// Copyright (C) 2005 Davis E. King (davis@dlib.net), and Nils Labugt // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_GUI_CANVAS_DRAWINg_ #define DLIB_GUI_CANVAS_DRAWINg_ #include "canvas_drawing_abstract.h" #include "../gui_core.h" #include "../algs.h" #include "../array2d.h" #include "../pixel.h" #include "../image_transforms.h" #include "../geometry.h" #include <cmath> namespace dlib { // ---------------------------------------------------------------------------------------- template <typename pixel_type> void draw_line ( const canvas& c, const point& p1, const point& p2, const pixel_type& pixel, const rectangle& area = rectangle(std::numeric_limits<long>::min(), std::numeric_limits<long>::min(), std::numeric_limits<long>::max(), std::numeric_limits<long>::max()) ) { rectangle valid_area(c.intersect(area)); long x1 = p1.x(); long y1 = p1.y(); long x2 = p2.x(); long y2 = p2.y(); if (x1 == x2) { // if the x coordinate is inside the canvas's area if (x1 <= valid_area.right() && x1 >= valid_area.left()) { // make sure y1 comes before y2 if (y1 > y2) swap(y1,y2); y1 = std::max(y1,valid_area.top()); y2 = std::min(y2,valid_area.bottom()); // this is a vertical line for (long y = y1; y <= y2; ++y) { assign_pixel(c[y-c.top()][x1-c.left()], pixel); } } } else if (y1 == y2) { // if the y coordinate is inside the canvas's area if (y1 <= valid_area.bottom() && y1 >= valid_area.top()) { // make sure x1 comes before x2 if (x1 > x2) swap(x1,x2); x1 = std::max(x1,valid_area.left()); x2 = std::min(x2,valid_area.right()); // this is a horizontal line for (long x = x1; x <= x2; ++x) { assign_pixel(c[y1-c.top()][x-c.left()], pixel); } } } else { rgb_alpha_pixel alpha_pixel; assign_pixel(alpha_pixel, pixel); const unsigned char max_alpha = alpha_pixel.alpha; const long rise = (((long)y2) - ((long)y1)); const long run = (((long)x2) - ((long)x1)); if (std::abs(rise) < std::abs(run)) { const double slope = ((double)rise)/run; double first, last; if (x1 > x2) { first = std::max(x2,valid_area.left()); last = std::min(x1,valid_area.right()); } else { first = std::max(x1,valid_area.left()); last = std::min(x2,valid_area.right()); } long y; long x; const double x1f = x1; const double y1f = y1; for (double i = first; i <= last; ++i) { const double dy = slope*(i-x1f) + y1f; const double dx = i; y = static_cast<long>(dy); x = static_cast<long>(dx); if (y >= valid_area.top() && y <= valid_area.bottom()) { alpha_pixel.alpha = static_cast<unsigned char>((1.0-(dy-y))*max_alpha); assign_pixel(c[y-c.top()][x-c.left()], alpha_pixel); } if (y+1 >= valid_area.top() && y+1 <= valid_area.bottom()) { alpha_pixel.alpha = static_cast<unsigned char>((dy-y)*max_alpha); assign_pixel(c[y+1-c.top()][x-c.left()], alpha_pixel); } } } else { const double slope = ((double)run)/rise; double first, last; if (y1 > y2) { first = std::max(y2,valid_area.top()); last = std::min(y1,valid_area.bottom()); } else { first = std::max(y1,valid_area.top()); last = std::min(y2,valid_area.bottom()); } long x; long y; const double x1f = x1; const double y1f = y1; for (double i = first; i <= last; ++i) { const double dx = slope*(i-y1f) + x1f; const double dy = i; y = static_cast<long>(dy); x = static_cast<long>(dx); if (x >= valid_area.left() && x <= valid_area.right()) { alpha_pixel.alpha = static_cast<unsigned char>((1.0-(dx-x))*max_alpha); assign_pixel(c[y-c.top()][x-c.left()], alpha_pixel); } if (x+1 >= valid_area.left() && x+1 <= valid_area.right()) { alpha_pixel.alpha = static_cast<unsigned char>((dx-x)*max_alpha); assign_pixel(c[y-c.top()][x+1-c.left()], alpha_pixel); } } } } } inline void draw_line ( const canvas& c, const point& p1, const point& p2 ){ draw_line(c,p1,p2,0); } // ---------------------------------------------------------------------------------------- void draw_sunken_rectangle ( const canvas& c, const rectangle& border, unsigned char alpha = 255 ); // ---------------------------------------------------------------------------------------- template <typename pixel_type> inline void draw_pixel ( const canvas& c, const point& p, const pixel_type& pixel ) { if (c.contains(p)) { assign_pixel(c[p.y()-c.top()][p.x()-c.left()],pixel); } } // ---------------------------------------------------------------------------------------- template <typename pixel_type> void draw_checkered ( const canvas& c, const rectangle& a, const pixel_type& pixel1, const pixel_type& pixel2 ) { rectangle area = a.intersect(c); if (area.is_empty()) return; for (long i = area.left(); i <= area.right(); ++i) { for (long j = area.top(); j <= area.bottom(); ++j) { canvas::pixel& p = c[j - c.top()][i - c.left()]; if ((j&0x1) ^ (i&0x1)) { assign_pixel(p,pixel1); } else { assign_pixel(p,pixel2); } } } } // ---------------------------------------------------------------------------------------- void draw_button_down ( const canvas& c, const rectangle& btn, unsigned char alpha = 255 ); // ---------------------------------------------------------------------------------------- void draw_button_up ( const canvas& c, const rectangle& btn, unsigned char alpha = 255 ); // ---------------------------------------------------------------------------------------- template <typename pixel_type> void draw_circle ( const canvas& c, const point& center_point, double radius, const pixel_type& pixel, const rectangle& area = rectangle(std::numeric_limits<long>::min(), std::numeric_limits<long>::min(), std::numeric_limits<long>::max(), std::numeric_limits<long>::max()) ) { using std::sqrt; rectangle valid_area(c.intersect(area)); const long x = center_point.x(); const long y = center_point.y(); if (radius > 1) { long first_x = static_cast<long>(x - radius + 0.5); long last_x = static_cast<long>(x + radius + 0.5); const double rs = radius*radius; // ensure that we only loop over the part of the x dimension that this // canvas contains. if (first_x < valid_area.left()) first_x = valid_area.left(); if (last_x > valid_area.right()) last_x = valid_area.right(); long top, bottom; top = static_cast<long>(sqrt(std::max(rs - (first_x-x-0.5)*(first_x-x-0.5),0.0))+0.5); top += y; long last = top; // draw the left half of the circle long middle = std::min(x-1,last_x); for (long i = first_x; i <= middle; ++i) { double a = i - x + 0.5; // find the top of the arc top = static_cast<long>(sqrt(std::max(rs - a*a,0.0))+0.5); top += y; long temp = top; while(top >= last) { bottom = y - top + y; if (top >= valid_area.top() && top <= valid_area.bottom() ) { assign_pixel(c[top-c.top()][i-c.left()],pixel); } if (bottom >= valid_area.top() && bottom <= valid_area.bottom() ) { assign_pixel(c[bottom-c.top()][i-c.left()],pixel); } --top; } last = temp; } middle = std::max(x,first_x); top = static_cast<long>(sqrt(std::max(rs - (last_x-x+0.5)*(last_x-x+0.5),0.0))+0.5); top += y; last = top; // draw the right half of the circle for (long i = last_x; i >= middle; --i) { double a = i - x - 0.5; // find the top of the arc top = static_cast<long>(sqrt(std::max(rs - a*a,0.0))+0.5); top += y; long temp = top; while(top >= last) { bottom = y - top + y; if (top >= valid_area.top() && top <= valid_area.bottom() ) { assign_pixel(c[top-c.top()][i-c.left()],pixel); } if (bottom >= valid_area.top() && bottom <= valid_area.bottom() ) { assign_pixel(c[bottom-c.top()][i-c.left()],pixel); } --top; } last = temp; } } else if (radius == 1 && x >= valid_area.left() && x <= valid_area.right() && y >= valid_area.top() && y <= valid_area.bottom() ) { assign_pixel(c[y-c.top()][x-c.left()], pixel); } } inline void draw_circle ( const canvas& c, const point& center_point, double radius ){ draw_circle(c, center_point, radius, 0); } // ---------------------------------------------------------------------------------------- template <typename pixel_type> void draw_solid_circle ( const canvas& c, const point& center_point, double radius, const pixel_type& pixel, const rectangle& area = rectangle(std::numeric_limits<long>::min(), std::numeric_limits<long>::min(), std::numeric_limits<long>::max(), std::numeric_limits<long>::max()) ) { using std::sqrt; rectangle valid_area(c.intersect(area)); const long x = center_point.x(); const long y = center_point.y(); if (radius > 1) { long first_x = static_cast<long>(x - radius + 0.5); long last_x = static_cast<long>(x + radius + 0.5); const double rs = radius*radius; // ensure that we only loop over the part of the x dimension that this // canvas contains. if (first_x < valid_area.left()) first_x = valid_area.left(); if (last_x > valid_area.right()) last_x = valid_area.right(); long top, bottom; top = static_cast<long>(sqrt(std::max(rs - (first_x-x-0.5)*(first_x-x-0.5),0.0))+0.5); top += y; long last = top; // draw the left half of the circle long middle = std::min(x-1,last_x); for (long i = first_x; i <= middle; ++i) { double a = i - x + 0.5; // find the top of the arc top = static_cast<long>(sqrt(std::max(rs - a*a,0.0))+0.5); top += y; long temp = top; while(top >= last) { bottom = y - top + y; draw_line(c, point(i,top),point(i,bottom),pixel,area); --top; } last = temp; } middle = std::max(x,first_x); top = static_cast<long>(sqrt(std::max(rs - (last_x-x+0.5)*(last_x-x+0.5),0.0))+0.5); top += y; last = top; // draw the right half of the circle for (long i = last_x; i >= middle; --i) { double a = i - x - 0.5; // find the top of the arc top = static_cast<long>(sqrt(std::max(rs - a*a,0.0))+0.5); top += y; long temp = top; while(top >= last) { bottom = y - top + y; draw_line(c, point(i,top),point(i,bottom),pixel,area); --top; } last = temp; } } else if (radius == 1 && x >= valid_area.left() && x <= valid_area.right() && y >= valid_area.top() && y <= valid_area.bottom() ) { assign_pixel(c[y-c.top()][x-c.left()], pixel); } } inline void draw_solid_circle ( const canvas& c, const point& center_point, double radius ) { draw_solid_circle(c, center_point, radius, 0); } // ---------------------------------------------------------------------------------------- template < typename image_type > void draw_image ( const canvas& c, const point& p, const image_type& img, const rectangle& area_ = rectangle(std::numeric_limits<long>::min(), std::numeric_limits<long>::min(), std::numeric_limits<long>::max(), std::numeric_limits<long>::max()) ) { const long x = p.x(); const long y = p.y(); rectangle rect(x,y,img.nc()+x-1,img.nr()+y-1); rectangle area = c.intersect(rect).intersect(area_); if (area.is_empty()) return; for (long row = area.top(); row <= area.bottom(); ++row) { for (long col = area.left(); col <= area.right(); ++col) { assign_pixel(c[row-c.top()][col-c.left()], img[row-rect.top()][col-rect.left()]); } } } // ---------------------------------------------------------------------------------------- template <typename pixel_type> void draw_rounded_rectangle ( const canvas& c, const rectangle& rect, unsigned radius, const pixel_type& color, const rectangle& area_ = rectangle(std::numeric_limits<long>::min(), std::numeric_limits<long>::min(), std::numeric_limits<long>::max(), std::numeric_limits<long>::max()) ) { if ( rect.intersect ( c ).is_empty() ) return; draw_line ( c, point(rect.left() + radius + 1, rect.bottom()), point(rect.right() - radius - 1, rect.bottom()), color,area_ ); draw_line ( c, point(rect.left() + radius + 1, rect.top()), point(rect.right() - radius - 1, rect.top()), color,area_ ); draw_line ( c, point(rect.left(), rect.top() + radius + 1), point(rect.left(), rect.bottom() - radius - 1), color,area_ ); draw_line ( c, point(rect.right(), rect.top() + radius + 1), point(rect.right(), rect.bottom() - radius - 1), color,area_ ); unsigned x = radius, y = 0, old_x = x; point p; while ( x > y ) { p = point(rect.left() + radius - y, rect.top() + radius - x); if (area_.contains(p)) draw_pixel (c, p , color ); p = point(rect.right() - radius + y, rect.top() + radius - x); if (area_.contains(p)) draw_pixel (c, p , color ); p = point(rect.right() - radius + y, rect.bottom() - radius + x); if (area_.contains(p)) draw_pixel (c, p , color ); p = point(rect.left() + radius - y, rect.bottom() - radius + x); if (area_.contains(p)) draw_pixel (c, p , color ); p = point(rect.left() + radius - x, rect.top() + radius - y); if (area_.contains(p)) draw_pixel (c, p , color ); p = point(rect.right() - radius + x, rect.top() + radius - y); if (area_.contains(p)) draw_pixel (c, p , color ); p = point(rect.right() - radius + x, rect.bottom() - radius + y); if (area_.contains(p)) draw_pixel (c, p , color ); p = point(rect.left() + radius - x, rect.bottom() - radius + y); if (area_.contains(p)) draw_pixel (c, p , color ); y++; old_x = x; x = square_root ( ( radius * radius - y * y ) * 4 ) / 2; } if ( x == y && old_x != x ) { p = point(rect.left() + radius - y, rect.top() + radius - x); if (area_.contains(p)) draw_pixel (c, p , color ); p = point(rect.right() - radius + y, rect.top() + radius - x); if (area_.contains(p)) draw_pixel (c, p , color ); p = point(rect.right() - radius + y, rect.bottom() - radius + x); if (area_.contains(p)) draw_pixel (c, p , color ); p = point(rect.left() + radius - y, rect.bottom() - radius + x); if (area_.contains(p)) draw_pixel (c, p , color ); } } // ---------------------------------------------------------------------------------------- template <typename pixel_type> void fill_gradient_rounded ( const canvas& c, const rectangle& rect, unsigned long radius, const pixel_type& top_color, const pixel_type& bottom_color, const rectangle& area = rectangle(std::numeric_limits<long>::min(), std::numeric_limits<long>::min(), std::numeric_limits<long>::max(), std::numeric_limits<long>::max()) ) { rectangle valid_area(c.intersect(area.intersect(rect))); if ( valid_area.is_empty() ) return; unsigned long m_prev = 0, m = radius, c_div = valid_area.height() - 1; const long c_top = valid_area.top(); const long c_bottom = valid_area.bottom(); for ( long y = c_top; y <= c_bottom;y++ ) { unsigned long c_s = y - c_top; unsigned long c_t = c_bottom - y; if ( c_div == 0 ) { // only a single round, just take the average color c_div = 2; c_s = c_t = 1; } rgb_alpha_pixel color; vector_to_pixel(color, ((pixel_to_vector<unsigned long>(top_color)*c_t + pixel_to_vector<unsigned long>(bottom_color)*c_s)/c_div)); unsigned long s = y - rect.top(); unsigned long t = rect.bottom() - y; if ( s < radius ) { m = radius - square_root ( ( radius * radius - ( radius - s ) * ( radius - s ) ) * 4 ) / 2; if ( s == m && m + 1 < m_prev ) // these are hacks to remove distracting artefacts at small radii m++; } else if ( t < radius ) { m = radius - square_root ( ( radius * radius - ( radius - t ) * ( radius - t ) ) * 4 ) / 2; if ( t == m && m == m_prev ) m++; } else { m = 0; } m_prev = m; draw_line ( c, point(rect.left() + m, y), point(rect.right() - m, y), color, valid_area ); } } // ---------------------------------------------------------------------------------------- template <typename pixel_type> void draw_rectangle ( const canvas& c, rectangle rect, const pixel_type& pixel, const rectangle& area = rectangle(std::numeric_limits<long>::min(), std::numeric_limits<long>::min(), std::numeric_limits<long>::max(), std::numeric_limits<long>::max()) ) { // top line draw_line(c, point(rect.left(),rect.top()), point(rect.right(),rect.top()), pixel, area); // bottom line draw_line(c, point(rect.left(),rect.bottom()), point(rect.right(),rect.bottom()), pixel, area); // left line draw_line(c, point(rect.left(),rect.top()), point(rect.left(),rect.bottom()), pixel, area); // right line draw_line(c, point(rect.right(),rect.top()), point(rect.right(),rect.bottom()), pixel, area); } inline void draw_rectangle ( const canvas& c, rectangle rect ){ draw_rectangle(c, rect, 0); } // ---------------------------------------------------------------------------------------- template <typename pixel_type> void fill_rect ( const canvas& c, const rectangle& rect, const pixel_type& pixel ) { rectangle area = rect.intersect(c); for (long y = area.top(); y <= area.bottom(); ++y) { for (long x = area.left(); x <= area.right(); ++x) { assign_pixel(c[y-c.top()][x-c.left()], pixel); } } } // ---------------------------------------------------------------------------------------- template <typename pixel_type> void fill_rect_with_vertical_gradient ( const canvas& c, const rectangle& rect, const pixel_type& pixel_top, const pixel_type& pixel_bottom, const rectangle& area_ = rectangle(std::numeric_limits<long>::min(), std::numeric_limits<long>::min(), std::numeric_limits<long>::max(), std::numeric_limits<long>::max()) ) { rectangle area = rect.intersect(c).intersect(area_); pixel_type pixel; const long s = rect.bottom()-rect.top(); for (long y = area.top(); y <= area.bottom(); ++y) { const long t = rect.bottom()-y; const long b = y-rect.top(); vector_to_pixel(pixel, ((pixel_to_vector<long>(pixel_top)*t + pixel_to_vector<long>(pixel_bottom)*b)/s)); for (long x = area.left(); x <= area.right(); ++x) { assign_pixel(c[y-c.top()][x-c.left()], pixel); } } } // ---------------------------------------------------------------------------------------- } #ifdef NO_MAKEFILE #include "canvas_drawing.cpp" #endif #endif // DLIB_GUI_CANVAS_DRAWINg_