SHOGUN  v1.1.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
Public Member Functions
CSmoothHingeLoss Class Reference

Detailed Description

CSmoothHingeLoss implements the smooth hinge loss function.

Definition at line 21 of file SmoothHingeLoss.h.

Inheritance diagram for CSmoothHingeLoss:
Inheritance graph
[legend]

List of all members.

Public Member Functions

 CSmoothHingeLoss ()
 ~CSmoothHingeLoss ()
float64_t loss (float64_t prediction, float64_t label)
virtual float64_t first_derivative (float64_t prediction, float64_t label)
virtual float64_t second_derivative (float64_t prediction, float64_t label)
virtual float64_t get_update (float64_t prediction, float64_t label, float64_t eta_t, float64_t norm)
virtual float64_t get_square_grad (float64_t prediction, float64_t label)
virtual ELossType get_loss_type ()
virtual const char * get_name () const

Constructor & Destructor Documentation

Constructor

Definition at line 27 of file SmoothHingeLoss.h.

Destructor

Definition at line 32 of file SmoothHingeLoss.h.


Member Function Documentation

float64_t first_derivative ( float64_t  prediction,
float64_t  label 
) [virtual]

Get first derivative of the loss function

Parameters:
predictionprediction
labellabel
Returns:
first derivative

Implements CLossFunction.

Definition at line 25 of file SmoothHingeLoss.cpp.

virtual ELossType get_loss_type ( ) [virtual]

Return loss type

Returns:
L_SMOOTHHINGELOSS

Implements CLossFunction.

Definition at line 91 of file SmoothHingeLoss.h.

virtual const char* get_name ( ) const [virtual]

Return the name of the object

Returns:
LossFunction

Reimplemented from CLossFunction.

Definition at line 93 of file SmoothHingeLoss.h.

float64_t get_square_grad ( float64_t  prediction,
float64_t  label 
) [virtual]

Get square of gradient, used for adaptive learning

Parameters:
predictionprediction
labellabel
Returns:
square of gradient

Implements CLossFunction.

Definition at line 51 of file SmoothHingeLoss.cpp.

float64_t get_update ( float64_t  prediction,
float64_t  label,
float64_t  eta_t,
float64_t  norm 
) [virtual]

Get importance aware weight update for this loss function

Parameters:
predictionprediction
labellabel
eta_tlearning rate at update number t
normscale value
Returns:
update

Implements CLossFunction.

Definition at line 45 of file SmoothHingeLoss.cpp.

float64_t loss ( float64_t  prediction,
float64_t  label 
) [virtual]

Get loss for an example

Parameters:
predictionprediction
labellabel
Returns:
loss

Implements CLossFunction.

Definition at line 15 of file SmoothHingeLoss.cpp.

float64_t second_derivative ( float64_t  prediction,
float64_t  label 
) [virtual]

Get second derivative of the loss function

Parameters:
predictionprediction
labellabel
Returns:
second derivative

Implements CLossFunction.

Definition at line 35 of file SmoothHingeLoss.cpp.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines

SHOGUN Machine Learning Toolbox - Documentation