NIPY logo

Site Navigation

NIPY Community

Table Of Contents

Previous topic

algorithms.statistics.onesample

This Page

algorithms.statistics.rft

Module: algorithms.statistics.rft

Inheritance diagram for nipy.algorithms.statistics.rft:

The theoretical results for the EC densities appearing in this module were partially supported by NSF grant DMS-0405970.

Taylor, J.E. & Worsley, K.J. (2007). “Detecting sparse cone alternatives
for Gaussian random fields, with an application to fMRI”. Annals of Statistics, submitted.
Taylor, J.E. & Worsley, K.J. (2007). “Random fields of multivariate
test statistics, with applications to shape analysis.” Annals of Statistics, accepted.

Classes

ChiBarSquared

class nipy.algorithms.statistics.rft.ChiBarSquared(dfn=1, search=[1])

Bases: nipy.algorithms.statistics.rft.ChiSquared

Methods

density(x, dim) The EC density in dimension dim.
integ([m, k])
pvalue(x[, search])
quasi(dim) (Quasi-)polynomial parts of EC density in dimension dim
__init__(dfn=1, search=[1])
density(x, dim)

The EC density in dimension dim.

integ(m=None, k=None)
pvalue(x, search=None)
quasi(dim)

(Quasi-)polynomial parts of EC density in dimension dim

  • ignoring a factor of (2pi)^{-(dim+1)/2} in front.

ChiSquared

class nipy.algorithms.statistics.rft.ChiSquared(dfn, dfd=inf, search=[1])

Bases: nipy.algorithms.statistics.rft.ECcone

EC densities for a Chi-Squared(n) random field.

Methods

density(x, dim) The EC density in dimension dim.
integ([m, k])
pvalue(x[, search])
quasi(dim) (Quasi-)polynomial parts of EC density in dimension dim
__init__(dfn, dfd=inf, search=[1])
density(x, dim)

The EC density in dimension dim.

integ(m=None, k=None)
pvalue(x, search=None)
quasi(dim)

(Quasi-)polynomial parts of EC density in dimension dim

  • ignoring a factor of (2pi)^{-(dim+1)/2} in front.

ECcone

class nipy.algorithms.statistics.rft.ECcone(mu=[1], dfd=inf, search=[1], product=[1])

Bases: nipy.algorithms.statistics.rft.IntrinsicVolumes

A class that takes the intrinsic volumes of a set and gives the EC approximation to the supremum distribution of a unit variance Gaussian process with these intrinsic volumes. This is the basic building block of all of the EC densities.

If product is not None, then this product (an instance of IntrinsicVolumes) will effectively be prepended to the search region in any call, but it will also affect the (quasi-)polynomial part of the EC density. For instance, Hotelling’s T^2 random field has a sphere as product, as does Roy’s maximum root.

Methods

density(x, dim) The EC density in dimension dim.
integ([m, k])
pvalue(x[, search])
quasi(dim) (Quasi-)polynomial parts of EC density in dimension dim
__init__(mu=[1], dfd=inf, search=[1], product=[1])
density(x, dim)

The EC density in dimension dim.

integ(m=None, k=None)
pvalue(x, search=None)
quasi(dim)

(Quasi-)polynomial parts of EC density in dimension dim

  • ignoring a factor of (2pi)^{-(dim+1)/2} in front.

ECquasi

class nipy.algorithms.statistics.rft.ECquasi(c_or_r, r=0, exponent=None, m=None)

Bases: numpy.lib.polynomial.poly1d

Polynomials with premultiplier

A subclass of poly1d consisting of polynomials with a premultiplier of the form:

(1 + x^2/m)^-exponent

where m is a non-negative float (possibly infinity, in which case the function is a polynomial) and exponent is a non-negative multiple of 1/2.

These arise often in the EC densities.

Examples

>>> import numpy
>>> from nipy.algorithms.statistics.rft import ECquasi
>>> x = numpy.linspace(0,1,101)
>>> a = ECquasi([3,4,5])
>>> a
ECquasi([3, 4, 5],m=inf, exponent=0.000000)
>>> a(3) == 3*3**2 + 4*3 + 5
True
>>> b = ECquasi(a.coeffs, m=30, exponent=4)
>>> numpy.allclose(b(x), a(x) * numpy.power(1+x**2/30, -4))
True
>>>

Attributes

coeffs
order
variable

Methods

change_exponent(_pow) Change exponent
compatible(other) Check compatibility of degrees of freedom
denom_poly() Base of the premultiplier: (1+x^2/m).
deriv([m]) Evaluate derivative of ECquasi
integ([m, k]) Return an antiderivative (indefinite integral) of this polynomial.
__init__(c_or_r, r=0, exponent=None, m=None)
change_exponent(_pow)

Change exponent

Multiply top and bottom by an integer multiple of the self.denom_poly.

Examples

>>> import numpy
>>> b = ECquasi([3,4,20], m=30, exponent=4)
>>> x = numpy.linspace(0,1,101)
>>> c = b.change_exponent(3)
>>> c
ECquasi([  1.11111111e-04,   1.48148148e-04,   1.07407407e-02,
         1.33333333e-02,   3.66666667e-01,   4.00000000e-01,
         5.00000000e+00,   4.00000000e+00,   2.00000000e+01],m=30.000000, exponent=7.000000)
>>> numpy.allclose(c(x), b(x))
True
coeffs = None
compatible(other)

Check compatibility of degrees of freedom

Check whether the degrees of freedom of two instances are equal so that they can be multiplied together.

Examples

>>> import numpy
>>> b = ECquasi([3,4,20], m=30, exponent=4)
>>> x = numpy.linspace(0,1,101)
>>> c = b.change_exponent(3)
>>> b.compatible(c)
True
>>> d = ECquasi([3,4,20])
>>> b.compatible(d)
False
>>>
denom_poly()

Base of the premultiplier: (1+x^2/m).

Examples

>>> import numpy
>>> b = ECquasi([3,4,20], m=30, exponent=4)
>>> d = b.denom_poly()
>>> d
poly1d([ 0.03333333,  0.        ,  1.        ])
>>> numpy.allclose(d.c, [1./b.m,0,1])
True
deriv(m=1)

Evaluate derivative of ECquasi

Parameters :m : int, optional

Examples

>>> a = ECquasi([3,4,5])
>>> a.deriv(m=2)
ECquasi([6],m=inf, exponent=0.000000)
>>> b = ECquasi([3,4,5],m=10, exponent=3)
>>> b.deriv()
ECquasi([-1.2, -2. ,  3. ,  4. ],m=10.000000, exponent=4.000000)
integ(m=1, k=0)

Return an antiderivative (indefinite integral) of this polynomial.

Refer to polyint for full documentation.

See also

polyint
equivalent function
order = None
variable = None

FStat

class nipy.algorithms.statistics.rft.FStat(dfn, dfd=inf, search=[1])

Bases: nipy.algorithms.statistics.rft.ECcone

EC densities for a F random field.

Methods

density(x, dim) The EC density in dimension dim.
integ([m, k])
pvalue(x[, search])
quasi(dim) (Quasi-)polynomial parts of EC density in dimension dim
__init__(dfn, dfd=inf, search=[1])
density(x, dim)

The EC density in dimension dim.

integ(m=None, k=None)
pvalue(x, search=None)
quasi(dim)

(Quasi-)polynomial parts of EC density in dimension dim

  • ignoring a factor of (2pi)^{-(dim+1)/2} in front.

Hotelling

class nipy.algorithms.statistics.rft.Hotelling(dfd=inf, k=1, search=[1])

Bases: nipy.algorithms.statistics.rft.ECcone

Hotelling’s T^2

Maximize an F_{1,dfd}=T_dfd^2 statistic over a sphere of dimension k.

Methods

density(x, dim) The EC density in dimension dim.
integ([m, k])
pvalue(x[, search])
quasi(dim) (Quasi-)polynomial parts of EC density in dimension dim
__init__(dfd=inf, k=1, search=[1])
density(x, dim)

The EC density in dimension dim.

integ(m=None, k=None)
pvalue(x, search=None)
quasi(dim)

(Quasi-)polynomial parts of EC density in dimension dim

  • ignoring a factor of (2pi)^{-(dim+1)/2} in front.

IntrinsicVolumes

class nipy.algorithms.statistics.rft.IntrinsicVolumes(mu=[1])

Bases: object

A simple class that exists only to compute the intrinsic volumes of products of sets (that themselves have intrinsic volumes, of course).

__init__(mu=[1])

MultilinearForm

class nipy.algorithms.statistics.rft.MultilinearForm(*dims, **keywords)

Bases: nipy.algorithms.statistics.rft.ECcone

Maximize a multivariate Gaussian form

Maximized over spheres of dimension dims. See:

Kuri, S. & Takemura, A. (2001). ‘Tail probabilities of the maxima of multilinear forms and their applications.’ Ann. Statist. 29(2): 328-371.

Methods

density(x, dim) The EC density in dimension dim.
integ([m, k])
pvalue(x[, search])
quasi(dim) (Quasi-)polynomial parts of EC density in dimension dim
__init__(*dims, **keywords)
density(x, dim)

The EC density in dimension dim.

integ(m=None, k=None)
pvalue(x, search=None)
quasi(dim)

(Quasi-)polynomial parts of EC density in dimension dim

  • ignoring a factor of (2pi)^{-(dim+1)/2} in front.

OneSidedF

class nipy.algorithms.statistics.rft.OneSidedF(dfn, dfd=inf, search=[1])

Bases: nipy.algorithms.statistics.rft.ECcone

EC densities for one-sided F statistic

See:

Worsley, K.J. & Taylor, J.E. (2005). ‘Detecting fMRI activation allowing for unknown latency of the hemodynamic response.’ Neuroimage, 29,649-654.

Methods

density(x, dim) The EC density in dimension dim.
integ([m, k])
pvalue(x[, search])
quasi(dim) (Quasi-)polynomial parts of EC density in dimension dim
__init__(dfn, dfd=inf, search=[1])
density(x, dim)

The EC density in dimension dim.

integ(m=None, k=None)
pvalue(x, search=None)
quasi(dim)

(Quasi-)polynomial parts of EC density in dimension dim

  • ignoring a factor of (2pi)^{-(dim+1)/2} in front.

Roy

class nipy.algorithms.statistics.rft.Roy(dfn=1, dfd=inf, k=1, search=[1])

Bases: nipy.algorithms.statistics.rft.ECcone

Roy’s maximum root

Maximize an F_{dfd,dfn} statistic over a sphere of dimension k.

Methods

density(x, dim) The EC density in dimension dim.
integ([m, k])
pvalue(x[, search])
quasi(dim) (Quasi-)polynomial parts of EC density in dimension dim
__init__(dfn=1, dfd=inf, k=1, search=[1])
density(x, dim)

The EC density in dimension dim.

integ(m=None, k=None)
pvalue(x, search=None)
quasi(dim)

(Quasi-)polynomial parts of EC density in dimension dim

  • ignoring a factor of (2pi)^{-(dim+1)/2} in front.

TStat

class nipy.algorithms.statistics.rft.TStat(dfd=inf, search=[1])

Bases: nipy.algorithms.statistics.rft.ECcone

EC densities for a t random field.

Methods

density(x, dim) The EC density in dimension dim.
integ([m, k])
pvalue(x[, search])
quasi(dim) (Quasi-)polynomial parts of EC density in dimension dim
__init__(dfd=inf, search=[1])
density(x, dim)

The EC density in dimension dim.

integ(m=None, k=None)
pvalue(x, search=None)
quasi(dim)

(Quasi-)polynomial parts of EC density in dimension dim

  • ignoring a factor of (2pi)^{-(dim+1)/2} in front.

fnsum

class nipy.algorithms.statistics.rft.fnsum(*items)

Bases: object

__init__(*items)

Functions

nipy.algorithms.statistics.rft.Q(dim, dfd=inf)

Q polynomial

If dfd == inf (the default), then Q(dim) is the (dim-1)-st Hermite polynomial

H_j(x) = (-1)^j * e^{x^2/2} * (d^j/dx^j e^{-x^2/2})

If dfd != inf, then it is the polynomial Q defined in

Worsley, K.J. (1994). ‘Local maxima and the expected Euler characteristic of excursion sets of chi^2, F and t fields.’ Advances in Applied Probability, 26:13-42.

A ball-shaped search region of radius r.

nipy.algorithms.statistics.rft.binomial(n, k)

Binomial coefficient

n!
c = ———
(n-k)! k!
Parameters :

n : float

n of (n, k)

k : float

k of (n, k)

Returns :

c : float

Examples

First 3 values of 4 th row of Pascal triangle

>>> [binomial(4, k) for k in range(3)]
[1.0, 4.0, 6.0]
nipy.algorithms.statistics.rft.mu_ball(n, j, r=1)

j`th curvature of `n-dimensional ball radius r

Return mu_j(B_n(r)), the j-th Lipschitz Killing curvature of the ball of radius r in R^n.

nipy.algorithms.statistics.rft.mu_sphere(n, j, r=1)

j`th curvature for `n dimensional sphere radius r

Return mu_j(S_r(R^n)), the j-th Lipschitz Killing curvature of the sphere of radius r in R^n.

From Chapter 6 of

Adler & Taylor, ‘Random Fields and Geometry’. 2006.

nipy.algorithms.statistics.rft.scale_space(region, interval, kappa=1.0)

scale space intrinsic volumes of region x interval

See:

Siegmund, D.O and Worsley, K.J. (1995). ‘Testing for a signal with unknown location and scale in a stationary Gaussian random field.’ Annals of Statistics, 23:608-639.

and

Taylor, J.E. & Worsley, K.J. (2005). ‘Random fields of multivariate test statistics, with applications to shape analysis and fMRI.’

(available on http://www.math.mcgill.ca/keith

A spherical search region of radius r.

nipy.algorithms.statistics.rft.volume2ball(vol, d=3)

Approximate volume with ball

Approximate intrinsic volumes of a set with a given volume by those of a ball with a given dimension and equal volume.