Feel++  0.92.0
Static Protected Member Functions
Feel::Basis< tag, T > Class Template Reference

Base class for basis. More...

#include <basis.hpp>

List of all members.

Public Types

Typedefs
typedef T value_type
typedef ublas::matrix
< value_type, ublas::row_major > 
matrix_type

Public Member Functions

Constructors, destructor
template<typename PrimalBasis >
 Basis (PrimalBasis const &p)
 Basis (Basis const &b)
virtual ~Basis ()

Static Public Member Functions

Methods
static matrix_type const & d (uint16_type i)
 derivatives of Dubiner polynomials the derivatives are computed at the nodes of the lattice
static matrix_type const & derivate (uint16_type i)
 derivatives of Dubiner polynomials the derivatives are computed at the nodes of the lattice

Static Protected Member Functions

template<typename PrimalBasis >
static void initDerivation (PrimalBasis const &basis)

Detailed Description

template<typename tag, typename T>
class Feel::Basis< tag, T >

Base class for basis.

Author:
Christophe Prud'homme
See also:

Constructor & Destructor Documentation

template<typename tag, typename T>
template<typename PrimalBasis >
Feel::Basis< tag, T >::Basis ( PrimalBasis< tag, T > const &  p) [inline]

default constructor call differentiation matrix static construction

template<typename tag, typename T>
Feel::Basis< tag, T >::Basis ( Basis< tag, T > const &  b) [inline]

copy constructor no need to do something, everything is static

template<typename tag, typename T>
virtual Feel::Basis< tag, T >::~Basis ( ) [inline, virtual]

destructor, nothing to do


Member Function Documentation

template<typename tag, typename T>
static matrix_type const& Feel::Basis< tag, T >::d ( uint16_type  i) [inline, static]

derivatives of Dubiner polynomials the derivatives are computed at the nodes of the lattice

  • i index of the derivative (0 : x, 1 : y, 2 : z )
template<typename tag, typename T>
static matrix_type const& Feel::Basis< tag, T >::derivate ( uint16_type  i) [inline, static]

derivatives of Dubiner polynomials the derivatives are computed at the nodes of the lattice

  • i index of the derivative (0 : x, 1 : y, 2 : z )