but the
wlog instructions should be removed from production versions of METAFONT.

function init_screen: boolean;
begin init_screen < false;
end;

procedure update_screen; {will be called only if init_screen returns true }
begin init wlog_ln(Calling UPDATESCREEN "); tini { for testing only }
end;

565. The user’s screen is assumed to be a rectangular area, screen_width pixels wide and screen_depth
pixels deep. The pixel in the upper left corner is said to be in column 0 of row 0; the pixel in the lower right
corner is said to be in column screen_width — 1 of row screen_depth — 1. Notice that row numbers increase
from top to bottom, contrary to METAFONT’s other coordinates.

Each pixel is assumed to have two states, referred to in this documentation as black and white. The
background color is called white and the other color is called black; but any two distinct pixel values can
actually be used. For example, the author developed METAFONT on a system for which white was black and
black was bright green.

define white =0 {background pixels }
define black =1 {visible pixels }

(Types in the outer block 18) 4+=
screen_row = 0 .. screen_depth; {a row number on the screen }
screen_col =0 .. screen_width; {a column number on the screen }
trans_spec = array [screen_col] of screen_col; {a transition spec, see below }
pizel_color = white .. black; {specifies one of the two pixel values }

566. We'll illustrate the blank_rectangle and paint_row operations by pretending to declare a screen buffer
called screen_pizel. This code is actually commented out, but it does specify the intended effects.

(Global variables 13) +=

@{screen_pizel: array [screen_row, screen_col] of pizel_color;

o}

8567 METAFONT PART 27: ONLINE GRAPHIC OUTPUT 233

567. The blank_rectangle routine simply whitens all pixels that lie in columns left_col through right_col —1,
inclusive, of rows top_row through bot_row — 1, inclusive, given four parameters that satisfy the relations

0 < left_col < right_col < screen_width, 0 < top_row < bot_row < screen_depth.

If left_col = right_col or top_row = bot_row, nothing happens.
The commented-out code in the following procedure is for illustrative purposes only.

procedure blank_rectangle (left_col, right_col : screen_col; top_row, bot_row : screen_row);
var r: screen_row; c: screen_col;
begin @{ for r <+ top_row to bot_row — 1 do
for ¢ « left_col to right_col — 1 do screen_pizel[r, c| < white;
e}
init wlog_cr; {this will be done only after init_screen = true }
wlog_In(~Calling BLANKRECTANGLE(",left_col : 1, ", ", right_col : 1, ", top_row : 1,”, ", bot_row : 1, ") *);
tini
end;

568. The real work of screen display is done by paint_row. But it’s not hard work, because the operation
affects only one of the screen rows, and it affects only a contiguous set of columns in that row. There are four
parameters: r (the row), b (the initial color), a (the array of transition specifications), and n (the number of
transitions). The elements of a will satisfy

0 <al0] <all] < --- <aln] < screen_width;

the value of r will satisfy 0 < r < screen_depth; and n will be positive.
The general idea is to paint blocks of pixels in alternate colors; the precise details are best conveyed by
means of a Pascal program (see the commented-out code below).

procedure paint_row (r : screen_row; b : pizel_color; var a : trans_spec; n : screen_col);
var k: screen_col; {an index into a }
c: screen_col; {an index into screen_pizel }
begin @{k < 0; ¢+ a[0];
repeat incr(k);
repeat screen_pizel[r,c| « b; incr(c);
until ¢ = a[k];
b < black —b; { black <> white }
until k£ = n;
@}
init wlog("Calling PAINTROW(,r:1,",",b:1,7;"); {this is done only after init_screen = true }
for k< 0ton do
begin wilog(alk] : 1);
if k # n then wlog(~,");
end;
wlog-In(~) 7); tini
end;

569. The remainder of METAFONT’s screen routines are system-independent calls on the four primitives
just defined.

First we have a global boolean variable that tells if init_screen has been called, and another one that tells
if init_screen has given a true response.
{ Global variables 13) +=

screen_started: boolean; {have the screen primitives been initialized? }
screen_OK : boolean; {is it legitimate to call blank_rectangle, paint_row, and update_screen? }

234 PART 27: ONLINE GRAPHIC OUTPUT METAFONT §570

570. define start_screen =
begin if —screen_started then
begin screen_OK < init_screen; screen_started <— true;
end;
end

(Set initial values of key variables 21) +=
screen_started < false; screen_.OK < false;

571. METAFONT provides the user with 16 “window” areas on the screen, in each of which it is possible
to produce independent displays.

It should be noted that METAFONT’s windows aren’t really independent “clickable” entities in the sense of
multi-window graphic workstations; METAFONT simply maps them into subsets of a single screen image that
is controlled by init_screen, blank_rectangle, paint_row, and update_screen as described above. Implementa-
tions of METAFONT on a multi-window workstation probably therefore make use of only two windows in the
other sense: one for the terminal output and another for the screen with METAFONT’s 16 areas. Henceforth
we shall use the term window only in METAFONT’s sense.

(Types in the outer block 18) 4+=
window_number =0 .. 15;

572. A user doesn’t have to use any of the 16 windows. But when a window is “opened,” it is allocated to a
specific rectangular portion of the screen and to a specific rectangle with respect to METAFONT’s coordinates.
The relevant data is stored in global arrays window_open, left_col, right_col, top_row, bot_row, m_window,
and n_window.

The window_open array is boolean, and its significance is obvious. The left_col, ..., bot_row arrays
contain screen coordinates that can be used to blank the entire window with blank_rectangle. And the
other two arrays just mentioned handle the conversion between actual coordinates and screen coordinates:
METAFONT’s pixel in column m of row n will appear in screen column m_window + m and in screen row
n_window — n, provided that these lie inside the boundaries of the window.

Another array window_time holds the number of times this window has been updated.

(Global variables 13) +=

window_open: array [window_number] of boolean; {has this window been opened? }
left_col: array [window_number] of screen_col; {leftmost column position on screen }
right_col: array [window_number] of screen_col; {rightmost column position, plus 1}
top_row: array [window-number] of screen_row; {topmost row position on screen }
bot_row: array [window_number| of screen_row; {bottommost row position, plus 1}
m_window: array [window_number] of integer; {offset between user and screen columns }
n-window: array [window_number| of integer; {offset between user and screen rows }
window_time: array [window_number] of integer; {it has been updated this often }

573. (Set initial values of key variables 21) +=
for k + 0 to 15 do
begin window_open[k] < false; window_time[k] < 0;
end;

8574 METAFONT PART 27: ONLINE GRAPHIC OUTPUT 235

574. Opening a window isn’t like opening a file, because you can open it as often as you like, and you
never have to close it again. The idea is simply to define special points on the current screen display.
Overlapping window specifications may cause complex effects that can be understood only by scrutinizing
METAFONT’s display algorithms; thus it has been left undefined in the METAFONT user manual, although
the behavior is in fact predictable.
Here is a subroutine that implements the command ‘openwindow k from (r0, c0) to (r1,cl) at (z,y)’.

procedure open_a_window (k : window_number; r0,c0,r1,cl : scaled; x,y : scaled);
var m,n: integer; {pixel coordinates }
begin (Adjust the coordinates (r0, c0) and (r1, c1) so that they lie in the proper range 575);
window_open k] < true; incr(window_timelk]);
left_col[k] < c0; right_collk] < c1; top_row[k] < r0; bot_row|[k] < r1;
(Compute the offsets between screen coordinates and actual coordinates 576);
start_screen;
if screen_.OK then
begin blank_rectangle(c0, c1,r0,r1); update_screen;
end;
end;

)

575. A window whose coordinates don’t fit the existing screen size will be truncated until they do.

(Adjust the coordinates (r0, c0) and (r1,cl) so that they lie in the proper range 575) =
if 70 < 0 then 70 < 0 else r0 < round_unscaled (r0);
r1 + round_unscaled (r1);
if r1 > screen_depth then r1 < screen_depth;
if r1 < r0 then

if 70 > screen_depth then r0 < r1 else r1 « r0;
if c0 <0 then c0 < 0 else c0 <+ round_unscaled(c0);
¢l « round_unscaled(cl);
if ¢l > screen_width then c1 < screen_width;
if ¢1 < ¢0 then

if c0 > screen_width then c0 < c1 else c1 < c0

This code is used in section 574.

576. Three sets of coordinates are rampant, and they must be kept straight! (i) METAFONT’s main
coordinates refer to the edges between pixels. (ii) METAFONT’s pixel coordinates (within edge structures)
say that the pixel bounded by (m,n), (m,n + 1), (m + 1,n), and (m + 1,n + 1) is in pixel row number n
and pixel column number m. (iii) Screen coordinates, on the other hand, have rows numbered in increasing
order from top to bottom, as mentioned above.

The program here first computes integers m and n such that pixel column m of pixel row n will be at the
upper left corner of the window. Hence pixel column m — c0 of pixel row n + r0 will be at the upper left
corner of the screen.

(Compute the offsets between screen coordinates and actual coordinates 576) =
m < round_unscaled (x); n + round-unscaled (y) — 1;
m_window[k] < ¢0 — m; n_window[k] < r0 +n

This code is used in section 574.

236 PART 27: ONLINE GRAPHIC OUTPUT METAFONT 8577

577. Now here comes METAFONT’s most complicated operation related to window display: Given the
number k£ of an open window, the pixels of positive weight in cur_edges will be shown as black in the
window; all other pixels will be shown as white.

procedure disp_edges (k : window_number);
label done, found;
var p,q: pointer; {for list manipulation }
already_there: boolean; {is a previous incarnation in the window? }
r: integer; {row number }
{ Other local variables for disp_edges 580)
begin if screen_OK then
if left_col[k] < right_col[k] then
if top_row[k] < bot_row[k] then
begin already_there < false;
if last_window (cur_edges) = k then
if last_window_time (cur_edges) = window_time[k] then already_there + true;
if —already_there then blank_rectangle (left_col[k], right_col k], top_row[k], bot_row[k]);
(Initialize for the display computations 581);
p < link(cur_edges); r < n_window[k] — (n-min(cur_edges) — zero_field);
while (p # cur_edges) A (r > top_row[k]) do
begin if r < bot_row[k] then (Display the pixels of edge row p in screen row r 578);
p < link(p); decr(r);
end;
update_screen; incr(window_timel[k)); last_window (cur_edges) < k;
last_window_time (cur_edges) <+ window_time [k];
end;
end;

578. Since it takes some work to display a row, we try to avoid recomputation whenever we can.
(Display the pixels of edge row p in screen row r 578) =

begin if unsorted (p) > void then sort_edges(p)

else if unsorted(p) = void then

if already_there then goto done;

unsorted (p) < void; {this time we’ll paint, but maybe not next time }

(Set up the parameters needed for paint_row; but goto done if no painting is needed after all 582);

paint_row (r, b, row_transition,n);
done: end

This code is used in section 577.

579. The transition-specification parameter to paint_row is always the same array.

(Global variables 13) +=
row_transition: trans_spec; {an array of black /white transitions }

8580 METAFONT PART 27: ONLINE GRAPHIC OUTPUT 237

580. The job remaining is to go through the list sorted(p), unpacking the info fields into m and weight,
then making black the pixels whose accumulated weight w is positive.

(Other local variables for disp_edges 580) =

n: screen_col; {the highest active index in row_transition }

w,ww: integer; {old and new accumulated weights }

b: pizel_color; {status of first pixel in the row transitions }

m, mm: integer; {old and new screen column positions }

d: integer; {edge-and-weight without min_halfword compensation }
m_adjustment: integer; { conversion between edge and screen coordinates }
right_edge: integer; {largest edge-and-weight that could affect the window }
min_col: screen_col; {the smallest screen column number in the window }

This code is used in section 577.

581. Some precomputed constants make the display calculations faster.

(Initialize for the display computations 581) =
m_adjustment < m_window[k] — m_offset (cur_edges);
right_edge <+ 8 * (right_col[k] — m_adjustment);
min_col + left_col[k]

This code is used in section 577.

582. (Set up the parameters needed for paint_row; but goto done if no painting is needed after all 582) =
n <+ 0; ww + 0; m <+ —1; w«+ 0; g < sorted(p); row_transition[0] < min_col;
loop begin if ¢ = sentinel then d < right_edge
else d « ho(info(q));
mm < (d div 8) + m_adjustment;
if mm # m then
begin (Record a possible transition in column m 583);
m<— mm; w < ww;
end;
if d > right_edge then goto found;
ww + ww + (d mod 8) — zero_w; q + link(q);
end;
found: (Wind up the paint_row parameter calculation by inserting the final transition; goto done if no
painting is needed 584);

This code is used in section 578.

238 PART 27: ONLINE GRAPHIC OUTPUT

583. Now m is a screen column < right_col [k].

(Record a possible transition in column m 583) =
if w <0 then
begin if ww > 0 then
if m > min_col then
begin if n =0 then
if already_there then
begin b < white; incr(n);
end
else b « black
else incr(n);
row_transition[n] < m;
end;
end
else if ww < 0 then
if m > min_col then
begin if n = 0 then b+ black;
incr(n); row_transition|n] m;
end

This code is used in section 582.

584.
since it has already been blanked out in that case.

METAFONT

When the following code is invoked, row_transition[n] will be strictly less than right_col[k].

§583

If the entire row is white in the window area, we can omit painting it when already_there is false,

(Wind up the paint_row parameter calculation by inserting the final transition; goto done if no painting is

needed 584) =
if already_there V (ww > 0) then
begin if n =0 then
if ww > 0 then b < black
else b < white;
incr(n); row_transition|n] < right_col [k];
end
else if n =0 then goto done

This code is used in section 582.

8585 METAFONT PART 28: DYNAMIC LINEAR EQUATIONS 239

585. Dynamic linear equations. METAFONT users define variables implicitly by stating equations
that should be satisfied; the computer is supposed to be smart enough to solve those equations. And indeed,
the computer tries valiantly to do so, by distinguishing five different types of numeric values:

type (p) = known is the nice case, when value(p) is the scaled value of the variable whose address is p.

type(p) = dependent means that value(p) is not present, but dep_list(p) points to a dependency list that
expresses the value of variable p as a scaled number plus a sum of independent variables with fraction
coefficients.

type(p) = independent means that value(p) = 64s + m, where s > 0 is a “serial number” reflecting the
time this variable was first used in an equation; also 0 < m < 64, and each dependent variable that
refers to this one is actually referring to the future value of this variable times 2™. (Usually m = 0,
but higher degrees of scaling are sometimes needed to keep the coefficients in dependency lists from
getting too large. The value of m will always be even.)

type(p) = numeric_type means that variable p hasn’t appeared in an equation before, but it has been
explicitly declared to be numeric.

type (p) = undefined means that variable p hasn’t appeared before.

We have actually discussed these five types in the reverse order of their history during a computation:
Once known, a variable never again becomes dependent; once dependent, it almost never again becomes
independent; once independent, it never again becomes numeric_type; and once numeric_type, it never again
becomes undefined (except of course when the user specifically decides to scrap the old value and start
again). A backward step may, however, take place: Sometimes a dependent variable becomes independent
again, when one of the independent variables it depends on is reverting to undefined.

define s_scale = 64 {the serial numbers are multiplied by this factor }
define new_indep (#) = {create a new independent variable }
begin if serial_-no > el_gordo — s_scale then
overflow ("independent, variables", serial_no div s_scale);
type (#) < independent; serial_-no < serial_no + s_scale; value(#) < serial_no;
end

(Global variables 13) +=
serial_no: integer; {the most recent serial number, times s_scale }

586. (Make variable ¢ + s newly independent 586) =
new_indep (q +)

This code is used in section 232.

240 PART 28: DYNAMIC LINEAR EQUATIONS METAFONT 8587

587. But how are dependency lists represented? It’s simple: The linear combination ayvy + - - - + apvg + 0
appears in k+1 value nodes. If ¢ = dep_list (p) points to this list, and if & > 0, then value(q) = c; (which is a
fraction); info(q) points to the location of vq; and link (p) points to the dependency list covg + - - - + g vg + S.
On the other hand if k& = 0, then wvalue(q) = S (which is scaled) and info(q) = null. The independent
variables v1, ..., vx have been sorted so that they appear in decreasing order of their value fields (i.e., of
their serial numbers). (It is convenient to use decreasing order, since value(null) = 0. If the independent
variables were not sorted by serial number but by some other criterion, such as their location in mem, the
equation-solving mechanism would be too system-dependent, because the ordering can affect the computed
results.)

The link field in the node that contains the constant term [is called the final link of the dependency
list. METAFONT maintains a doubly-linked master list of all dependency lists, in terms of a permanently
allocated node in mem called dep_head. If there are no dependencies, we have link(dep_-head) = dep_head
and prev_dep(dep_head) = dep_head; otherwise link (dep_head) points to the first dependent variable, say p,
and prev_dep (p) = dep_head. We have type(p) = dependent, and dep_list(p) points to its dependency list. If
the final link of that dependency list occurs in location ¢, then link(q) points to the next dependent variable
(say 7); and we have prev_dep(r) = ¢, etc.

define dep_list (#) = link (value_loc(#)) { half of the value field in a dependent variable }
define prev_dep (#) = info(value_loc(#)) {the other half; makes a doubly linked list }
define dep_node_size =2 {the number of words per dependency node }

(Initialize table entries (done by INIMF only) 176) +=
serial-no < 0; link(dep_head) < dep_head; prev_dep(dep_head) < dep_head; info(dep_head) < null;
dep_list(dep_head) + null;

588. Actually the description above contains a little white lie. There’s another kind of variable called
proto_dependent, which is just like a dependent one except that the a coefficients in its dependency list
are scaled instead of being fractions. Proto-dependency lists are mixed with dependency lists in the nodes
reachable from dep_head.

8589 METAFONT PART 28: DYNAMIC LINEAR EQUATIONS 241

589. Here is a procedure that prints a dependency list in symbolic form. The second parameter should be
either dependent or proto_dependent, to indicate the scaling of the coefficients.

(Declare subroutines for printing expressions 257) +=
procedure print_dependency(p : pointer; t : small_number);
label exit;
var v: integer; {a coefficient }
pp,q: pointer; {for list manipulation }
begin pp « p;
loop begin v < abs(value(p)); q < info(p);
if ¢ = null then {the constant term }
begin if (v #0)V (p = pp) then
begin if value(p) > 0 then
if p # pp then print_char("+");
print_scaled (value (p));
end;
return;
end;
(Print the coefficient, unless it’s £1.0 590);
if type(q) # independent then confusion("dep");
print_variable_name(q); v < value(q) mod s_scale;
while v > 0 do
begin print("*4"); v+ v — 2;
end;
p < link (p);
end;
erit: end;

590. (Print the coefficient, unless it’s £1.0 590) =
if value(p) < 0 then print_char("-")
else if p # pp then print_char("+");
if ¢t = dependent then v < round_fraction (v);
if v # unity then print_scaled (v)

This code is used in section 589.

591. The maximum absolute value of a coefficient in a given dependency list is returned by the following
simple function.

function maz_coef (p : pointer): fraction;

var x: fraction; {the maximum so far }

begin x + 0;

while info(p) # null do
begin if abs(value(p)) > x then z «+ abs(value(p));
p « link(p);
end;

maz_coef < x;

end;

242 PART 28: DYNAMIC LINEAR EQUATIONS METAFONT 8592

592. One of the main operations needed on dependency lists is to add a multiple of one list to the other;
we call this p_plus_fq, where p and ¢ point to dependency lists and f is a fraction.

If the coefficient of any independent variable becomes coef_bound or more, in absolute value, this procedure
changes the type of that variable to ‘independent_needing_fix’, and sets the global variable fix_needed to true.
The value of coef -bound = yu is chosen so that p? + u < 8; this means that the numbers we deal with won’t
get too large. (Instead of the “optimum” u = (v/33 — 1)/2 ~ 2.3723, the safer value 7/3 is taken as the
threshold.)

The changes mentioned in the preceding paragraph are actually done only if the global variable watch_coefs
is true. But it usually is; in fact, it is false only when METAFONT is making a dependency list that will
soon be equated to zero.

Several procedures that act on dependency lists, including p_plus_fq, set the global variable dep_final to
the final (constant term) node of the dependency list that they produce.

define coef-bound = 74525252525 { fraction approximation to 7/3}

define independent_needing_fix = 0
(Global variables 13) +=
fiz_needed: boolean; {does at least one independent variable need scaling? }
watch_coefs: boolean; { should we scale coefficients that exceed coef-bound? }
dep_final: pointer; {location of the constant term and final link }

593. (Set initial values of key variables 21) +=
fix_needed < false; watch_coefs <+ true;

8594 METAFONT PART 28: DYNAMIC LINEAR EQUATIONS 243

594. The p_plus_fq procedure has a fourth parameter, ¢, that should be set to proto_dependent if p is a
proto-dependency list. In this case f will be scaled, not a fraction. Similarly, the fifth parameter ¢t should
be proto_dependent if g is a proto-dependency list.

List ¢ is unchanged by the operation; but list p is totally destroyed.

The final link of the dependency list or proto-dependency list returned by p_plus_fq is the same as the
original final link of p. Indeed, the constant term of the result will be located in the same mem location as
the original constant term of p.

Coefficients of the result are assumed to be zero if they are less than a certain threshold. This compensates
for inevitable rounding errors, and tends to make more variables ‘known’. The threshold is approximately
10~° in the case of normal dependency lists, 10~# for proto-dependencies.

define fraction_threshold = 2685 {a fraction coeflicient less than this is zeroed }
define half fraction_threshold = 1342 { half of fraction_threshold }

define scaled_threshold =8 {a scaled coefficient less than this is zeroed }
define half_scaled_threshold =4 { half of scaled_threshold }

(Declare basic dependency-list subroutines 594) =
function p_plus_fq(p : pointer; f : integer; q : pointer; t, tt : small_number): pointer;
label done;
var pp, qq: pointer; {info(p) and info(q), respectively }
r,s: pointer; {for list manipulation }
threshold: integer; {defines a neighborhood of zero }
v: integer; {temporary register }
begin if t = dependent then threshold < fraction_threshold
else threshold < scaled_threshold;
r < temp_head; pp + info(p); qq <+ info(q);
loop if pp = qq then
if pp = null then goto done
else (Contribute a term from p, plus f times the corresponding term from g 595)
else if wvalue(pp) < value(qq) then (Contribute a term from ¢, multiplied by f 596)
else begin link(r) < p; r < p; p < link(p); pp < info(p);
end;
done: if t = dependent then wvalue(p) + slow_add (value(p), take_fraction(value(q), f))
else value(p) + slow_add (value(p), take_scaled (value(q), f));
link (r) < p; dep_final < p; p_plus_fq < link (temp_head);
end;
See