
FEEL MANUAL
A LIBRARY FOR

FINITE AND SPECTRAL ELEMENT METHODS IN
1D, 2D AND 3D

Version 0.91.1

Editor
Christophe PRUD’HOMME

christophe.prudhomme@ujf-grenoble.fr

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation License".

Contents

I Tutorial 7

1 Building Feel++
By Christophe Prud’homme, Baptiste Morin 9
1.1 Building FEEL++ . 9

1.1.1 Getting the source via an archive . 9
1.1.2 Getting the source via Subversion . 9
1.1.3 Unix : dependencies . 10
1.1.4 FEEL++ on Debian and Ubuntu . 10
1.1.5 FEEL++ on Mac OS X . 11
1.1.6 Compiling Feel . 14

1.2 Programming environment . 15
1.2.1 Boost C++ Libraries . 15
1.2.2 FEEL++ Namepaces . 16

2 Getting Started with Feel++
By Christophe Prud’homme, Baptiste Morin 17
2.1 Creating applications . 17

2.1.1 Application and Options . 17
2.1.2 Application, Logging, Archiving, Configuring . 19
2.1.3 Initializing PETSc and Trilinos . 21

2.2 Mesh Manipulation . 21
2.2.1 Mesh definition . 21
2.2.2 Mesh file format . 22
2.2.3 Examples . 22
2.2.4 Exporting meshes for post-processing . 22
2.2.5 Iterating over the entities of a mesh . 23
2.2.6 Load meshes . 23

2.3 Computing integrals . 24
2.3.1 Problem statement . 24
2.3.2 Implementation . 24
2.3.3 Quadrature . 25
2.3.4 Complete example : application, mesh and integrals 26
2.3.5 Results . 27

2.4 Function Spaces . 28
2.4.1 Functions spaces definition . 28
2.4.2 Using function space and functions . 29

3

2.4.3 Results . 30
2.5 Linear Algebra . 30

2.5.1 Choosing a linear algebra backend . 30
2.5.2 Solving . 31

2.6 Variational Formulation . 32
2.6.1 Principle . 32
2.6.2 Standard formulation: the Laplacian case . 32
2.6.3 Mixed formulation: the Stokes case . 36

3 Feel++ Language Keywords
By Christophe Prud’homme 39
3.1 Keywords . 39
3.2 Operators . 42

3.2.1 Integrals . 42
3.2.2 Projections . 42
3.2.3 Meshes . 43

II Learning by Examples 45

4 Non-Linear examples
By Christophe Prud’homme 47
4.1 Solving nonlinear equations . 47

4.1.1 A first nonlinear problem . 48
4.1.2 Simplified combustion problem: Bratu . 48

5 Heat sink
By Baptiste Morin, Christophe Prud’homme 49
5.1 Problem description . 50

5.1.1 Domain . 50
5.1.2 Inputs . 50

5.2 Theory . 52
5.2.1 Figure . 52
5.2.2 Equations . 54
5.2.3 Boundary conditions . 54
5.2.4 Finite Element Method . 55

5.3 Implementation . 56
5.3.1 Application parameters . 56
5.3.2 Surfaces . 56
5.3.3 Equations . 57
5.3.4 Outputs . 58

5.4 Use cases . 58
5.4.1 How to use it ? . 58
5.4.2 Results . 59

6 Natural convection in a heated tank
By Christophe Prud’homme 63
6.1 Description . 63
6.2 Influence of parameters . 64
6.3 Quantities of interest . 64

6.3.1 Mean temperature . 65
6.3.2 Flow rate . 65

6.4 Implementation . 67
6.5 Numerical Schemes . 67

4

6.5.1 Stokes problem formulation and the pressure . 67
6.5.2 The Stokes problem . 67
6.5.3 Reformulation . 67
6.5.4 Variational formulation . 67
6.5.5 Implementation . 68
6.5.6 Fix point iteration for Navier-Stokes . 68
6.5.7 A Fix point coupling algorithm . 69
6.5.8 A Newton coupling algorithm . 70

7 2D Maxwell simulation in a diode
By Thomas Strub, Philippe Helluy, Christophe Prud’homme 73
7.1 Description . 73
7.2 Variational formulation . 74
7.3 Implementation . 74
7.4 Numerical Results . 74

8 Domain decomposition methods
By Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme 75
8.1 A Really Short Introduction . 75
8.2 A 1D model . 75

8.2.1 Schwartz algorithms . 75
8.2.2 Variational formulations . 76

8.3 A 2 domain overlapping Schwartz method in 2D and 3D 76
8.3.1 Schwartz algorithms . 76
8.3.2 Variational formulations . 76
8.3.3 Numerical results in 2D case . 77
8.3.4 Numerical solutions in 2D case . 78

8.4 Computing the eigenmodes of the Dirichlet to Neumann operator 78
8.4.1 Problem description and variational formulation 78
8.4.2 Numerical solutions . 79

III Programming with FEEL++ 81

IV Appendix 83

A How to ? 85
A.1 Introduction . 85
A.2 Meshes . 85

A.2.1 What are the main execution options of a FEEL++ application ? 85
A.2.2 How to create a mesh? . 85
A.2.3 What are the different parameters of the function domain() ? 86
A.2.4 How to loop on the degrees of freedom coordinates of a function ? 86
A.2.5 How to work with specific meshes ? . 86

A.3 Language for Partial Differential Equations . 87
A.3.1 What is the difference between using the "vf::project" function and solve a weak

projection problem ? . 87
A.3.2 How to do a quick L2 projection of an expression ? 87
A.3.3 How to compose FEEL++ operators ? . 88

5

B Random notes 89
B.1 Becoming a Feel++ developer . 89

B.1.1 Interest . 89
B.1.2 Creating RSA keys . 89
B.1.3 Downloading the sources . 89

B.2 Linear Algebra with PETSC . 90
B.2.1 Using the Petsc Backend: recommended . 90
B.2.2 List of solvers and preconditioners . 90
B.2.3 What is going on in the solvers? . 90

B.3 Weak Dirichlet boudary conditions . 91
B.3.1 Basic idea . 91
B.3.2 Laplacian . 92
B.3.3 Convection-Diffusion . 92
B.3.4 Stokes . 93

B.4 Stabilisation techniques . 94
B.4.1 Convection dominated flows . 94
B.4.2 The CIP methods . 94

B.5 Interpolation . 95

C GNU Free Documentation License 97

Index 103

6

Part I

Tutorial

7

Christophe Prud’homme, Baptiste Morin

CHAPTER 1

Building Feel++
By Christophe Prud’homme, Baptiste Morin

Chapter ref: [cha:tutorial-building]

1.1 Building FEEL++

1.1.1 Getting the source via an archive

FEEL++ is distributed as a tarball once in a while. The tarballs are available at

http://www.feelpp.org/files

Download the latest tarball. Then follow the steps and replace x,y,z with the corresponding numbers

tar xzf feel-x.y.z.tar.gz
cd feel-x.y.z

1.1.2 Getting the source via Subversion

In order to download the sources of FEEL++, you can download it directly from the source depository
thanks to Subversion. To make it possible, you can download them anonymously or with an account in
LJKForge that you have created. As an open-source project, we strongly suggest you to create an account
and take part of the project with sharing your ideas, developments or suggests. If you’re interested to
participate and become a FEEL++ developer, please don’t hesitate to see how it works in the appendix
B.1. For now, if you want to get the sources without an account, open a command-line and type

svn checkout svn://scm.forge.imag.fr/var/lib/gforge/chroot/scmrepos/svn/life/trunk/life/trunk feel

then you can go to the FEEL++ top directory with

cd feel

You should obtain furthers directories such as :
applications/ # functional applications
benchmarks/ # applications under test
cmake/ # do not touch, used for compilation
contrib/
doc/ # tutorial and examples

9

http://www.feelpp.org/files

Building Feel++

examples/ # examples using Feel++
feel/ # Feel++ library
ports/ # used for Mac OS X installation
research/ # research projects using Feel++
testsuite/ # Feel++ unit tests testsuite
CMakeListe.txt # the file for cmake to build, do not modify
...

1.1.3 Unix : dependencies

In order to install FEEL++ on Unix systems (other than Mac OS X, in you have a Macintosh, please go
to 1.1.5), you have to install many dependencies before. Those libraries and programs are necessary for
the compilation and installation of the FEEL++ librairies. This is the list of all the librairies you must have
installed on your computer, and the *-dev packages for some of them.
Required packages:

• g++ (4.4 or 4.5, from now 4.6 is not yet completely working)

• MPI : openmpi (preferred) or mpich

• Boost (≥1.39)

• Petsc (≥2.3.3)

• Cmake (≥2.6)

• Gmsh1

• Libxml2

Optional packages:

• Superlu

• Suitesparse(umfpack)

• Metis: scoth with the metis interface (preferred), metis (non-free)

• Trilinos (≥8.0.8)

• Google perftools

• Paraview2, this is not stricly required to run FEEL++ programs but it is somehow necessary for
visualisation

• Python (≥ 2.5) for the validation tools

Note that all these packages are available under Debian/GNU/Linux and Ubuntu. They should be available.
Once you have installed those dependencies, you can jump to 1.1.6.

1.1.4 FEEL++ on Debian and Ubuntu

Debian

Debian is the platform of choice for FEEL++, it was developed mainly on it. The commands to install
FEEL++ on Debian are

sudo apt-get update
sudo apt-get install feel++-apps libfeel-dev feel++-doc

1Gmsh is a pre/post processing software for scientific computing available at http://www.geuz.org/gmsh
2Paraview is a few parallel scientific data visualisation plateform, http://www.paraview.org

10

http://www.geuz.org/gmsh
http://www.paraview.org

Christophe Prud’homme, Baptiste Morin

The interested user is encourage to follow the FEEL++ PTS page

• FEEL++ Debian Packages Tracking System

At the moment FEEL++ compiles and is available on the following Debian plateforms:

• FEEL++ Buildd results

Ubuntu

FEEL++ was uploaded in the distribution Ubuntu-Natty (11.04) for the first time. The commands to install
FEEL++ on Ubuntu are

sudo apt-get update
sudo apt-get install feel++-apps libfeel-dev feel++-doc

The interested user might want to follow the Ubuntu Launchpad FEEL++ page in order to know what is
going on with FEEL++ on Ubuntu

• FEEL++ Ubuntu Source Page for all Ubuntu versions

1.1.5 FEEL++ on Mac OS X

FEEL++ is also working on Mac operating systems. The way to make it work is quite different.

Compilers

In order to FEEL++ and cmake work properly, you have to install differents compilers :

• Gcc
The first step is to install the latest version of Xcode. If your computer is recent, you can install it
with your DVD that came with your machine (not the OS DVD, but the applications one). You don’t
have to install the complete Xcode (you can uncheck iOS SDK for example, it’s not necessary here
and requiers a lot of memory). Xcode will provide your computer all basic tools to compile such as
gcc 4.2. It’s the first step, you’ll see later how to easily install gcc 4.5 using MacPorts.

• Fortran
To build the Makefiles, cmake will need a Fortran compiler. To make it works, please go to Source-
Forge.net and download gfortran-snwleo-intel-bin.tar.gz which is the fortran compiler
only (from now, don’t download the complete install with gcc 4.6 because Feel needs gcc 4.5). To
install it, go to the directory where you have downloaded the file and type in a command-line

sudo tar -xvf gfortran-snwleo-intel-bin.tar -C /

MacPorts

Introduction MacPorts is an open-source community projet which aims to design an easy-to-use system
for compiling, installing and upgrading open-source softwares on Mac OS X operating system. It is dis-
tributed under BSD License and facilitate the access to thousands of ports (softwares) without installing or
compiling open-source softwares. MacPorts provides a single software tree which includes the latest stable
releases of approximately 8050 ports targeting the current Mac OS X release (10.6 or 10.5). If you want
more information, please visite their website.

11

http://packages.qa.debian.org/f/feel%2B%2B.html
https://buildd.debian.org/status/package.php?p=feel%2b%2b
https://launchpad.net/ubuntu/+source/feel++
http://hpc.sourceforge.net/
http://hpc.sourceforge.net/
http://opensource.org/licenses/bsd-license.php
http://www.macports.org/

Building Feel++

Installation To install the latest version of MacPorts, please go to Installing MacPorts page and follow
the instructions. The simplest way is to download the dmg disk image corresponding to your version of
Mac OS X. It is recommended that you install X11 (X Window System) which is normally used to display
X11 applications.

If you have installed with the package installer (MacPorts-1.x.x.dmg) that means MacPorts will be
installed in /opt/local. From now on we will suppose that macports has been installed in /opt/local

which is the default MacPorts location. Note that from now on, all tools installed by MacPorts will be
installed in /opt/local/bin or /opt/local/sbin for example (that’s here you’ll find gcc4.5 once
being installed).

Key commands In your command-line, the software MacPorts is called by the command port. Here is a
list of key commands for using MacPorts, if you want more informations please go to MacPorts Commands.

• sudo port -v selfupdate This action should be used regularly to update the local tree with the
global MacPorts ports. The option -v enables verbose which generates verbose messages.

• port info flowd This action is used to get information about a port (description, license, main-
tainer, etc.)

• sudo port install mypackage This action install the port mypackage

• sudo port uninstall mypackage This action uninstall the port mypackage

• port installed This action displays all ports installed and their versions, variants and activation
status. You can also use the -v option to also display the platform and CPU architecture(s) for which
the ports were built, and any variants which were explicitly negated.

• sudo port upgrade mypackage This action updgrades installed ports and their dependencies
when a Portfile in the repository has been updated. To avoid the upgrade of a port’s dependencies,
use the option -n.

Portfile A Portfile is a TCL script which usually contains simple keyword values and TCL expressions.
Each package/port has a corresponding Portfile but it’s only a part of a port description. FEEL++ provides
some mandatory Portfiles for its compilation which are either not available in MacPorts or are buggy but
FEEL++ also provides some Portfiles which are already available in MacPorts such as gmsh or petsc. They
usually provide either some fixes to ensure FEEL++ works properly or new version not yet available in
MacPorts. These Portfiles are installed in ports/macosx/macports.

MacPorts and FEEL++

To be able to install FEEL++, add the following line in /opt/local/etc/macports/source.conf at
the top of the file before any other sources :

file:///<path to feel top directory>/ports/macosx/macports

Once it’s done, type in a command-line :

cd <your path to feel top directory>/ports/macosx/macports
portindex -f

You should have an output like this :

12

http://www.macports.org/install.php
http://guide.macports.org/#using.port

Christophe Prud’homme, Baptiste Morin

Reading port index in <your path to feel top directory>/ports/macosx/macports
Adding port science/feel++
Adding port science/gmsh
Adding port science/petsc

Total number of ports parsed: 3
Ports successfully parsed: 3
Ports failed: 0
Up-to-date ports skipped: 0

Your are now able to type

sudo port install feel++

It might take some time (possibly an entire day) to compile all the requirements for FEEL++ to com-
pile properly. If you have several cores on your MacBook Pro, iMac or MacBook we suggest that you
configure macports to use all or some of them. To do that uncomment the following line in the file
/opt/local/etc/macports/macports.conf

buildmakejobs 0 # all the cores

At the end of the sudo port install feel++, you have all dependencies installed which is a good
point. To build all the Makefile, cmake is automatically launched but can have furthers libraries not
found. Some are important, some are not. OpenMP is one of the necessary compiler to have and is not
automatically installed on 64bits systems. We can install it now thanks to gcc4.5 that has been installed
because it taks part of the feel dependencies. To install it, please go to Omni download and download the
latest stable release. Then type

tar -xvf Omni-x.yz.tar.gz
cd Omni-x.yz
./configure --with-cc=/opt/local/bin/gcc-mp-4.5
make

Then, you have to become a super-user so type

sudo su

Enter your password, then to complete the installation

make install

After the install is complete, you can delete the sources in your download directory because make install
has built it in an appropriate directory. To make it work properly, always check that cmake is using gcc 4.5.
If cmake doesn’t recognize openMP, enter the configuration mode using ccmake and enter -fopenmp in
the box OpenMP_CXX_FLAGS

Snow Leopard & slepc/petsc

We have heard about issues with petsc and slepc with some new MacBook Pro with Snow Leopard while
they are being installed with the sudo port install feel++. If it’s the case, that probably means there
is an issue with atlas. If atlas is already installed, you have to unsinstall it (be carefull with dependencies,
they also have to be uninstalled). Once it’s done, you should do

cd <path to feel top directory>/ports/macosx/macports
portindex -f

then type in the exact same order :

13

http://www.hpcs.cs.tsukuba.ac.jp/omni-openmp/download/download-omni.html

Building Feel++

sudo port uninstall slepc
sudo port uninstall petsc
sudo port install -d petsc
sudo port install slepc

and type once again

sudo port install feel++

In that order, slepc and petsc will be installed before atlas, and feel will be properly installed.

Missing ports

cmake can build Makefiles even if some packages are missing (latex2html, VTK ...). It’s not necessary to
install them but you can complete the installation with MacPorts, cmake will find them by itself once they
have been installed.

1.1.6 Compiling Feel

Feel build system uses cmake 3 as its build system. Check that cmake is using gcc4.5 or 4.4 as C++
compiler (you can use the option CMAKE_CXX_COMPILER=<path>/g++-4.5 where the path depends
on your OS, it’s probably /usr/bin or /opt/local/bin but you can also change it with the command
ccmake and press t for advanced options). It’s important, as cmake did not produce any Makefile, a
CMakeCache.txt won’t be created so you’ll have to check each time that gcc 4.5 is the C++ compiler to be
sure the build will be correct.

FEEL++, using cmake, can be built either in source and out of source and different build type:

• minsizerel : minimal size release

• release release

• debug : debug

• none(default)

CMake Out Source Build (preferred) The best way is to have a directory (FEEL for example) in which
you have :

feel/

where feel is the top directory where the source have been downloaded. Placed in FEEL, you can create
the build directory (feel.opt for example) and lauch cmake with :

mkdir feel.opt
cd feel.opt
cmake <directory where the feel source are>
e.g cmake ../feel if feel.opt is at the same
directory level as feel

you can customize the build type:

Choose g++ release
cmake -CMAKE_CXX_COMPILER=/usr/bin/g++-4.5
Debug build type (-g...)
cmake -D CMAKE_BUILD_TYPE=Debug
Release build type (-O3...)
cmake -D CMAKE_BUILD_TYPE=Release
...

3http://www.cmake.org

14

http://www.cmake.org

Christophe Prud’homme, Baptiste Morin

Once Cmake has made its work, you are now able to compile the library with

make

Important : from now, all commands should be type in feel.opt or its subdirectories.

CMake In Source Build Be carefull, this is not advised and if you try this way, cmake won’t let you do.
If you really want to, you will have to modifiy the top CMakeLists.txt. You should consider out source
builds by checking the next paragraph.

Enter the source tree and type

cmake .
make

To customize or change some build setting one can use the cmake curse interface ccmake

ccmake . # configure and generate
make

Compiling the Feel tutorial

The manual (which includes the tutorial) is edited with LATEXso you need to have installed the LATEXdistribution
on your computer. LATEXis a high-quality typesetting system, it includes features designed for the produc-
tion of technical and scientific documentation. There are several ways to make it work, for example you can
go on MacTeX website and follow the instructions to install the distribution. If the command make check

in feel.opt/ has been run before, the tutorial should be already compiled and ready. The steps are as
follows to build the Feel tutorial

cd feel.opt/doc/manual
make pdf

The directory doc/manual contains all examples used in the tutorial. You will see how it works in the
following parts.

1.2 Programming environment

We present here a quick list of all namespaces and librairies proposed by FEEL++, you’ll see in the tutorial
which starts at section ?? how you can use them.

1.2.1 Boost C++ Libraries

FEEL++ depends on a number of libraries, some are required some are optional. Among the required
libraries, The Boost C++ libraries play a very important role as they drive or shape the design of FEEL++.
FEEL++ uses in particular the following Boost libraries:

• Boost.Parameter : use to provide powerful interfaces to FEEL++ and third party library such as

– PETSc for the linear, nonlinear solvers
– SLEPc for the eigenvalue solvers
– GMSH for mesh generation

• Boost.MPL - meta programming library : use for type computations

• Boost.Fusion - linking meta-runtime programming: use for type computations used at runtime

• Boost.Program_Options - command-line options library : provides the command line options for the
FEEL++ applications as well as configuration files

• Boost.Test - Unit testing framework ; used by the FEEL++ testsuite

15

http://www.tug.org/mactex/

Building Feel++

1.2.2 FEEL++ Namepaces

• Feel

• Feel::po

• Feel::mpl

• Feel::ublas

• Feel::math

• Feel::fem

• Feel::vf

16

Christophe Prud’homme, Baptiste Morin

CHAPTER 2

Getting Started with Feel++
By Christophe Prud’homme, Baptiste Morin

Chapter ref: [cha:getting-started]

2.1 Creating applications
myapp.cpp

2.1.1 Application and Options

As a FEEL++ user, the first step in order to use FEEL++ is to create an application. Before writing anything,
you have to include the Application header and the header which handles the internal FEEL++ options.
Note that FEEL++ uses the boost::program_options1 (po) library from Boost to handle its command
line options.
#include <feel/options.hpp>
#include <feel/feelcore/feel.hpp>
#include <feel/feelcore/application.hpp>
#include <feel/feelalg/backend.hpp>

Next to ease the programming and reading, we use the using C++ directive to bring the namespace Feel
to the current namespace

using namespace Feel;

Then we define the command line options that the applications will provide. Note that on the return
line, we incorporate the options defined internally in FEEL++.
inline
po::options_description
makeOptions()
{

po::options_description myappoptions("MyApp options");
myappoptions.add_options()

("dt", po::value<double>()->default_value(1), "time step value")
;

// return the options myappoptions and the feel_options defined
// internally by Feel
return myappoptions.add(feel_options()).add(backend_options("myapp"));

}

1http://www.boost.org/doc/html/program_options.html

17

http://www.boost.org/doc/html/program_options.html

Getting Started with Feel++

In the example, we provide the options dt which takes an argument, a double and its default value
is 1 if the options is not set by the command line. Then we describe the application by defining a class
AboutData which will be typically used by the help command line options to describe the application
inline
AboutData
makeAbout()
{

AboutData about("myapp" ,
"myapp" ,
"0.1",
"my first Feel application",
AboutData::License_GPL,
"Copyright (c) 2008 Universite Joseph Fourier");

about.addAuthor("Christophe Prud’homme",
"developer",
"christophe.prudhomme@ujf-grenoble.fr", "");

return about;
}

Now we turn to the class MyApp itself: it derives from Feel::Application. This class provides two
constructors : one with only description and one with additionnal parameters which enables to add options
argc and argv. This class MyApp has to redefine the run() method. It is defined as a pure virtual function
in Application.
class MyApp: public Application
{
public:

/**
* constructor only about data and no options description
*/
MyApp(int argc, char** argv, AboutData const&);

/**
* constructor about data and options description
*/
MyApp(int argc, char** argv,

AboutData const&,
po::options_description const&);

/**
* This function is responsible for the actual work done by MyApp.
*/
void run();

};

The implementation of the constructors is usually simple, we pass the arguments to the super class
Application that will analyze them and subsequently provide them with a Feel::po::variable_map
data structure which operates like a map. Have a look at the document boost::program_options2 for
further details. Here our two constructors do nothing (because {}).
MyApp::MyApp(int argc, char** argv,

AboutData const& ad)
:
Application(argc, argv, ad)

{}
MyApp::MyApp(int argc, char** argv,

AboutData const& ad,
po::options_description const& od)

:
Application(argc, argv, ad, od)

{}

The run() member function holds the application commands/statements. Here we provide the smallest
code unit: we print the description of the application if the --help command line options is set.

2http://www.boost.org/doc/html/program_options.html

18

http://www.boost.org/doc/html/program_options.html

Christophe Prud’homme, Baptiste Morin

void MyApp::run()
{

/**
* print the help if --help is passed as an argument
*/
/** \code */
if (this->vm().count("help"))

{
std::cout << this->optionsDescription() << "\n";
return;

}
/** \endcode */

Finally the main() function can be implemented. We pass the results of the makeAbout() and
makeOptions() to the constructor of MyApp as well as argc and argv. Then we call the run() member
function to execute the application.
int main(int argc, char** argv)
{

Feel::Environment env(argc, argv);

/**
* intantiate a MyApp class
*/
/** \code */
MyApp app(argc, argv, makeAbout(), makeOptions());
/** \endcode */

/**
* run the application
*/
/** \code */
app.run();
/** \endcode */

}

Now, you can check if your first FEEL++ application is working. To compile myapp, type in a
command-line :

cd feel.opt/doc/manual
make feel_doc_myapp

You are now able to execute it (obviously here ./feel_doc_myapp won’t produce anything but you
can try it to check the execution is ok)
> ./feel_doc_myapp --help
myapp: my first Feel application
Allowed options:

MyApp options:
--dt arg (=1) time step value

>./feel_doc_myapp --authors
myapp: my first Feel application

Author Name Task Email Address

Christophe Prud’homme developer christophe.prudhomme@ujf-grenoble.fr

2.1.2 Application, Logging, Archiving, Configuring

FEEL++ provides some basic logging and archiving support: using the changeRepository member func-
tions of the class Application, the logfile and results of the application will be stored in a subdirectory
of ~/feel. For example the following code

this->changeRepository(boost::format("doc/tutorial/%1%/")
% this->about().appName());

will create the directory ~/feel/doc/tutorial/ and will store the logfile and any files created after
calling changeRepository. Refer to the documentation of Boost::format of further details about the

19

Getting Started with Feel++

arguments to be passed to changeRepository. The logfile is named ~/feel/doc/tutorial/myapp-1.0.
The name of the logfile is built using the application name, here myapp, the number of processes, here 1
and the id of the current process, here 0.

Configuring Each application can be configured via the command line but also using a .cfg file. If
they exist they may have been installed on your system along with FEEL++ or you may create your own
configuration files. FEEL++ provides a way to look for them and parse them.
The .cfg file is searched in the following order

1. look in the current directory

2. look in the directory $HOME/feel/config/

3. look in the directory $INSTALL_PREFIX/share/feel/config/, e.g. in
Debian /usr/share/feel/config/

The name of the file can be constructed in two ways <appname>.cfg and feel_<appname>.cfg
where <appname> is the string given in the AboutData data structure passed to the construction of the
Application class. Here are two examples of the logfiles in the case that there was not myapp.cfg
created.
> ./feel_doc_myapp
> cat ~/feel/doc/tutorial/myapp/myapp-1.0
myapp-1.0 is opened for debug
the value of dt is 1
the value of myapp-solver-type is gmres
the value of myapp-pc-type is lu

> ./feel_doc_myapp --dt=0.2
> cat ~feel/doc/tutorial/myapp/myapp-1.0
myapp-1.0 is opened for debug
the value of dt is 0.2
the value of myapp-solver-type is gmres
the value of myapp-pc-type is lu

If you want to create a configured file, you have to create myapp.cfg such as, for example :
dt=1e-5
myapp-solver-type=cg
myapp-pc-type=ilu

This configured file will be parsed automatically before being executed. In that way you won’t have to
enter each time values you want to fix.

MPI Application
mympiapp.cpp

FEEL++ relies on MPI for parallel computations and the class Application initialises the MPI en-
vironment, for that, you should go to the appropriate repertory and call ccmake .. Then turn on the
FEELPP_ENABLE_MPI_MODE To launch a parallel computation for your application, you have to call the
application mpirun such as
mpirun -np 2 mympiapp

> cat ~/feel/mympiapp/mympiapp-2.0
mympiapp-2.0 is opened for debug
[Area 0] the value of dt is 1
[Area 0] we are on processor eta
[Area 0] this is process number 0 out of 2
> cat ~/feel/mympiapp/mympiapp-2.1
mympiapp-2.1 is opened for debug
[Area 0] the value of dt is 1
[Area 0] we are on processor eta
[Area 0] this is process number 1 out of 2

> mpirun -np 2 mympiapp --dt=0.01
> cat ~/feel/mympiapp/mympiapp-2.0

20

Christophe Prud’homme, Baptiste Morin

mympiapp-2.0 is opened for debug
[Area 0] the value of dt is 0.01
[Area 0] we are on processor eta
[Area 0] this is process number 0 out of 2
> cat ~/feel/mympiapp/mympiapp-2.1
mympiapp-2.1 is opened for debug
[Area 0] the value of dt is 0.01
[Area 0] we are on processor eta
[Area 0] this is process number 1 out of 2

2.1.3 Initializing PETSc and Trilinos

PETSc is a suite of data structures and routines for the scalable (parallel) solution of scientific applications
modeled by partial differential equations. It employs the MPI standard for parallelism.

The Trilinos Project is an effort to develop algorithms and enabling technologies within an object-oriented
software framework for the solution of large-scale, complex multi-physics engineering and scientific prob-
lems.

FEEL++ supports the PETSc and Trilinos framework, the class Application takes care of initialize the
associated environments.

2.2 Mesh Manipulation
mymesh.cpp

In this section, we present some of the mesh definition and manipulation tools provided by FEEL++.

2.2.1 Mesh definition

We look at the definition of a mesh data structure. First, we define the type of geometric entities that we
shall use to form our mesh. FEEL++ supports several geometric entities

• simplices: segment, triangle, tetrahedron

• tensorized entities: segment, quadrangle, hexahedron

To create a mesh, we use the following keywords Simplex<Dim,Order,RealDim> and
SimplexProduct <Dim,Order,RealDim>. They have the same template arguments:

• Dim: the topological dimension of the entity (optional, default value = 1).

• Order: the order of the entity(usually 1, higher order in development).

• RealDim: the dimension of the real space (optional, default value = Dim).

typedef Simplex<Dim> convex_type;
//typedef Hypercube<Dim, 1,Dim> convex_type;

Now, you are able to define the mesh type, Mesh<Entity> by passing as argument the type of entity it
is formed with (at the moment hybrid meshes are not supported).

typedef Mesh<convex_type > mesh_type;
typedef boost::shared_ptr<mesh_type> mesh_ptrtype;

boost::shared_ptr allows to manipulate a pointer on a mesh. It is customary, and usually a very
good practice, to define the boost::shared_ptr<> counterpart which is used actually in practice.

21

Getting Started with Feel++

2.2.2 Mesh file format

The next step is to read some mesh files. FEEL++ supports essentially the Gmsh mesh file format. It
provides also some classes to manipulate Gmsh .geo files and generate .msh files. To begin, we use some
helper classes and functions to generate a .geo file.

• domain is a function which allows to generate a .geo string description of simple domains such as
simplex and hypercube.

• createGMSHMesh is a function which allows to generate a mesh file .msh automatically from a
description file (.geo for example) by using the _desc parameter and store the generated mesh
into the _mesh parameter allocated when calling the function.

• GmshSimplexDomain is a class which will enable you to create simplex domains (e.g segment,
triangle or tetrahedron). It allows to modify

– the characteristic size of the mesh (default h = 0.1)

– the domain vertices (default is (−1,−1,−1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1))

• GmshHypercubeDomain is a class which will enable you to create hypercube domains (e.g cube) in
1,2 or 3D. It allows to modify

– the characteristic size of the mesh (default h = 0.1)

– the domain (default is the cube [0; 1]× [0; 1]× [0; 1])

2.2.3 Examples

Here is an example of how to get a simplex or hypercube geometry :
auto mesh = createGMSHMesh(_mesh=new mesh_type,

_update=MESH_CHECK|MESH_UPDATE_FACES|MESH_UPDATE_EDGES|MESH_RENUMBER,
_desc=domain(_name=(boost::format("%1%-%2%") % shape % Dim).str() ,

_shape=shape,
_dim=Dim,
_h=X[0]),

_partitions=this->comm().size());

The parameter _h in the function domain allows to change the mesh characteristic size to M_meshsize

which is given for example on the command-line using the Application framework, please refer to 2.1 for
more details. You can see the meshes, by executing with the followings ordering :

./feel_doc_mymesh --shape=simplex

./feel_doc_mymesh --shape=hypercube

we generate some of the following graphics (which are located in ~/feel/doc/tutorial/mymesh/
hypercube-x/h_y.z or ~/feel/doc/tutorial/mymesh/simplex-x/h_y.z)

To admire the meshes you’ve generated, you should go to ~/feel/doc/tutorial/mymesh/hypercube
(or simplex) and find out the .msh files. Last step is to launch gmsh with

gmsh yourfile.msh

2.2.4 Exporting meshes for post-processing

We can export the mesh to two postprocessing formats supported at the moment :

• Ensight (sos and case) which is supported by the software Ensight and Paraview;

• Gmsh which is post-processing format of Gmsh.

22

Christophe Prud’homme, Baptiste Morin

Figure 2.1: Line in 1D Figure 2.2: Cube in 2D

Figure 2.3: Tetrahedron Figure 2.4: Unit cube in 3D

We define the exporter data structure type as follows :
/* export */
typedef Exporter<mesh_type> export_type;
typedef boost::shared_ptr<export_type> export_ptrtype;

By default, the export format is ensight. We can use the code Exporter::setMesh() and Exporter::save()
to save the mesh to the format given to the command line –exporter= <format>

exporter->step(0)->setMesh(mesh);
exporter->step(0)->addRegions();
exporter->save();

To take into account the exporting format, you have to type thoses syntaxes

./feel_doc_mymesh --exporter= gmsh

./feel_doc_mymesh --exporter= paraview

2.2.5 Iterating over the entities of a mesh

FEEL++ mesh data structures provides powerful iterators that allows to walk though the mesh in various
ways: iterate over element, faces , points, marked3 elements, marked faces, ...

2.2.6 Load meshes
loadmesh.cpp

FEEL++ supports gmsh meshes but not only, you can also wortk with medit (.mesh) or STL (.stl) files
format. The full explaination is avaible in the HOW TO section you can find at A.2.5. This is implemented
in loadmesh.cpp which is a simple application which loads a mesh and calculate its surface and volume.

3associated to an integer flag denoting a region, material, processor

23

Getting Started with Feel++

2.3 Computing integrals
myintegrals.cpp

2.3.1 Problem statement

If you have followed this tutorial in the order, you are now able to create a simple application and generate
meshes. We are now interested in computing integrals on the meshes we have generated. Let’s consider
this mesh (no matter which one) on a domain Ω and parts of the domain, i.e. subregions and (parts of)
boundary. In this tutorial the domain can be either

Ω = [0, 1]d ⊂ Rd

or

Ω = {x ∈ Rd|xi ≥ 0,

d∑
i=1

xi ≤ 1}

where d = 1, 2 or 3 and x = (x1, ..., xd).

These domains are plotted in the section 2.2 (If it’s not yet done, compile all examples which are used
in this tutorial, go to ~/FEEL/feel.opt/doc/manual/ and type make and execute the application
feel_doc_mymesh). The execution will result in several meshes as it is explained in 2.2.3.
Here are the integrals we want to compute :

•
∫

Ω

1 : the measure of the domain

•
∫
∂Ω

1: the measure of the surface of the domain (Dim>1)

•
∫

Ω

x2 + y2 + z2 : the integral over Ω of (x, y, z) 7→ x2 + y2 + z2 with the convention that y = z =

0 in 1D and z = 0 in 2D.

•
∫

Ω

sin(x2 + y2 + z2) : the integral over Ω of (x, y, z) 7→ sin(x2 + y2 + z2) with the same conven-

tion as above.

2.3.2 Implementation

To compute an integral, we use the following function
integrate(<domain>,<expression under the integral>).evaluate(<location>)

Domain

You have to indicate the domain on which we want to integrate. It consists in a pair of iterators over the
elements owned by the current processor (the mesh is shared between the processors).

• To compute the integral over the region of Ω current processor, use
elements(mesh)

• To compute the integral on the boundary faces of the domain Ω, use
boundaryfaces(mesh)

24

Christophe Prud’homme, Baptiste Morin

Expression under the integrals

The language provided by FEEL++ (called the Finite Element Embedded Language) brings the keyword
Px(), Py() and Pz() to denote the x, y and z coordinates.
The expression x2 + y2 + z2 under the third integral should be written such as :
Px()*Px() + Py()*Py() + Pz()*Pz()

The constants are indicated by the function constant() (for example, we have to indicate constant(1.0)
for the first integral).

Examples

First integral : domain area
To compute the first integral (the domain area) and to have the local contributions only, we have to pass

’false’ to evaluate as follows :
double local_domain_area = integrate(_range=elements(mesh),

_expr=constant(1.0)).evaluate(false)(0,0);

This compute the integral only on the region of the domain owned by the current processor (local_domain_area).

To obtain the total area,integrate(...).evaluate() computes the global integral in parallel which
induces communications (all_reduce) to compute the sum of the local contributions

double global_domain_area= integrate(_range=elements(mesh),
_expr=constant(1.0)).evaluate()(0,0);

Finally, we print to the log file the result of the local and global integral calculation.
Log() << "int_Omega 1 = " << global_domain_area

<< "[" << local_domain_area << "]\n";

Second integral : domain perimeter
The difference with the domain area computation resides in the elements with are iterating on: here we

are iterating on the boundary faces of the domain to compute the integral using boundaryfaces(mesh)

to provide the pairs of iterators. But the stages are the same as previously

double local_boundary_length = integrate(boundaryfaces(mesh),
constant(1.0)).evaluate(false)(0,0);

double global_boundary_length = integrate(boundaryfaces(mesh),
constant(1.0)).evaluate()(0,0);

Log() << "int_BoundaryOmega (1)= " << global_boundary_length
<< "[" << local_boundary_length << "]\n";

We can apply the same method to compute the third, and the last integral.

2.3.3 Quadrature

Feel computes automatically the quadrature associated to the expression under the integral. If the ex-
pression is polynomial then the quadrature is exact. If the expression is not polynomial, then each non-
polynomial term in the expression is considered as a polynomial of degree 2 by default.

Here is how the 4-th integral can be computed letting Feel decide about the quadrature

double global_intsin = integrate(elements(mesh),
sin(Px()*Px() + Py()*Py() + Pz()*Pz())

).evaluate()(0,0);
double local_intsin = integrate(elements(mesh),

25

Getting Started with Feel++

sin(Px()*Px() + Py()*Py() + Pz()*Pz())).evaluate(false)(0,0);

An alternative is to set yourself the quadrature by passing a new argument to the integrate function:
_Q<Order>() where Order is the maximum polynomial order that the quadrature should integrate exactely.

double local_intsin2 = integrate(elements(mesh),
sin(Px()*Px() + Py()*Py() + Pz()*Pz()),
_Q<2>()

).evaluate(false)(0,0);
double global_intsin2 = integrate(elements(mesh),

sin(Px()*Px() + Py()*Py() + Pz()*Pz()),
_Q<2>()).evaluate()(0,0);

2.3.4 Complete example : application, mesh and integrals

Here, we’ll see how to build an application which create a mesh, and compute some integrals on it.

Application building

As we can see in the creating applications section (2.1), we can add a description and some options to our
new application. Here, we have created two functions makeAbout() and makeOptions() which create
respectively the descritpion and the list of options. makeOptions() creates a list of options (myintegral-
soptions), and adds two options :

• hsize which corresponds to the mesh size (default = 0.2)

• shape which corresponds to the shape of the domain (default = hypercube)

inline
po::options_description
makeOptions()
{

po::options_description myintegralsoptions("MyIntegrals options");
myintegralsoptions.add_options()

("hsize", po::value<double>()->default_value(0.2), "mesh size")
("shape", Feel::po::value<std::string>()->default_value("hypercube"), "shape of the domain (either simplex or hypercube)")
;

return myintegralsoptions.add(Feel::feel_options());
}

makeAbout() gives the description of the application :

inline
AboutData
makeAbout()
{

AboutData about("myintegrals" ,
"myintegrals" ,
"0.3",
"nD(n=1,2,3) MyIntegrals on simplices or simplex products",
Feel::AboutData::License_GPL,
"Copyright (c) 2008-2010 Universite Joseph Fourier");

about.addAuthor("Christophe Prud’homme", "developer", "christophe.prudhomme@ujf-grenoble.fr", "");
return about;

}

To get further information about the application, see creating applications section 2.1.

Class definition

Once the description and options have been defined, we create the class Myintegrals, with the constructor

MyIntegrals(po::variables_map const& vm, AboutData const& about)

26

Christophe Prud’homme, Baptiste Morin

which takes vm (a map which associates the available options with their default value), and about (con-
taining our application’s description).

The run() member function is redifined twice in this class :
void run();

void run(const double* X, unsigned long P, double* Y, unsigned long N);

These two versions are linked, because the first uses the second. Indeed, run() stores the parameters we
have chosen with the options (mesh size, shape, . . .), and uses them in the second version (X corre-
sponds to these parameters : X[0]=mesh_size and X[1]=mesh_shape).

The run() member function

In this function, we create a subdirectory of feel in which there will be the results of our application, and
logfiles containing :

• the application’s name

• the mesh size

• the mesh shape

if (!this->vm().count("nochdir"))
Environment::changeRepository(boost::format("doc/tutorial/%1%/%2%/h_%3%/")

this->about().appName()
shape
meshSize);

It is also in run() that we create the mesh before to compute the integrals :
mesh_ptrtype mesh = createGMSHMesh(_mesh=new mesh_type,

_update=MESH_CHECK|MESH_UPDATE_FACES|MESH_UPDATE_EDGES,
_desc=domain(_name= (boost::format("%1%-%2%") % shape % Dim).str() ,

_shape=shape,
_order=1,
_dim=Dim,
_h=X[0]),

_partitions=this->comm().size());

Now that we have a computational mesh, we can compute the integrals as we have seen before :
double local_domain_area = integrate(elements(mesh),

constant(1.0)).evaluate()(0,0);

double global_domain_area=local_domain_area;
if (this->comm().size() > 1)

mpi::all_reduce(this->comm(),
local_domain_area,
global_domain_area,
std::plus<double>());

Log() << "int_Omega 1 = " << global_domain_area
<< "[" << local_domain_area << "]\n";

2.3.5 Results

After compiling feel_doc_myintegrals with the defaults options
--hsize arg (=0.20000000000000001) mesh size
--shape arg (=hypercube) shape of the domain

we obtain the values of each integrals, in each dimension (1, 2 and 3) :

27

Getting Started with Feel++

--
Execute MyIntegrals<1>
int_Omega 1 = 1[1]
int_Omega (x^2+y^2+z^2) = 0.333333[0.333333]
int_Omega (sin(x^2+y^2+z^2)) [with order 4 max exact integration]= 0.310268[0.310268]
int_Omega (sin(x^2+y^2+z^2)) [with order 2 max exact integration] = 0.310281[0.310281]
--
Execute MyIntegrals<2>
int_Omega 1 = 1[1]
int_BoundaryOmega (1)= 4[4]
int_Omega (x^2+y^2+z^2) = 0.666667[0.666667]
int_Omega (sin(x^2+y^2+z^2)) [with order 4 max exact integration]= 0.56129[0.56129]
int_Omega (sin(x^2+y^2+z^2)) [with order 2 max exact integration] = 0.561299[0.561299]
--
Execute MyIntegrals<3>
int_Omega 1 = 1[1]
int_BoundaryOmega (1)= 6[6]
int_Omega (x^2+y^2+z^2) = 1[1]
int_Omega (sin(x^2+y^2+z^2)) [with order 4 max exact integration]= 0.731683[0.731683]
int_Omega (sin(x^2+y^2+z^2)) [with order 2 max exact integration] = 0.731693[0.731693]

2.4 Function Spaces
myfunctionspace.cpp

2.4.1 Functions spaces definition

In order to resolve partial derivative equations, we have to define the function space on which we work.
We can define a new type space_type which corresponds to our new functions space
typedef FunctionSpace<mesh_type, basis_type> space_type;

To define this function space, we have to define :

• mesh_type the mesh on which we work (see 2.2)

• basis_type the base of the function space (see 2.4.1)

Remark : We can use the librairie Boost.smartptr of Boost, which has a reference counter (in the
shared_ptr class). It permits to manage the memory (if we have built an object and that there are no more
any pointers on it, it is automatically destructed).

Base of the function space

To define the base of functions we want to use, we have to indicate :

• The type of the polynomials (P) we want to use

– Lagrange (more used than the others because more customizable)

– Legendre (only for hypercube)

– Dubiner (only for simplex)

– Crouzeix-Raviart

– Raviart-Thomas

• The order of these polynomials (an integer in N∗)

• The dimension of Im(P) (Scalar if Im(P) = R, Vectorial if the dimension is up to 1)

• The continuity of polynomials at the interface (Continuous or Discontinuous)

After we have chosen this parameters, we can create the new function base (new type basis_type) :
typedef bases<Lagrange<0,Scalar,Discontinuous> > basis_type;

28

Christophe Prud’homme, Baptiste Morin

Here, we build a base with Lagrange polynomials, with order 0. The result of these polynomials is a
scalar, and we authorized them to be discontinue at the interface between two elements. In our example,
p0_space_type is the function space that holds piecwise constant P0 functions :

typedef FunctionSpace<mesh_type,bases<Lagrange<0,Scalar,Discontinuous> > >
p0_space_type;

Instantiation of the function space

We want now to instanciate the function space Xh of type space_type (that we created previously).

First, we build the mesh on which we want to work (of type mesh_ptrtype)
//! create the mesh
mesh_ptrtype mesh =

createGMSHMesh(_mesh=new mesh_type,
//_update=MESH_CHECK|MESH_UPDATE_FACES|MESH_UPDATE_EDGES|MESH_RENUMBER,

_update=MESH_CHECK|MESH_UPDATE_FACES|MESH_UPDATE_EDGES,
_desc=domain(_name= (boost::format("%1%-%2%-%3%") % shape % Dim % Order).str() ,

_shape=shape,
_dim=Dim,
_order=Order,
_h=X[0]),

_partitions=this->comm().size());

Then we instantiateXh using space_type::New() static member function and obtain a space_ptrtype.
space_ptrtype Xh = space_type::New(mesh);

We are now able to instanciate elements on Xh. There are two ways to proceed, using auto keyword
allowing to infer automatically the type of Xh elements or knowing the actual type of the elements

// an element of the function space X_h
auto u = Xh->element("u");
// another element of the function space X_h
element_type v(Xh, "v");
auto w = Xh->element("w");

2.4.2 Using function space and functions

Projection

First, we define some mathematical expression/functions

g(x, y, z) = sin(πx/2) cos(πy/2) cos(π ∗ z/2)

f(x, y, z) = (1− x2) (1− y2) (1− z2) (x2 + y2 + z2)α/2.0, α = 3

In our example, these functions correspond to
auto g = sin(2*pi*Px())*cos(2*pi*Py())*cos(2*pi*Pz());
auto f =(1-Px()*Px())*(1-Py()*Py())*(1-Pz()*Pz())*pow(trans(vf::P())*vf::P(),(alpha/2.0));

(they are implemented using the new auto C++ keyword to infer the type of expression automatically).

Then we build the interpolant (Lagrange interpolant in this case since we chose Lagrange basis function),
by calling the vf::project() function which can be applied on all or parts of the mesh thanks to the
mesh iterators such as elements(mesh) or markedelements(mesh,marker). The return object is the
interpolant of the function in the space Xh given as an argument to vf::project().

u = vf::project(Xh, elements(mesh), g);
v = vf::project(Xh, elements(mesh), f);
w = vf::project(Xh, elements(mesh), idv(u)-g);

Here, u is the projection of g on the nodes of the mesh. Note that u and g have not the same type. To
evaluate the error of (u− g) on the nodes, we have to evaluate the function u, with the function v.

29

Getting Started with Feel++

Norm

To calculate norms, we use integrals. For example, the L2 norm is defined by :

‖g‖L2
=

√∫
Ω

(g)2

To compute this, we use the integrate function (See 2.3) with elements(mesh) which allows to integrate
on the entire domain. Let’s see an example of norms computation with log file printing :

double L2g2 = integrate(elements(mesh), g*g).evaluate()(0,0);
double L2uerror2 = integrate(elements(mesh), (idv(u)-g)*(idv(u)-g)).evaluate()(0,0);
Log() << "||u-g||_0=" << math::sqrt(L2uerror2/L2g2) << "\n";
double L2f2 = integrate(elements(mesh), f*f).evaluate()(0,0);
double L2verror2 = integrate(elements(mesh), (idv(v)-f)*(idv(v)-f)).evaluate()(0,0);
Log() << "||v-f||_0=" << math::sqrt(L2verror2/L2f2) << "\n";

2.4.3 Results

Execution without option

We have made a test code (it is still myfunctionspace.cpp which create a new application my-
functionspace with some options (added with a makeOptions() function), and a description (with a
makeAbout() function). (See 2.1).

This code applies the examples we have seen previously, and when we execute it without option, we
obtain :
Execute MyFunctionSpace<2>
||u-g||_0=0.00463274
||v-f||_0=0.000483591

Execute MyFunctionSpace<3>
||u-g||_0=0.00968019
||v-f||_0=0.000474499

As we have seen before, u is the projection of g in the function space. So on the mesh nodes, the error’s
norm has to be zero (the results we obtain here don’t seems to be coherent).

2.5 Linear Algebra

FEEL++ supports three different linear algebra environments that we shall call backends.

• Gmm

• Petsc4

• Trilinos5

2.5.1 Choosing a linear algebra backend

To select a backend in order to solve a linear system, we instantiate the Backend class associated :
#include <feel/feelalg/backend.hpp>
boost::shared_ptr<Backend<double> > backend =

Backend<double>::build(BACKEND_PETSC);

4Petsc is a suite of data structures and routines for the scalable solution of scientific applications modeled by PDE available at
http://www.mcs.anl.gov/petsc/petsc-as/

5The Trilinos Project is an effort to develop algorithms and enabling technologies within an object-oriented software framework
for scientific problems. http://trilinos.sandia.gov/

30

http://www.mcs.anl.gov/petsc/petsc-as/
http://trilinos.sandia.gov/

Christophe Prud’homme, Baptiste Morin

The backend provides an interface to solve
Ax = b (2.1)

where A is a n × n sparse matrix and x, b vectors of size n. The backend defines the C++ types for each of
these, e.g :
Backend<double>::sparse_matrix_type A;
Backend<double>::vector_type x,b;

In practice, we use the boost::shared_ptr<> shared pointer to ensure that we won’t get memory leaks.
The backends provide a corresponding typedef

Backend<double>::sparse_matrix_ptrtype A(backend->newMatrix(Xh, Yh));
Backend<double>::vector_ptrtype x(backend->newVector(Yh));
Backend<double>::vector_ptrtype b(backend->newVector(Xh));

whereXh and Yh are function spaces providing the number of degrees of freedom that will define the size of
the matrix and vectors thanks to the helpers functions Backend::newMatrix() and Backend::newVector.
In a parallel setting, the local/global processor mapping would be passed down by the function spaces.

2.5.2 Solving

To solve the linear problemAx = b, the backend provides a function solve with three required parameters
solve(_matrix=A, _solution=x, _rhs=b)

where :

• the matrix A has a sparse_matrix_ptrtype type

• the solution x has a type vector_type or vector_ptrtype

• the second member vector b has a type vector_ptrtype

You can also add optional parameters like :

• a preconditioner : instead of solvingAx = b, we solve P−1Ax = P−1b. This method can be applied
in iterative methods and permits to decrease the number of iterations in the resolution system

• a maximum number of iterations : this option is used with an iterative solving method

• a residual tolerance : the fraction
|| r(k) ||
|| r(0) || is inferior to the residual tolerance with r(k) = b−Ax(k)

and x(k) the solution at the kth iteration

• a absolute tolerance : || r(k) || is inferior to the absolute tolerance

• a different tolerance : sometimes, the residue doesn’t decrease continuously during the iterations.
The difference between two plots doesn’t have to exceed the parameter choosen for the difference
tolerance.

• a boolean to use transpose matrix : instead of solving Ax = b, we solve Atx = b. If A is defined
and positive, At = A.

To have a view of the values of the optional parameters, see the following code :
BOOST_PARAMETER_MEMBER_FUNCTION(

(solve_return_type),
solve,
tag,
(required

(matrix,(sparse_matrix_ptrtype))
(in_out(solution),*(mpl::or_<boost::is_convertible<mpl::_,vector_type&>,

boost::is_convertible<mpl::_,vector_ptrtype> >))
(rhs,(vector_ptrtype)))
(optional
(prec,(sparse_matrix_ptrtype), matrix)

31

Getting Started with Feel++

(maxit,(size_type), 1000)
(rtolerance,(double), 1e-13)
(atolerance,(double), 1e-50)
(dtolerance,(double), 1e5)
(reuse_prec,(bool), false)
(transpose,(bool), false)
)

)
{

The library Boost::Parameters allows you to enter parameters in the order you want. It supports de-
duced parameters, that is to say parameters whose identity can be deduced from their types.

2.6 Variational Formulation

2.6.1 Principle

A vartiational formulation of a problem is also called weak formulation. The key item is to bring a new
function (called test function) and to integrate by parts. In that way we decrease the condition on our func-
tions.

Let’s considerate the equation to solve with boundary conditions where u ∈ Ω is the unknown

−∆u = f
u = uD on ΓD
∇u.n = g on ΓN

(2.2)

Γ = ΓD ∪ ΓN is the border of Ω. By integrating by parts with a function v (called test function) supposed
picewise regular, we obtain : ∫

Ω

∇u · ∇v −
∫

Γ

(∇u · n)v =

∫
Ω

fv

We have u = uD on ΓD, we consequently take v = 0 on ΓD and we got:∫
Ω

∇u · ∇v −
∫

ΓN

gv =

∫
Ω

fv u ∈ Ω, ∀v ∈ V

where V = {v ∈ Ω, v = 0 on ΓD} with f and g which are known functions belonging to C0(Ω). The test
function v also has to be in H1. The condition v = 0 on ΓD is often used but we obviously can impose
more binding boundaries conditions on the test function. More generally, Vh represents the function test’s
space.

2.6.2 Standard formulation: the Laplacian case

Mathematical formulation
laplacian.cpp

In this example, we would like to solve for the following problem in 2D

Problem 1 find u such that
−∆u = f in Ω = [−1; 1]2 (2.3)

with
f = 2π2g (2.4)

and g is the exact solution
g = sin(πx) cos(πy) (2.5)

The following boundary conditions apply

u = g|x=±1,
∂u

∂n
= 0|y=±1 (2.6)

32

Christophe Prud’homme, Baptiste Morin

We propose here two possible variational formulations. The first one, handles the Dirichlet boundary
conditions strongly, that is to say the condition is incorporated into the function space definitions. The
second one handles the Dirichlet condition weakly and hence we have a uniform treatment for all types of
boundary conditions.

First one : strong Dirichlet conditions The variational formulation reads as follows, we introduce the
spaces

X =
{
v ∈ H1(Ω) such that v = g|x=−1,x=1

}
(2.7)

and
V =

{
v ∈ H1(Ω) such that v = 0|x=−1,x=1

}
(2.8)

We multiply (2.3) by v ∈ V then integrate over Ω and obtain∫
Ω

−∆uv =

∫
Ω

fv (2.9)

We integrate by parts and reformulate the problem as follows:

Problem 2 we look for u ∈ X such as∫
Ω

∇u · ∇v =

∫
Ω

fv ∀v ∈ V (2.10)

In the present space setting (2.8) and boundary conditions (7.7), we have the boundary term from the
integration by parts which is dropped being equal to 0∫

∂Ω

∂u

∂n
v = 0, (2.11)

recalling that
∂u

∂n

def
= ∇u · n (2.12)

where n is the outward normal to ∂Ω by convention.We now discretize the problem, we create a mesh out
of Ω, we have

Ω = ∪Nel
e=1Ωe (2.13)

where Ωe can be segments, triangles or tetrahedra depending on d and we have Nel of them. We introduce
the finite dimensional spaces of continuous piecewise polynomial of degree N functions

Xh =
{
vh ∈ C0(Ω), vh|Ωe ∈ PN (Ωe), vh = g|x=−1,x=1

}
(2.14)

and
Vh =

{
vh ∈ C0(Ω), vh|Ωe ∈ PN (Ωe), vh = 0|x=−1,x=1

}
(2.15)

which are out trial and test function spaces respectively. We now have the problem we seek to solve which
reads in our continuous Galerkin framework

Problem 3 we look for uh ∈ Xh ⊂ X such that for all v ∈ Vh ⊂ V∫
Ω

∇uh · ∇vh =

∫
Ω

fvh (2.16)

33

Getting Started with Feel++

Second one: weak Dirichlet conditions There is an alternative formulation which allows to treat weakly
Dirichlet(Essential) boundary conditions similarly to Neumann(Natural) and Robin conditions. Following
a similar development as in the previous section, the problem reads

Problem 4 we look for u ∈ Xh ⊂ H1(Ω) such that for all v ∈ Xh∫
Ω

∇u · ∇v +

∫
|x=−1,x=1

−∂u
∂n

v − u∂v
∂n

+
µ

h
uv =

∫
Ω

fv +

∫
|x=−1,x=1

−g ∂v
∂n

+
µ

h
gv (2.17)

where
Xh =

{
vh ∈ C0(Ω), vh|Ωe ∈ PN (Ωe)

}
(2.18)

In (6.3), g is defined by (7.6). µ serves as a penalisation parameter which should be> 0, e.g. between 2 and
10, and h is the size of the face. The inconvenient of this formulation is the introduction of the parameter
µ, but the advantage is the weak treatment of the Dirichlet condition.

Feel formulation

First we define the f and g. To do that we use the AUTO keyword and associate to f and g their expressions
value_type pi = M_PI;
//! deduce from expression the type of g (thanks to keyword ’auto’)
auto g = sin(pi*Px())*cos(pi*Py())*cos(pi*Pz());
gproj = vf::project(Xh, elements(mesh), g);

//! deduce from expression the type of f (thanks to keyword ’auto’)
auto f = pi*pi*Dim*g;

where M_PI is defined in the header cmath. Using AUTO allows to defined f and g — which are moderately
complex object — without having to know the actual type. AUTO determines automatically the type of the
expression using the __typeof__ keyword internally.

Then we form the right hand side by defining a linear form whose algebraic representation will be stored in
a vector_ptrtype which is provided by the chosen linear algebra backend. The linear form is equated
with an integral expression defining our right hand side.

auto F = backend(_vm=this->vm())->newVector(Xh);
form1(_test=Xh, _vector=F, _init=true) =

integrate(_range=elements(mesh), _expr=f*id(v))+
integrate(_range=markedfaces(mesh, "Neumann"),

_expr=nu*gradv(gproj)*vf::N()*id(v));

form1 generates an instance of the object representing linear forms, that is to say it mimics the mathemat-
ical object ` such that

` : Xh 7→ R

vh → `(vh) =

∫
Ω

fv
(2.19)

which is represented algebraically in the code by the vector F using the argument _vector. The last argu-
ment _init, if set to true6, will zero-out the entries of the vector F.

We now turn to the left hand side and define the bilinear form using the form2 helper function which is
passed (i) the trial function space using the _trial option, (ii) the test function space using the _test

option, (iii) the algebraic representation using _matrix, i.e. a sparse matrix whose type is derived from
one of the linear algebra backends and (iv) whether the associated matrix should initialized using _init.

/** \code */
auto D = backend()->newMatrix(_test=Xh, _trial=Xh);
/** \endcode */

//! assemble
∫

Ω
ν∇u · ∇v

6It is set to false by default.

34

Christophe Prud’homme, Baptiste Morin

/** \code */
form2(_test=Xh, _trial=Xh, _matrix=D) =

integrate(_range=elements(mesh), _expr=nu*gradt(u)*trans(grad(v)));
/** \endcode */

Finally, we deal with the boundary condition, we implement both formulation described in appendix 7.2.
For a strong treatment of the Dirichlet condition, we use the on() keyword of FEEL++ as follows

form2(_test=Xh, _trial=Xh, _matrix=D) +=
on(_range=markedfaces(mesh, "Dirichlet"),

_element=u, _rhs=F, _expr=g);

Notice that we add, using +=, the Dirichlet contribution for the bilinear form. The first argument is the
set of boundary faces to apply the condition: in gmsh the points satisfying x = ±1 are marked using the
flags 1 and 3 (x = −1 and x = 1 respectively).

To implement the weak Dirichlet boundary condition, we add the following contributions to the left
and right hand side:

form1(_test=Xh, _vector=F) +=
integrate(_range=markedfaces(mesh,"Dirichlet"),

_expr=g*(-grad(v)*vf::N()+penaldir*id(v)/hFace()));

form2(_test=Xh, _trial=Xh, _matrix=D) +=
integrate(_range=markedfaces(mesh,"Dirichlet"),

_expr= (-(gradt(u)*vf::N())*id(v)
-(grad(v)*vf::N())*idt(u)
+penaldir*id(v)*idt(u)/hFace()));

Note that we use the command line option --weakdir set to 1 by default to decide between weak/strong
Dirichlet handling. Apart the uniform treatment of boundary conditions, the weak Dirichlet formulation
has the advantage to work also in a parallel environment.

Next we solve the linear system
Du = F (2.20)

where the solve function is implemented as follows
backend(_rebuild=true,_vm=this->vm())->solve(_matrix=D, _solution=u, _rhs=F);

Finally we check for the L2 error in our approximation by computing

‖u− uh‖L2
=

√∫
Ω

(u− uh)2 =

√∫
Ω

(g − uh)2 (2.21)

where u is the exact solution and is equal to g and uh is the numerical solution of the problem (2.3) and
the components of uh in the P2 Lagrange basis are given by solving (7.5).

The code reads
double L2error2 =integrate(_range=elements(mesh),

_expr=(idv(u)-g)*(idv(u)-g)).evaluate()(0,0);
double L2error = math::sqrt(L2error2);

Log() << "||error||_L2=" << L2error << "\n";

You can now verify that the L2 error norm behaves like h−(N+1) where h is the mesh size and N the
polynomial order. The H1 error norm would be checked similarly in h−N . The figure 2.6 displays the
results using Paraview.

35

Getting Started with Feel++

(a) Colored with u (b) Elevation

Figure 2.5: Solution of problem 4

2.6.3 Mixed formulation: the Stokes case

Mathematical formulation
stokes.cpp

We are now interested in solving the Stokes equations, we would like to solve for the following problem in
2D

Problem 5 find (u, p) such that

− µ∆u +∇p = f and ∇ · u = 0, in Ω = [−1; 1]2 (2.22)

with
f = 0 (2.23)

where µ being the viscosity. The following boundary conditions apply

u = 1|y=1, u = 0|∂Ω\{(x,y)∈Ω|y=1} (2.24)

In problem (3), p is known up to a constant c, i.e. if p is a solution then p+ c is also solution. To ensure
uniqueness we impose the constraint that p should have zero-mean, i.e.∫

Ω

p = 0 (2.25)

The problem 5 now reads

Problem 6 find (u, p, λ) such that

− µ∆u +∇p = f , ∇ · u + λ = 0, and
∫

Ω

p = 0, in Ω = [−1; 1]2 (2.26)

with
f = 0 (2.27)

where µ being the viscosity. The following boundary conditions apply

u = 1|y=1, u = 0|∂Ω\{(x,y)∈Ω|y=1} (2.28)

The functional framework is as follows, we look for u in H1
0 (Ω) and p in L2

0(Ω). We shall not seek p
in L2

0(Ω) but rather in L2(Ω) and use Lagrange multipliers which live are the constants whose space we
denote P0(Ω), to enforce (2.25).

36

Christophe Prud’homme, Baptiste Morin

Denote X = H1
0 (Ω)×L2(Ω)×P0(Ω), the variational formulation reads we look for (u, p, λ) ∈ X for

all (v, q, ν) ∈ X ∫
Ω

µ∇u : ∇v +∇ · vp+∇ · u q + qλ+ pν =

∫
Ω

f · v (2.29)

We build a triangulation Ωh of Ω, we choose compatible (piecewise polynomial) discretisation spaces
Xh and Mh, e.g. the Taylor Hood element (PN/PN−1) and we denote Xh = Xh ×Mh × P0(Ω). The
discrete problem now reads, we look for (uh, ph, λh) ∈ Xh such that for all (vh, qh, νh) ∈ Xh∫

Ωh

µ∇uh · ∇vh +∇ · vh ph +∇ · uh qh + phνh + qhλh =

∫
Ωh

f · vh (2.30)

The formulation (2.30) leads to a linear system of the form A B 0
BT 0 C
0 CT 0


︸ ︷︷ ︸

A

uh
ph
λh


︸ ︷︷ ︸
U

=

F0
0


︸ ︷︷ ︸
F

(2.31)

where A corresponds to the (u,v) block, B to the (u, q) block and C to the (p, ν) block. A is a
symetric positive definite matrix and thus the system AU = F enjoys a unique solution.

Feel formulation

Regarding the implementation of the Stokes problem 5, we can start from the laplacian case, from sec-
tion 2.6.2. The implementation we choose to display here defines and builds Xh, A, U and F .

We start by defining and building Xh: first we define the basis functions that will span each subspaces
Xh, Mh and P0(Ω).

typedef Lagrange<2, Vectorial> basis_u_type;
typedef Lagrange<1, Scalar> basis_p_type;
typedef Lagrange<0, Scalar> basis_l_type;
typedef bases<basis_u_type,basis_p_type, basis_l_type> basis_type;

note that on the typedef we build a (MPL) vector of them. Now we are ready to define the function-
space Xh, much like in the Laplacian case:

typedef FunctionSpace<mesh_type, basis_type> space_type;
typedef boost::shared_ptr<space_type> space_ptrtype;

Next we define a few types which are associated with U , u, p and λ respectively.
typedef space_type::element_type element_type;

Using these types we can instantiate elements of Xh, Xh, Mh and P0(Ωh) respectively:

They will serve in the definition of the variational formulation. We can now start assemble the various
terms of the variational formulation (2.30). First we define some viscous stress tensor, τ(u) = ∇u,
associated with the trial and test functions respectively

auto deft = gradt(u);
auto def = grad(v);

Then we define the total stress tensor times the normal, σ̄(u, p)n = −pn + 2µτ(u)n where n is the
normal and σ̄(u, p) = −pI + 2µτ(u):

// total stress tensor (trial)
auto SigmaNt = -idt(p)*N()+mu*deft*N();

// total stress tensor (test)
auto SigmaN = -id(p)*N()+mu*def*N();

We then form the matrixA starting with blockA, blockB block C and finally the boundary conditions.

37

Getting Started with Feel++

auto stokes = form2(_test=Xh, _trial=Xh, _matrix=D, _init=true);
boost::timer chrono;
stokes = integrate(elements(mesh), mu*inner(deft,def));
std::cout << "mu*inner(deft,def): " << chrono.elapsed() << "\n"; chrono.restart();
stokes +=integrate(elements(mesh), - div(v)*idt(p) + divt(u)*id(q));
std::cout << "(u,p): " << chrono.elapsed() << "\n"; chrono.restart();
stokes +=integrate(elements(mesh), id(q)*idt(lambda) + idt(p)*id(nu));
std::cout << "(lambda,p): " << chrono.elapsed() << "\n"; chrono.restart();

stokes +=integrate(boundaryfaces(mesh), -inner(SigmaNt,id(v)));
stokes +=integrate(boundaryfaces(mesh), -inner(SigmaN,idt(u)));
stokes +=integrate(boundaryfaces(mesh), +penalbc*inner(idt(u),id(v))/hFace());

std::cout << "bc: " << chrono.elapsed() << "\n"; chrono.restart();

The figure 2.6 displays p and u which are available in

ls ~/feel/doc/tutorial/stokes/Simplex_2_1_2/P2/h_0.05

(a) Colored with p, h = 0.05 (b) Colored with ‖u‖ and the arrows associated to u col-
ored with p

Figure 2.6: Solution of problem 5

38

Christophe Prud’homme

CHAPTER 3

Feel++ Language Keywords
By Christophe Prud’homme

Chapter ref: [cha:appendix-feel]

3.1 Keywords

One of FEEL++ assets is it finite element embedded language. The language follows the C++ grammar,
and provides keywords as well as operations between objects which are, mathematically, tensors of rank 0,
1 or 2.

Here are some notations :

• f : Rn 7→ Rm×p with n = 1, 2, 3, m = 1, 2, 3, p = 1, 2, 3.

• Ωe current mesh element

and here is the table which gathers all tools you may need:

Keyword Math object Description Rank M ×N
P()

−→
P current point coordinates (Px, Py, Pz)

T 1 d× 1

Px() Px x coordinate of
−→
P 0 1× 1

Py() Py y coordinate of
−→
P 0 1× 1

(value is 0 in 1D)
Pz() Pz z coordinate of

−→
P 0 1× 1

(value is 0 in 1D and 2D)

C()
−→
C element barycenter point coordinates 1 d× 1

(Cx, Cy, Cz)
T

Cx() Cx x coordinate of
−→
C 0 1× 1

Cy() Cy y coordinate of
−→
C 0 1× 1

(value is 0 in 1D)
Cz() Cz z coordinate of

−→
C 0 1× 1

(value is 0 in 1D and 2D)

39

Feel++ Language Keywords

Keyword Math object Description Rank M ×N

N()
−→
N normal at current point (Nx, Ny, Nz)

T 1 d× 1

Nx() Nx x coordinate of
−→
N at current point 0 1× 1

Ny() Ny y coordinate of
−→
N at current point 0 1× 1

(value is 0 in 1D)
Nz() Nz z coordinate of

−→
N at current point 0 1× 1

(value is 0 in 1D and 2D)

eid() e index of Ωe 0 1× 1
emarker() m(e) marker of Ωe 0 1× 1

h() he size of Ωe 0 1× 1
hFace() heΓ size of face Γ of Ωe 0 1× 1

mat<M,N>(m_11,

m11 m12 ...
m21 m22 ...

...

 M ×N matrix 2 M ×N

m_12,...) entries being expressions
vec<M>(v_1, (v1, v2, ...)

T column vector with M rows 1 M × 1
v_2,...) entries being expressions

trace(expr) tr(f(−→x)) trace of f(−→x) 0 1× 1

abs(expr) |f(−→x)| element wise absolute value of f rank(f(−→x)) m× p
cos(expr) cos(f(−→x)) element wise cosinus value of f rank(f(−→x)) m× p
sin(expr) sin(f(−→x)) element wise sinus value of f rank(f(−→x)) m× p
tan(expr) tan(f(−→x)) element wise tangent value of f rank(f(−→x)) m× p

acos(expr) acos(f(−→x)) element wise acos value of f rank(f(−→x)) m× p
asin(expr) asin(f(−→x)) element wise asin value of f rank(f(−→x)) m× p
atan(expr) atan(f(−→x)) element wise atan value of f rank(f(−→x)) m× p
cosh(expr) cosh(f(−→x)) element wise cosh value of f rank(f(−→x)) m× p
sinh(expr) sinh(f(−→x)) element wise sinh value of f rank(f(−→x)) m× p
tanh(expr) tanh(f(−→x)) element wise tanh value of f rank(f(−→x)) m× p
exp(expr) exp(f(−→x)) element wise exp value of f rank(f(−→x)) m× p
log(expr) log(f(−→x)) element wise log value of f rank(f(−→x)) m× p

sqrt(expr)
√
f(−→x) element wise sqrt value of f rank(f(−→x)) m× p

sign(expr)

{
1 if f(−→x) ≥ 0

−1 if f(−→x) < 0
element wise sign of f rank(f(−→x)) m× p

chi(expr) χ(f(−→x)) = element wise boolean test of f rank(f(−→x)) m× p{
0 if f(−→x) = 0

1 if f(−→x) 6= 0

id(f) f test function rank(f(−→x)) m× p
idt(f) f trial function rank(f(−→x)) m× p
idv(f) f evaluation function rank(f(−→x)) m× p

grad(f) ∇f gradient of test function rank(f(−→x)) + 1 p = 1, m× n1

gradt(f) ∇f gradient of trial function rank(f(−→x)) + 1 p = 1, m× n
gradv(f) ∇f evaluation function gradient rank(f(−→x)) + 1 p = 1, m× n

div(f) ∇ · −→f divergence of test function rank(f(−→x))− 1 1× 12

1Gradient of matrix value functions is not implemented, hence p = 1
2Divergence of matrix value functions is not implemented, hence p = 1

40

Christophe Prud’homme

Keyword Math object Description Rank M ×N
divt(f) ∇ · −→f divergence of trial function rank(f(−→x))− 1 1× 1

divv(f) ∇ · −→f evaluation of function divergence rank(f(−→x))− 1 1× 1

curl(f) ∇×−→f curl of test function 1 n = m,n× 1

curlt(f) ∇×−→f curl of trial function 1 m = n, n× 1

curlv(f) ∇×−→f evaluation of function curl 1 m = n, n× 1
hess(f) ∇2f hessian of test function 2 m = p = 1, n× n

jump(f) [f] = f0
−→
N0 + f1

−→
N1 jump of test function 1 m = 1, n× 1

jump(f) [
−→
f] =

−→
f0 ·
−→
N0 +

−→
f1 ·
−→
N1 jump of test function 0 m = 2, 1× 1

jumpt(f) [f] = f0
−→
N0 + f1

−→
N1 jump of trial function 1 m = 1, n× 1

jumpt(f) [
−→
f] =

−→
f0 ·
−→
N0 +

−→
f1 ·
−→
N1 jump of trial function 0 m = 2, 1× 1

jumpv(f) [f] = f0
−→
N0 + f1

−→
N1 jump of function evaluation 1 m = 1, n× 1

jumpv(f) [
−→
f] =

−→
f0 ·
−→
N0 +

−→
f1 ·
−→
N1 jump of function evaluation 0 m = 2, 1× 1

average(f) f = 1
2 (f0 + f1) average of test function rank(f(−→x)) m = n, n× n

averaget(f) f = 1
2 (f0 + f1) average of trial function rank(f(−→x)) m = n, n× n

averagev(f) f = 1
2 (f0 + f1) average of function evaluation rank(f(−→x)) m = n, n× n

leftface(f) f0 left test function rank(f(−→x)) m = n, n× n
leftfacet(f) f0 left trial function rank(f(−→x)) m = n, n× n
leftfacev(f) f0 left function evaluation rank(f(−→x)) m = n, n× n
rightface(f) f1 right test function rank(f(−→x)) m = n, n× n

rightfacet(f) f1 right trial function rank(f(−→x)) m = n, n× n
rightfacev(f) f1 right function evaluation rank(f(−→x)) m = n, n× n

maxface(f) max(f0, f1) maximum of right and left rank(f(−→x)) m× p
test function

maxfacet(f) max(f0, f1) maximum of right and left rank(f(−→x)) m× p
trial function

maxfacev(f) max(f0, f1) maximum of right and left rank(f(−→x)) m× p
function evaluation

minface(f) min(f0, f1) minimum of right and left rank(f(−→x)) m× p
test function

minfacet(f) min(f0, f1) minimum of right and left rank(f(−→x)) m× p
trial function

minfacev(f) min(f0, f1) minimum of right and left rank(f(−→x)) m× p
function evaluation

- −g element wise unary minus
- !g element wise logical not

+ f + g tensor sum
- f − g tensor substraction
* f ∗ g tensor product
/ f/g tensor division (g scalar field)

< f < g element wise less
<= f ≤ g element wise less or equal
> f > g element wise greater

>= f ≥ g element wise greater or equal
== f = g element wise equal
!= f 6= g element wise not equal
&& f and g element wise logical and

41

Feel++ Language Keywords

Keyword Math object Description Rank M ×N
|| f or g element wise logical or

3.2 Operators

3.2.1 Integrals

Thank to its finite element embedded language, FEEL++ has its owned integrate() function, which can
be written for example :
integrate(_range= elements(mesh), _expr= gradt(T)*trans(grad(v)));

please notice that the order of the parameter is not important, these are boost parameters, so you can enter
them in the order you want. To make it clear, there are two required parameters and 2 optional and they
of course can be entered in any order provided you give the parameter name. If you don’t provide the
parameter name (that is to say _range= or the others) they must be entered in the order they are described
below.

The required parameters are

• _range = domain of integration

• _expr = integrand expression

The optional parameters are

• _quad = quadrature to use instead of the default one, wich means _Q<integer>() where the integer
is the polynomal order to integrate exactely

• _geomap = type of geometric mapping to use, that is to say :

– GEOMAP_HO = high order approximation (same of the mesh)

– GEOMAP_OPT = optimal approximation: high order on boundary elements, order 1 in the interior

– GEOMAP_O1 = order 1 approximation

3.2.2 Projections

It is also possible to make projections with the library, the interface is as follow :
project(_range, _space, _expr, _geomap);

where

• _space is the space in which lives the projected expression, it should be a nodal function space

• _expr the expression to project

• _range is the domain for the projection (optional, default: all elements from space->mesh())

• _geomap is the type of geometric mapping approximation (optional, default = GEOMAP_HO)

• _accumulate (optional, default = false)

42

Christophe Prud’homme

3.2.3 Meshes

FEEL++ enables full different ways to interact with the mesh on which you want to work. Mainly with
the function integrate, the various keywords we have established will make your program’s code eas-
ier. The interoperability between FEEL++ and GMSH is huge and provides various access to any point,
item, domain or almost anything you want in a mesh. The access to different items of a mesh is possible
thanks to the filters which enable the access of only a mesh’s part. Theses helpfull keywords are coded in
feel/feelmesh/filters.hpp, we are here going to describe most of them.

To access one particular part of a mesh, you can use :

• elements(mesh) corresponds to all the elements of a mesh

• markedelements(mesh, id) corresponds to the precise element defined by the id. It can be any
element (line, surface, domain, and so on).

• faces(mesh) corresponds to all the faces of the mesh.

• markedfaces(mesh) corresponds to all the faces of the mesh which are marked.

• boundaryfaces(mesh) corresponds to all elements that own a topological dimension one below
the mesh. For example, if you mesh is a 2D one, boundaryfaces(mesh) will return all the lines
(because of dimension 2−1 = 1). These elements which have one dimension less, are corresponding
to the boundary faces.

• internalelements(mesh) corresponds to all the elements of the mesh which are stricly within
the domain that is to say they do not share a face with the boundary.

• boundaryelements(mesh) corresponds to all the elements of the mesh which share a face with
the boundary of the mesh.

• edges(mesh) corresponds to all the edges of the mesh.

• boundaryedges(mesh) corresponds to all boundary edges of the mesh.

where id is the element’s identifier : thanks to GMSH, this identifier can be an integer or a string, it depends
on the identifier your have or you gave in the mesh .geo file.

43

Feel++ Language Keywords

44

Christophe Prud’homme

Part II

Learning by Examples

45

Christophe Prud’homme

CHAPTER 4

Non-Linear examples
By Christophe Prud’homme

Chapter ref: [cha:non-linear-ex]

4.1 Solving nonlinear equations

FEEL++ allows to solve nonlinear equations thanks to its interface to the interface to the PETSc nonlinear
solver library. It requires the implementation of two extra functions in your application that will update the
jacobian matrix associated to the tangent problem and the residual.

Consider that you have an application class MyApp with a backend as data member
#include <feel/feelcore/feel.hpp>
#include <feel/feelcore/application.hpp>
#include <feel/feelalg/backend.hpp>
namespace Feel {

class MyApp : public Application
{

public:

typedef Backend<double> backend_type;
typedef boost::shared_ptr<backend_type> backend_ptrtype;

MyApp(int argc, char** argv,
AboutData const& ad, po::options_description const& od)
:
// init the parent class
Application(argc, argv, ad, od),
// init the backend
M_backend(backend_type::build(this->vm())),
{
// define the callback functions (works only for the PETSc backend)
M_backend->nlSolver()->residual =
boost::bind(&self_type::updateResidual, boost::ref(*this), _1, _2);

M_backend->nlSolver()->jacobian =
boost::bind(&self_type::updateJacobian, boost::ref(*this), _1, _2);

}
void updateResidual(const vector_ptrtype& X, vector_ptrtype& R)
{
// update the matrix J (Jacobian matrix) associated
// with the tangent problem

}

47

Non-Linear examples

void updateJacobian(const vector_ptrtype& X, sparse_matrix_ptrtype& J)
{
// update the vector R associated with the residual

}
void run()
{

//define space
Xh...
element_type u(Xh);
// initial guess is 0
u = project(M_Xh, elements(mesh), constant(0.));
vector_ptrtype U(M_backend->newVector(u.functionSpace()));
*U = u;

// define R and J
vector_ptrtype R(M_backend->newVector(u.functionSpace()));
sparse_matrix_ptrtype J;

// update R
updateJacobian(U, R);
// update J
updateResidual(U, J);

// solve using non linear methods (newton)
// tolerance : 1e-10
// max number of iterations : 10
M_backend->nlSolve(J, U, R, 1e-10, 10);

// the soluution was stored in U
u = *U;

}
private:

backend_ptrtype M_backend;
};
} // namespace Feel

The function updateJacobian and updateResidual implement the assmebly of the matrix J (ja-
cobian matrix) and the vector R (residual vector) respectively.

4.1.1 A first nonlinear problem

As a simple example, let Ω be a subset of Rd, d = 1, 2, 3, (i.e. Ω = [−1, 1]d) with boundary ∂Ω. Consider
now the following equation and boundary condition

−∆u+ uλ = f, u = 0 on ∂Ω. (4.1)

where λ ∈ R+ is a given parameter and f = 1.

To be described in this section. For now see doc/manual/nonlinearpow.cpp for an imple-
mentation of this problem.

4.1.2 Simplified combustion problem: Bratu

As a simple example, let Ω be a subset of Rd, d = 1, 2, 3, (i.e. Ω = [−1, 1]d) with boundary ∂Ω. Consider
now the following equation and boundary condition

−∆u+ λeu = f, u = 0 on ∂Ω (4.2)

where λ is a given parameter. Ceci est généralement appellé le problème de Bratu et apparaît lors de
la simplification de modèles de processus de diffusion non-linéaires par exemple dans le domaine de la
combustion.

To be described in this section. For now see doc/manual/bratu.cpp for an implementation
of this problem.

48

Baptiste Morin, Christophe Prud’homme

CHAPTER 5

Heat sink
By Baptiste Morin, Christophe Prud’homme

Chapter ref: [cha:heatsink]

This problem considers the performance of a heat sink designed for the thermal management of high-
density electronic components. The heat sink is comprised of a base/spreader which in turn supports a
number of plate fins exposed to flowing air. We model the flowing air through a simple convection heat
transfer coefficient. From the engineering point of view, this problem illustrates the application of conduc-
tion analysis to an important class of cooling problems: electronic components and systems.

Our interest is in the conduction temperature distribution at the base of the spreader. The target is to
study how the heat transfer occures with different parameters on our heat sink. The heat generated by
high-density electronic components is such that it’s very expensive to cool large structures (data center).
The cooling optimization is consequent in the run for decreasing operating costs.

A classical thermal CPU cooler looks like this

Figure 5.1: Mesh of a classical CPU cooler

We are here going to describe how it is theorically working and how it is impleted with FEEL++.

49

Heat sink

5.1 Problem description

5.1.1 Domain

We consider here a classical "radiator" which is a CPU heat sink. Those types of coolers are composed with
a certain number of plate fins exposed to flowing air or exposed to a ventilator. Regarding the periodicity
and geometry of our concern, we can make our study on a characteristic element of the problem : a half
cell of the heat sink single thermal fin with its spreader at the basis. Let’s take a look at the geometry of
our problem :

Figure 5.2: Geometry of heat sink

Our study is avaible in 2 or 3 dimensions, depending on the application’s parameters. You’ll see later
how to work with it. Let’s see on which meshes we are working on :

Figure 5.3: 2D mesh Figure 5.4: 3D mesh

5.1.2 Inputs

The implementation of thoses parameters is described in the section 5.3.1.

Material

Here the material parameter can be described with furthers parameters. We have, with i = 1 for the fin and
i = 2 for the base :

50

Baptiste Morin, Christophe Prud’homme

• the thermal conductivity κi

• the material’s density ρi

• the heat capacity of the material Ci

The term ρiCi corresponds to the heat volumetric capacity. In that way, we make possible the construction
of a heat sink with 2 different materials. Here is a list of the well-known ones, ρ and C are gave at 298K :

Material Thermal conductivity (κ in W.m−1.K−1) Density (ρ in kg.m−3) Heat Capacity (C in J.kg−1.K−1)
Aluminium 180 (alloys) or 290 (pure) 2700 897

Copper 386 8940 385
Gold 314 19320 129
Silver 406 10500 233

Physical

• Depth
This parameter is only to take into account for the 3D simulation. It represents the depth of the
caracteristical heat sink and is called depth in the application.

• Length
You can also parameterize the length of the fin. This one is called L in the application’s parameters,
its dimension is the meter.

• Width
Typically, this parameter is linked with constructor’s standards. This parameter is called width in
the application’s implementation.

Thermal

• Heat flux
It represents the heat flux brought by the electronic component at the bottom of the base. Here it’s
typically the heat brought by the processor.

• Thermal coefficient
The thermal coefficient h named thermcoeff in the application is representative of the heat transfer
between the fin and the air flow.

• Ambien temperature
This parameter called Tamb represents the temperature around the heat sink at the beginning. That
means the ambient temperature before the computer is turned on.

Summary table

The following table displays the various fixed and variables parameters of this application.

51

Heat sink

Name Description Nominal Value Range Units

BDF parameters

time− initial begining 0
time− final end 50]0, 1500]
time− step time step 0.1]0, 1[
steady steady state 0 {0, 1}
order order 2 [0, 4]

Physical parameters

L fin’s length 2 · 10−2 [0.02, 0.05] m
width fin’s width 5 · 10−4 [10−5, 10−4] m
deep heat sink depth 0 [0, 7 · 10−2] m

Mesh parameter

hsize mesh’s size 10−4 [10−5, 10−3]

Fin Parameters

κf thermal conductivity 386 [100, 500] W ·m−1 ·K−1

ρf material density 8940 [103, 12 · 103] kg ·m−3

Cf heat capacity 385 [102, 103] J · kg−1 ·K−1

Base/spreader Parameters

κs thermal conductivity 386 [100, 500] W ·m−1 ·K−1

ρs material density 8940 [103, 12 · 103] kg ·m−3

Cs heat capacity 385 [102, 103] J · kg−1 ·K−1

Heat Parameters

Tamb ambient temperature 300 [300,310] K
heat_flux heat flux Q 106 [0, 106] W ·m−3

therm_coeff thermal coefficient h 103 [0, 103] W ·m−2 ·K−1

Table 5.1: Table of fixed and variable parameters

5.2 Theory

5.2.1 Figure

The global domain is Ω = Ω1 ∪Ω2 where Ω1 is the fin’s domain and Ω2 the spreader’s domain. We note
∂Ω the border of the domain Ω. The physical lines we are using will be noted as Γi such as described
above. The following figure describes the parameters and the geometry we are using in the equations to
solve our 3D issue : The following figures describe the parameters and the geometry we are using in the
equations to solve our 2D or 3D issue :

52

Baptiste Morin, Christophe Prud’homme

Figure 5.5: 2D geometry details

Figure 5.6: 3D geometry details

53

Heat sink

5.2.2 Equations

Our concern satisfies the heat equation which reads

2∑
i=1

κi∆T − ρiCi
∂T

∂t
= 0 (5.1)

κ1
∂T

∂n
= 0 on Γ2 and Γ6 (5.2)

κ2
∂T

∂n
= 0 on Γ5,Γ7 and Γ8 (5.3)

κ1
∂T

∂n
= −h(T − Tamb) on Γ1 (5.4)

κ2
∂T

∂n
= Q(1− e−t) on Γ4 (5.5)

T|Ω1
= T|Ω2

on Γ3
(5.6)

κ1∇T · n = κ2∇T · n on Γ3
(5.7)

with i = 1 for the fin and i = 2 for the base and where κi is the thermal conductivity, ρi is the material’s
density (kg.m−3 in the SI unit), Ci the heat capacity and T the temperature at a precise point (in 2D or
3D). To see how it has been coded, you can read 5.3.3.

5.2.3 Boundary conditions

The problem requieres that the temperature and heat flux are continute on Γ3. Considering the problem’s
geometry, we also impose zero heat flux on the vertical surfaces of the spreader. Let’s detail the conditions
we have imposed :

• Homogeneous Neumann condition (5.2) and (5.3) : it represents the fact that the heat flux is only
vertical (for Γ6 and Γ7) or the fact that the heat flux is only provided by Γ4 (for Γ2 and Γ5).

• Homogeneous Neumann condition (5.4) : it imposes that the heat flux is brought by this surface (it
mathematically represents that the heat sink is placed on the heat source).

• Non-homogeneous Neumann condition (5.5) : this boundary condition represents the transient state
for the heat transfer calculation.

• Temperature continuity (5.6) : it imposes that the temperature is continute at the interface between
the two materials (if there are two materials, we can also have the same one for the two pieces).

• Heat flux continuity (5.7) : it represents that the heat flux is continute at the interface between the
two materials. Literally, it means that the two flows offset each other.

Theses conditions have been coded as explained in the section 5.3.3.

54

Baptiste Morin, Christophe Prud’homme

5.2.4 Finite Element Method

Let’s apply the method to our concern, we introduce the test function v and we integrate the main equation,
which reads now as :

2∑
i=1

ρiCi

∫
Ωi

v
∂T

∂t
− κi

∫
Ωi

v∆T = 0 (5.8)

We integrate by parts, which leads to :

2∑
i=1

ρiCi

∫
Ωi

v
∂T

∂t
+ κi

∫
Ωi

∇v · ∇T − κi
∫
∂Ωi

(∇T · n)v = 0 (5.9)

then, by decomposing the borders ∂Ωi, we obtain :

−κ1

∫
Γ1

(∇T · n)v − κ2

∫
Γ4

(∇T · n)v − κ1

∫
Γ2,6

(∇T · n)v − κ2

∫
Γ5,7,8

(∇T · n)v +

2∑
i=1

ρiCi

∫
Ωi

v
∂T

∂t
+ κi

∫
Ωi

∇v · ∇T − κi
∫
∂Ωi∩Γ3

(∇T · n)v = 0 (5.10)

Now, we apply the conditions (5.2), (5.3), (5.4) and (5.5) which brings us to :

∫
Γ1

hv(T − Tamb)−
∫

Γ4

vQ(1− e−t) +

2∑
i=1

ρiCi

∫
Ωi

v
∂T

∂t
+ κi

∫
Ωi

∇v · ∇T − κi
∫
∂Ωi∩Γ3

(∇T · n)v︸ ︷︷ ︸
=0 thanks to 5.7

= 0

(5.11)

Now we apply the boundary conditions (5.7) which results in :

h

∫
Γ1

v(T − Tamb)−
∫

Γ4

vQ(1− e−t) +

2∑
i=1

ρiCi

∫
Ωi

v
∂T

∂t
+ κi

∫
Ωi

∇v · ∇T = 0 (5.12)

We can now start to transform the equation by puting in the right hand the known terms :

h

∫
Γ1

vT +

2∑
i=1

ρiCi

∫
Ωi

v
∂T

∂t
+ κi

∫
Ωi

∇v · ∇T =

∫
Γ4

vQ(1− e−t) + hTamb

∫
Γ1

v (5.13)

We discretize
∂T

∂t
where δt is the time step, such as:

h

∫
Γ1

vT +

2∑
i=1

ρiCi

∫
Ωi

v
Tn+1 − Tn

δt
+ κi

∫
Ωi

∇v · ∇T =

∫
Γ4

vQ(1− e−t) + hTamb

∫
Γ1

v (5.14)

Finally we obtain :

h

∫
Γ1

vT +

2∑
i=1

ρiCi

∫
Ωi

v
Tn+1

δt
+ κi

∫
Ωi

∇v · ∇T =

∫
Γ4

vQ(1− e−t) + hTamb

∫
Γ1

v +

2∑
i=1

ρiCi

∫
Ωi

v
Tn

δt

(5.15)

This is that equation which is implemented in the application feel_heatsink.

55

Heat sink

5.3 Implementation

5.3.1 Application parameters

The parameters of the application are implemented such as
inline
Feel::po::options_description
makeOptions()
{
Feel::po::options_description heatsinkoptions("heatsink options");
heatsinkoptions.add_options()
// mesh parameters
("hsize", Feel::po::value<double>()->default_value(0.1),
"first h value to start convergence")

("L", Feel::po::value<double>()->default_value(0.03),
"dimensional length of the sink (in meters)")

("width", Feel::po::value<double>()->default_value(0.0005),
"dimensional width of the fin (in meters)")

// 3D parameter
("deep", Feel::po::value<double>()->default_value(0),
"depth of the mesh (in meters) only in 3D simulation")

// thermal conductivities parameters
("kappa_s", Feel::po::value<double>()->default_value(386),
"thermal conductivity of the base spreader in SI unit W.m^{-1}.K^{-1}")

("kappa_f", Feel::po::value<double>()->default_value(386),
"thermal conductivity of the fin in SI unit W.m^{-1}.K^{-1}")

// density parameter
("rho_s", Feel::po::value<int>()->default_value(8940),
"density of the spreader’s material in SI unit kg.m^{-3}")

("rho_f", Feel::po::value<int>()->default_value(8940),
"density of the fin’s material in SI unit kg.m^{-3}")

// heat capacities parameter
("c_s", Feel::po::value<double>()->default_value(385),
"heat capacity of the spreader’s material in SI unit J.kg^{-1}.K^{-1}")

("c_f", Feel::po::value<double>()->default_value(385),
"heat capacity of the fin’s material in SI unit J.kg^{-1}.K^{-1}")

// physical coeff
("therm_coeff", Feel::po::value<double>()->default_value(50),
"thermal coefficient")

("Tamb", Feel::po::value<double>()->default_value(300),
"ambiant temperature")

("heat_flux", Feel::po::value<double>()->default_value(1e6),
"heat flux generated by CPU")

("steady", Feel::po::value<bool>()->default_value(false),
"if true : steady else unsteady")

// export
("export-matlab", "export matrix and vectors in matlab");

return heatsinkoptions.add(Feel::feel_options());
}

5.3.2 Surfaces

To be able to calculate the surfaces in further dimension without changing the code, we have given the
same names for the faces we were interested in. In 2D Γi represents a line whereas in 3D it represents a
surface. The calculation of those surfaces which makes possible the calculation of averages temperature is
as follow :
surface_base =
integrate(_range= markedfaces(mesh,"gamma4"), _expr= cst(1.)).evaluate()(0,0);

56

Baptiste Morin, Christophe Prud’homme

surface_fin =
integrate(_range= markedfaces(mesh,"gamma1"), _expr=cst(1.)).evaluate()(0,0);

5.3.3 Equations

First we start by calculate the non-steady state which means that we integrate all the time-independant
terms, which is done with :
/*
* Right hand side construction (steady state)
*/

form1(_test=Xh, _vector=F, _init=true) =
integrate(_range= markedfaces(mesh, "gamma1"), _expr= therm_coeff*Tamb*id(v));

/*
* Left hand side construction (steady state)
*/

form2(Xh, Xh, D, _init=true) =
integrate(_range= markedelements(mesh,"spreader_mesh"),

_expr= kappa_s*gradt(T)*trans(grad(v)));

form2(Xh, Xh, D) +=
integrate(_range= markedelements(mesh,"fin_mesh"),

_expr= kappa_f*gradt(T)*trans(grad(v)));

form2 (Xh, Xh, D) +=
integrate(_range= markedfaces(mesh, "gamma1"),

_expr= therm_coeff*idt(T)*id(v));

form2(Xh, Xh, D) +=
integrate(_range=markedelements(mesh, "spreader_mesh"),

_expr=rho_s*c_s*idt(T)*id(v)*M_bdf->polyDerivCoefficient(0))
+ integrate(_range=markedelements(mesh, "fin_mesh"),

_expr=rho_f*c_f*idt(T)*id(v)*M_bdf->polyDerivCoefficient(0));

Then, to compute the transient state, which means time dependant terms, you have to initialize the
temperature (which is initialized as Tamb on Xh space) and create a new vector Ft which corresponds to
the time dependent term. The code is as follow :
T = vf::project(_space=Xh, _expr=cst(Tamb));
M_bdf->initialize(T);
auto Ft = M_backend->newVector(Xh);

for (M_bdf->start(); M_bdf->isFinished()==false; M_bdf->next())
{

// update right hand side with time dependent terms
auto bdf_poly = M_bdf->polyDeriv();
form1(_test=Xh, _vector=Ft) =

integrate(_range=markedelements(mesh, "spreader_mesh"),
_expr=rho_s*c_s*idv(bdf_poly)*id(v)) +

integrate(_range=markedelements(mesh, "fin_mesh"),
_expr=rho_f*c_f*idv(bdf_poly)*id(v));

form1(_test=Xh, _vector=Ft) +=
integrate(_range= markedfaces(mesh,"gamma4"),

_expr= heat_flux*(1-exp(-M_bdf->time()))*id(v));

// add contrib from time independent terms
Ft->add(1., F);

// solve
M_backend->solve(_matrix=D, _solution=T, _rhs=Ft);

// both average temperatures
Tavg = integrate(_range=markedfaces(mesh,"gamma4"),

_expr=(1/surface_base)*idv(T)).evaluate()(0,0);

Tgamma1 = integrate(_range=markedfaces(mesh,"gamma1"),
_expr=(1/surface_fin)*idv(T)).evaluate()(0,0);

57

Heat sink

// export results
out << M_bdf->time() << " " << Tavg << " " << Tgamma1 << "\n";

this->exportResults(M_bdf->time(), T);

}

5.3.4 Outputs

As you can see in the equation’s implementation above, there are two ouputs :

• GMSH format : this file contains the entire mesh and the temperatures associated to each degrees of
freedom of the mesh. To open it, you juste have to do as you always do with GMSH : gmsh heatsink-1_0.msh.
You will obtain the figure with the different temperatures, you are now able to click on "play" with
its significative logo and admire the evolution

• averages file : this file is completed at each time step, each line contains the current time, the
average temperature on Γ4 (surface where is the contact between the heat sink and the heat source)
and the average temperature on Γ1. To analyze this file, we recommend you to work with OCTAVE
which is an open-source software similar to MATLAB. If it is installed, open a command line and go
to ~/feel/heatsink/Simplex_*.*.*/0.000*/ and try :
> octave
octave:1> M=load(’averages’);
octave:2> plot(M(:,1),M(:,2))
octave:3> plot(M(:,1),M(:,3))
octave:4> plot(M(1:70,1),M(1:70,2))
octave:5> plot(M(1:70,1),M(1:70,3))

The 4th and 5th lines are here to observe the transient state.

5.4 Use cases

5.4.1 How to use it ?

To make easier the use of this application, we recommand you to use the configurations files. This is the
fastest way : to do it, you juste have to create the file heatsink.cfg and place it in the same directory
that your application’s executable.
We have created 3 typical cfg files such as :
file heatsink_1.cfg
spreader and fin in copper
2D simulation
hsize=1e-4

kappa_s=386 # W/m/K
c_s=385
rho_s=8940

kappa_f=386 # W/m/K
c_f=385 #J/kg/K
rho_f=8940

L=15e-3
width=5e-4

therm_coeff=1000 #W/(m2K)
heat_flux=1e6

[bdf]
order=2
time-step=0.05
time-final=100
steady=0

58

Baptiste Morin, Christophe Prud’homme

[exporter]
format=gmsh

file heatsink_3.cfg
spreader in copper
fin in aluminium
3D simulation
hsize=3e-4
kappa_s=386 # W/m/K
c_s=385
rho_s=8940

kappa_f=386 # W/m/K
c_f=385 #J/kg/K
rho_f=8940

L=15e-3
width=5e-4
deep=4e-2

therm_coeff=1000 #W/(m2K)
heat_flux=1e6

[bdf]
order=2
time-step=0.05
time-final=100
steady=0

[exporter]
format=gmsh

This file is the only modification you will have to bring to the application, in that way you won’t have
to compile each time the files (except for heatsink.cpp if you want to increase the order and/or the
dimension, in that case you’ill have to modify this parameter at then end of the file in the main method).

5.4.2 Results

2D cases

Here are some results of the 2D simulations considering different configurations files. The figures have
been extracted thanks to GMSH and OCTAVE :

59

Heat sink

Figure 5.7: heatsink_1.cfg : steady state, spreader and fin in copper, Q = 1e6 and h = 1e3

Figure 5.8: heatsink_1.cfg : transient state on Γ4 Figure 5.9: heatsink_1.cfg : transient state on Γ1

60

Baptiste Morin, Christophe Prud’homme

3D cases

Here is the result of 3D simulations considering the following configurations :

Figure 5.10: heatsink_3.cfg : spreader and fin in copper, Q = 1e6 and h = 1e3

Figure 5.11: heatsink_3.cfg : transient state on
Γ4

Figure 5.12: heatsink_3.cfg : transient state on
Γ1

61

Heat sink

62

Christophe Prud’homme

CHAPTER 6

Natural convection in a heated tank
By Christophe Prud’homme

Chapter ref: [cha:natural-convection-2d]

6.1 Description

The goal of this project is to simulate the fluid flow under natural convection: the heated fluid circulates
towards the low temperature under the action of density and gravity differences. Thie phenomenon is
important in the sense it models evacuation of heat, generated by friction forces for example, with a cooling
fluid.

We shall put in place a simple convection problem in order to study the phenomenon without having
to handle the difficulties of more complex domaines. We describe then some necessary transformations
to the equations, then we define quantities of interest to be able to compare the simulations with different
parameter values.

To study the convection, we use a model problem: it consists in a rectangular tank of height 1 and width
W , in which the fluid is enclosed, see figure 6.1. We wish to know the fluid velocity u, the fluid pressure
p and fluid temperature θ.

We introduce the adimensionalized Navier-Stokes and heat equations parametrized by the Grashof and
Prandtl numbers. These parameters allow to describe the various regimes of the fluid flow and heat transfer
in the tank when varying them.

The adimensionalized steady incompressible Navier-Stokes equations reads:

u · ∇u +∇p− 1√
Gr

∆u = θe2

∇ · u = 0 sur Ω

u = 0 sur ∂Ω

(6.1)

where Gr is the Grashof number, u the adimensionalized velocity and p adimensionalized pressure and θ
the adimensionalized temperature. The temperature is in fact the difference between the temperature in the
tank and the temperature T0 on boundary Γ1.

63

Natural convection in a heated tank

x
0 W

y

0

1

Γ1

Γ2

Γ3

Γ4

Ω(FLUID)

W

Γf

T0 Heat flux

Figure 6.1: Geometry of the model

The heat equation reads:

u · ∇θ − 1√
GrPr

∆θ = 0

θ = 0 sur Γ1

∂θ

∂n
= 0 sur Γ2,4

∂θ

∂n
= 1 sur Γ3

(6.2)

where Pr is the Prandtl number.

6.2 Influence of parameters

what are the effects of the Grashof and Prandtl numbers ? We remark that both terms with these parameters
appear in front of the ∆ parameter, they thus act on the diffusive terms. If we increase the Grashof number
or the Prandtl number the coefficients multiplying the diffusive terms decrease, and this the convection, that
is to say the transport of the heat via the fluid, becomes dominant. This leads also to a more difficult and
complex flows to simulate, see figure 6.2. The influence of the Grashof and Prandtl numbers are different
but they generate similar difficulties and flow configurations. Thus we look only here at the influence of
the Grashof number which shall vary in [1, 1e7].

6.3 Quantities of interest

We would like to compare the results of many simulations with respect to the Grashof defined in the
previous section. We introduce two quantities which will allow us to observe the behavior of the flow and
heat transfer.

64

Christophe Prud’homme

Figure 6.2: Velocity norm with respect to Grashof, Gr = 100, 10000, 100000, 500000. h = 0.01 and
Pr = 1.

6.3.1 Mean temperature

We consider first the mean temperature on boundary Γ3

T3 =

∫
Γ3

θ (6.3)

This quantity should decrease with increasing Grashof because the fluid flows faster and will transport
more heat which will cool down the heated boundary Γ3. We observe this behavior on the figure 6.3.

6.3.2 Flow rate

Another quantity of interest is the flow rate through the middle of the tank. We define a segment Γf as
being the vertical top semi-segment located at W/2 with height 1/2, see figure 6.1. The flow rate, denoted
Df , reads

Df =

∫
Γf

u · e1 (6.4)

where e1 = (1, 0). Note that the flow rate can be negative or positive depending on the direction in which
the fluid flows.

As a function of the Grashof, we shall see a increase in the flow rate. This is true for small Grashof,
but starting at 1e3 the flow rate decreases. The fluid is contained in a boundary layer which is becoming
smaller as the Grashof increases.

65

Natural convection in a heated tank

Figure 6.3: Mean temperature with respect to the Grashof number; h = 0.02 with P3 Lagrange element
for the velocity, P2 Lagrange for the pressure and P1 Lagrange for the temperature.

Figure 6.4: Behavior of the flow rate with respect to the Grashof number; h = 0.02, P3 for the velocity, P2

for the pressure and P1 for the temperature.

66

Christophe Prud’homme

6.4 Implementation

This application in implemented in feel/doc/manual/convection*.cpp. The implementation
solve the full nonlinear problem using the nonlinear solver framework.

6.5 Numerical Schemes

6.5.1 Stokes problem formulation and the pressure

6.5.2 The Stokes problem

Consider the following problem,

Stokes:

 −µ∆u +∇p = f
∇ · u = 0
u|∂Ω = 0

(6.5)

where Ω ⊂ Rd. There are no boundary condition on the pressure. This problem is ill-posed, indeed we
only control the pressure through its gradient ∇p. Thus if (u, p) is a solution, then (u, p + c) is also a
solution with c any constant. This comes from the way the problem is posed: the box is closed and it is not
possible to determine the pressure inside. The remedy is to impose arbitrarily a constraint on the pressure,
e.g. its mean value is zero. In other words, we add this new equation to the problem (6.5)∫

Ω

p = 0 (6.6)

Remark 1 (The Navier-Stokes case) This is also true for the incompressible Navier-Stokes equations. We
chose Stokes to simplify the exposure.

6.5.3 Reformulation

In order to impose the condition (6.6), we introduce a new unknown, a Lagrange multiplier, λ ∈ R and
modify the incompressibility equation. Our problem reads now, find (u, p, λ) such that

Stokes 2:


−µ∆u +∇p = f
∇ · u + λ = 0

u|∂Ω = 0∫
Ω
p = 0

(6.7)

Remark 2 (The pressure as Lagrange multiplier) The pressure field p can actually be seen as a La-
grange multiplier for the velocity u in order to enforce the constraint ∇ · u = 0. λ will play the same role
but for the pressure to enforce the condition (6.6). As h → 0, λ → 0 as well as the divergence of u. Note
also that

∫
Ω
∇ · u ≈ −

∫
Ω
λ from the second equation.

6.5.4 Variational formulation

The variational formulation now reads: find (u, p, λ) ∈ H1
0(Ω) × L2

0(Ω) × R such that for all (v, q, η) ∈
H1

0(Ω)× L2
0(Ω)× R

Stokes 3:


∫

Ω

(
∇u : ∇v +∇ · vp

)
=

∫
Ω
f · v∫

Ω

(
∇ · uq + λq

)
= 0∫

Ω
pη = 0

(6.8)

67

Natural convection in a heated tank

Summing up all three equations we get the following condensed formulation:∫
Ω

∇u : ∇v +∇ · vp+∇ · uq + λq + ηp =

∫
Ω

f · v (6.9)

where H1
0(Ω) =

{
v ∈ L2(Ω),∇v ∈ [L2(Ω)]d×d, v = 0 on ∂Ω

}
, L2

0(Ω) =
{
v ∈ L2(Ω),

∫
Ω
v = 0

}
,

and L2(Ω) =
{
v ∈ [L2(Ω)]d

}
that is to say each component of a vector field of L2(Ω) are in L2(Ω).

6.5.5 Implementation

/*basis*/
typedef Lagrange<Order, Vectorial> basis_u_type; // velocity
typedef Lagrange<Order-1, Scalar> basis_p_type; // pressure
typedef Lagrange<0, Scalar> basis_l_type; // multipliers
typedef bases<basis_u_type, basis_p_type, basis_l_type> basis_type;
/*space: product of the velocity, pressure and multiplier spaces*/
typedef FunctionSpace<mesh_type, basis_type, value_type> space_type;
// ...
space_ptrtype Xh = space_type::New(mesh);
element_type U(Xh, "u");
element_type V(Xh, "v");
element_0_type u = U.element<0>();
element_0_type v = V.element<0>();
element_1_type p = U.element<1>();
element_1_type q = V.element<1>();
element_2_type lambda = U.element<2>();
element_2_type nu = V.element<2>();
// ...
sparse_matrix_ptrtype D(M_backend->newMatrix(Xh, Xh));
form2(Xh, Xh, D, _init=true)=

integrate(elements(mesh), im,
// ∇u : ∇v
mu*trace(deft*trans(def))
// ∇ · vp+∇ · uq
- div(v)*idt(p) + divt(u)*id(q)
// λq + ηp
+id(q)*idt(lambda) + idt(p)*id(nu));

// ...

6.5.6 Fix point iteration for Navier-Stokes

Steady incompressible Navier-Stokes equations

Consider the following steady incompressible Navier-Stokes equations, find (u, p) such that

ρu · ∇u︸ ︷︷ ︸
convection

− ν∆u︸︷︷︸
diffusion

+∇p = f on Ω

∇ · u = 0

u = 0 on ∂Ω

(6.10)

where ρ is the density of the fluid, ν is the dynamic viscosity of the fluid(la viscosité cinématique η = ν/ρ)
and f is the external force density applied to the fluid, (e.g. f = −ρge2 with e2 = (0, 1)T). This equation
system is nonlinear due to the u · ∇u convection term. A simple approach to solve (6.10) is to use a fix
point algorithm.

The fixpoint algorithm for NS reads as follows, find (u(k), p(k)) such that

ρu(k−1) · ∇u(k) − ν∆u(k) +∇p(k) = f on Ω

∇ · u(k) = 0

u(k) = 0 on ∂Ω

(u(0), p(0)) = (0, 0)

(6.11)

68

Christophe Prud’homme

The system (6.11) is now linear at each iteration k and we can write the variational formulation accordingly.
A stopping criterium is for example that ‖uk − u(k−1)‖+ ‖pk − p(k−1)‖ < ε where ε is a given tolerance
(e.g. 1e− 4) and ‖ · ‖ is the L2 norm.

Here is the implementation using FEEL++:
// define some tolerance ε
epsilon = 1e-4;
// set (u(0), p(0)) to (0, 0)
velocity_element_type uk(Xh);
velocity_element_type uk1(Xh);
pressure_element_type pk(Ph);
pressure_element_type pk1(Ph);
// by default uk1, uk and pk,pk1 are initialized to 0

// assemble the linear form associated to f
// store in vector F, it does not change over the iterations

// iterations to find (u(k), p(k))
do
{
// save results of previous iterations
uk1 = uk;
pk1 = pk;

//assemble for bilinear form associated to
// ρu(k−1) · ∇u(k) − ν∆u(k) +∇p(k)

// store in matrix A(k)

// solve the system A(k)X = F where X = (u(k), p(k))T

// use uk,uk1 and pk,pk1 to compute the error estimation at each iteration
error = ‖uk − u(k−1)‖+ ‖pk − p(k−1)‖

} while(error > epsilon);

6.5.7 A Fix point coupling algorithm

Coupling fluid flow and heat transfer: problem

Recall that we have to solve two coupled problems :

Heat(u)


−κ∆T + u · ∇T = 0

T |Γ1
= T0

∂T
∂n |Γ3 = 1

∂T
∂n |Γ2,Γ4 = 0

and

Stokes(T) :


−ν∆u + 1

ρ∇p = F

∇ · u = 0
u|∂Ω = 0

Where F can be taken as
(

0
β(T − T0)

)
for some β > 0. β is called the dilatation coefficient.

Coupling fluid flow and heat transfer: algorithm

Here is a simple algorithm fix point strategy in pseudo-code:
double tol = 1.e-6;
int maxIter = 50;
//Initial guess Un = 0
do
{
// Find Tn solution of Heat(Un)

69

Natural convection in a heated tank

// Find Unp1 solution of Stokes(Tn)
// compute stopTest = norme(Unp1 - Un)
// Un = Unp1

}while((stopTest < tol) && (niter <= maxIter));

Remark 3 (The unsteady case) To solve the unsteady problems, one can insert the previous loop in the
one dedicated to time discretization

6.5.8 A Newton coupling algorithm

A fully coupled scheme

Another possiblity is to use a Newton method which allows us to solve the full nonlinear problem coupling
velocity, pressure and temperature

Find X such that F (X) = 0 (6.12)

the method is iterative and reads, find X(n+1) such that

JF (X(n))(X(n+1) −X(n)) = −F (X(n)) (6.13)

starting with X(0) = 0 or some other initial value and where JF is the jacobian matrix of F evaluated at
X = ((ui)i, (pi)i, (θi)i)

T . For any φk, ψl and ρm the test functions associated respectively to velocity,
pressure and temperature, our full system reads, Find X = ((ui)i, (pi)i, (θi)i)

T such that

F1((ui)i, (pi)i, (θi)i) =
∑
i,j uiuja(φi, φk, φj)−

∑
i pib(φk, ψi) +

∑
i θic(ρi, φk) +

∑
i uid(φi, φk) = 0

F2((ui)i, (pi)i, (θi)i) =
∑
i uib(φi, ψl) = 0

F3((ui)i, (pi)i, (θi)i) =
∑
i,j uiθje(φi, ρj , ρm) +

∑
i θif(ρi, ρm)− g(ρm) = 0

(6.14)
where F = (F1, F2, F3)T and

a(u,v, β) =
∫

Ω
vT ((∇u)β)

b(v, p) =
∫

Ω
p(∇ · v)−

∫
∂Ω

v · np
c(θ,v) =

∫
Ω
θe2 · v

d(u,v) = 1√
Gr

(∫
Ω
∇u : (∇v)T −

∫
∂Ω

((∇u)n) · v
)

e(u, θ, χ) =
∫

Ω
(u · ∇θ)χ

f(θ, χ) = 1√
GrPr

(∫
Ω
∇θ · ∇χ−

∫
Γ1

(∇θ · n)χ
)

g(χ) = 1√
GrPr

∫
Γ3
χ

(6.15)

Remark 4 Note that the boundary integrals are kept in order to apply the weak Dirichlet boundary condi-
tion trick, see next section B.3.

Jacobian matrix

In order to apply the newton scheme, we need to compute the jacobian matrix JF by deriving each equation
with respect to each unknowns, ie ui, pi and θi. Consider the first equation

• Deriving the first equation with respect to ui we get

∂F1

∂ui
=
∑
j

uja(φi, φk, φj) +
∑
i

uia(φi, φk, φj) + d(φi, φk) (6.16)

• Deriving the first equation with respect to pi we get

∂F1

∂pi
= −b(φk, ψl) (6.17)

70

Christophe Prud’homme

• Deriving the first equation with respect to θi we get

∂F1

∂θi
= c(ρi, ρk) (6.18)

Consider the second equation, only the derivative with respect to ui is non zero.

∂F2

∂ui
= b(φi, ψl) (6.19)

Finally the third component

• Deriving with respect to ui
∂F3

∂ui
=
∑
j

θje(φi, ρj , ρm) (6.20)

• Deriving with respect to pi,
∂F3

∂pi
= 0 (6.21)

• Deriving with respect to thetai,

∂F3

∂θi
=
∑
j

uje(φj , ρi, ρm) + f(ρi, ρm) (6.22)

JF =


∂F1

∂ui

∂F1

∂pi
∂F1

∂θi
∂F2

∂ui

∂F2

∂pi
(= 0) ∂F2

∂θi
(= 0)

∂F3

∂ui

∂F3

∂pi
(= 0) ∂F3

∂θi

 (6.23)

In order to implement JF and solve (6.13), JF can be expressed as the matrix associated with the discreti-
sation of

a(u,v, β1) + a(β1,v,u) + d(u,v)− b(v, p) + c(θ,v) = 0
b(u, q) = 0

e(β1, θ, χ) + f(θ, χ) + e(u, β2, χ) = 0
(6.24)

where β1 = u(n), β2 = θ(n) are known from the previous Newton iteration, indeed JF is actually evaluated
in X(n).

FEEL++ Implementation

Now we use the FEEL++ non linear framework in order to implement our Newton scheme (6.13). We need
to define two new functions in our application

• updateJacobian(X,J) which takes as input X= X(n) and returns the matrix J=JF (X(n))

• updateResidual(X,R) which takes as input X= X(n) and returns the vector R=F (X(n))

Remark 5 Backend Only the PETSC backend supports the nonlinear solver framework. Use in the com-
mand line like in the first section

--backend=petsc

Here is a snippet of code that implements the nonlinear framework.

71

Natural convection in a heated tank

class MyApp
{
public:
void run();
void updateResidual(const vector_ptrtype& X, vector_ptrtype& R);
void updateJacobian(const vector_ptrtype& X, sparse_matrix_ptrtype& J);
void solve(sparse_matrix_ptrtype& D, element_type& u, vector_ptrtype& F);
private:

backend_ptrtype M_backend;
sparse_matrix_ptrtype M_jac;
vector_ptrtype M_residual;

};

void
MyApp::run()
{
// ...

// plug the updateResidual and updateJacobian functions
// in the nonlinear framework
M_backend->nlSolver()->residual = boost::bind(&self_type::updateResidual,

boost::ref(*this), _1, _2);
M_backend->nlSolver()->jacobian = boost::bind(&self_type::updateJacobian,

boost::ref(*this), _1, _2);

vector_ptrtype U(M_backend->newVector(u.functionSpace()));
*U = u;
vector_ptrtype R(M_backend->newVector(u.functionSpace()));
this->updateResidual(U, R);
sparse_matrix_ptrtype J;
this->updateJacobian(U, J);
solve(J, u, R);

*U = u;
this->updateResidual(U, R);
// R(u) should be small
std::cout << "R(u) = " << M_backend->dot(U, R) << "\n";

}
void
MyApp::solve(sparse_matrix_ptrtype& D, element_type& u, vector_ptrtype& F)
{
vector_ptrtype U(M_backend->newVector(u.functionSpace()));
*U = u;
M_backend->nlSolve(D, U, F, 1e-10, 10);
u = *U;

}
void
MyApp::updateResidual(const vector_ptrtype& X, vector_ptrtype& R)
{
// compute R(X)

R=M_residual;
}
void
MyApp::updateJacobian(const vector_ptrtype& X, vector_ptrtype& R)
{
// compute J(X)

J=M_jac;
}

see bratu.cpp or nonlinearpow.cpp for example.

72

Thomas Strub, Philippe Helluy, Christophe Prud’homme

CHAPTER 7

2D Maxwell simulation in a diode
By Thomas Strub, Philippe Helluy, Christophe Prud’homme

Chapter ref: [cha:maxwell-2d]

7.1 Description

The Maxwell equations read:

−1

c2
∂E

∂t
+∇×B = µ0J

Bt +∇×E = 0

∇ ·B = 0

∇ ·E =
ρ

εo

where E is the electric field, B the magnetic field, J the current density, c the speed of light, rho
density of electric charge, mu0 the vacuum permeability and epsilon0 the vacuum permittivity.

In the midst industrial notament in aeronautics, systems Products must verify certain standards such as
the receipt an electromagnetic wave emitted by a radar does not cause the inefficassité of part or all of the
hardware in the system.

Thus, the simulation of such situations can develop when or during the certification of a new product
to test its reaction to such attacks.

Also note that the last two equations are actually initial conditions, since if we assume they are true at
the moment t = 0 then it can be deduced from the first two.

At t = 0s, we suppose that

∇ ·B = 0 (7.1)

∇ ·E =
ρ

εo
(7.2)

Suppose that B = (Bx, By, Bz)
T and E = (Ex, Ey, Ez)

T i.e.

∂Bx
∂x

(t = 0) +
∂By
∂y

(t = 0) +
∂Bz
∂z

(t = 0) = 0 (7.3)

∂Ex
∂x

(t = 0) +
∂Ey
∂y

(t = 0) +
∂Ez
∂z

(t = 0) =
ρ

εo
(7.4)

73

2D Maxwell simulation in a diode

Differentiating the first of these two equations with respect to time, we get:

∂

∂t

∂

∂x
Bx +

∂

∂t

∂

∂y
By +

∂

∂t

∂

∂z
Bz =

∂

∂x

(
∂

∂y
Ez −

∂

∂z
Ey

)
+

∂

∂y

(
∂

∂z
Ex −

∂

∂x
Ez

)
+

∂

∂z

(
∂

∂x
Ey −

∂

∂y
Ex

)
= 0 (7.5)

thanks to

Bt +∇×E = 0 (7.6)

So, for all t ≥ 0,
∇ ·B(t) = ∇ ·B(0) = 0 (7.7)

We deduce the same way the second equation, using the charge conservation equation :

∂ρ

∂t
+∇ · (ρJ) = 0 (7.8)

7.2 Variational formulation

7.3 Implementation

7.4 Numerical Results

74

Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme

CHAPTER 8

Domain decomposition methods
By Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme

Chapter ref: [cha:dd]

8.1 A Really Short Introduction

In mathematics, numerical analysis, and numerical partial differential equations, domain decomposition
methods solve a boundary value problem by splitting it into smaller boundary value problems on subdo-
mains and iterating to coordinate the solution between the adjacent subdomains. A corse problem with one
or fiew unknows per subdomain is used to further coordinate the solution between the subdomains globally.

8.2 A 1D model

We consider the following laplacian boundary value problem{
− u”(x) = f(x) in]0, 1[

u(0) = α, u(1) = β
(8.1)

where α, β ∈ R.

8.2.1 Schwartz algorithms

The schwartz overlapping multiplicative algorithm with dirichlet interface conditions for this problem at
nth iteration is given by

−u1”n(x) = f(x) in]0, b[

un1 (0) = α

un1 (b) = un−1
2 (b)

and


−u2”n(x) = f(x) in]a, 1[

un2 (1) = β

un2 (a) = un1 (a)

(8.2)

where n ∈ N∗, a, b ∈ R and a < b.
Let eni = uni − u (i = 1, 2), the error at nth iteration relative to the exact solution, the convergence rate is
given by

ρ =
|en1 |
|en−1

1 | =
a

b

1− b
1− a =

|en2 |
|en−1

2 | . (8.3)

75

Domain decomposition methods

8.2.2 Variational formulations

find u such that ∫ b

0

u′1v
′ =

∫ b

0

fv ∀v in the first subdomain Ω1 =]0, b[∫ 1

a

u′2v
′ =

∫ 1

a

fv ∀v in the second subdomain Ω2 =]a, 1[

8.3 A 2 domain overlapping Schwartz method in 2D and 3D

We consider the following laplacian boundary value problem{
−∆u = f in Ω

u = g on ∂Ω
(8.4)

where Ω ⊂ Rd, d = 2, 3 and g is the dirichlet boundary value.

8.3.1 Schwartz algorithms

The schwartz overlapping multiplicative algorithm with dirichlet interface conditions for this problem on
two subdomains Ω1 and Ω2 at nth iteration is given by

−∆un1 = f in Ω1

un1 = g on ∂Ωext1

un1 = un−1
2 on Γ1

and


−∆un2 = f in Ω2

un2 = g on ∂Ωext2

un2 = un1 on Γ2

(8.5)

8.3.2 Variational formulations∫
Ωi

∇ui · ∇v =

∫
Ωi

fv ∀ v, i = 1, 2.

FEEL++ implementation

/*
Implementation of the local problem

*/
template<Expr>
void
localProblem(element_type& u, Expr expr)
{

// Assembly of the right hand side

∫
Ω

fv

auto F = M_backend->newVector(Xh);
form1(_test=Xh,_vector=F, _init=true) =

integrate(elements(mesh), f*id(v));
F->close();

// Assembly of the left hand side

∫
Ω

∇u · ∇v
auto A = M_backend->newMatrix(Xh, Xh);
form2(_test=Xh, _trial=Xh, _matrix=A, _init=true) =

integrate(elements(mesh), gradt(u)*trans(grad(v)));
A->close();

// Apply the dirichlet boundary conditions
form2(Xh, Xh, A) +=

on(markedfaces(mesh, "Dirichlet") ,u,F,g);

// Apply the dirichlet interface conditions

76

Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme

form2(Xh, Xh, A) +=
on(markedfaces(mesh, "Interface") ,u,F,expr);

// solve the linear system Au = F
M_backend->solve(_matrix=A, _solution=u, _rhs=F);

}

unsigned int cpt = 0;
double tolerance = 1e− 8;
double maxIterations = 20;
double l2erroru1 = 1.;
double l2erroru2 = 1;
/*
Iteration loop
*/
while((l2erroru1 +l2erroru2) > tolerance && cpt <= maxIterations)
{

// call the localProblem on the first subdomain Ω1

localProblem(u1, idv(u2));

// call the localProblem on the first subdomain Ω2

localProblem(u2, idv(u1));

// compute L2 errors on each subdomain
L2erroru1 = l2Error(u1);
L2erroru2 = l2Error(u2);

// increment the cunter
++cpt;

}

8.3.3 Numerical results in 2D case

The numerical results presented in the following table correspond to the partition of the global domain Ω
in two subdomains Ω1 and Ω2 (see figure 8.2) and the following configuration:

1. g(x, y) = sin(πx) cos(πy) : the exact solution

2. f(x, y) = 2π2g : the right hand side of the equation

3. P2 approximation : the lagrange polynomial order

4. hsize = 0.02 : the mesh size

5. tol = 1e− 9 : the tolerance

Ω1

Ω2

Ω
1 ∩

Ω
2

(a) Two overlapping subdomains

Ω1

Ω2

Ω
1 ∩

Ω
2

(b) Two overlapping meshes

Figure 8.1: geometry

77

Domain decomposition methods

Nomber of iterations ‖u1 − uex‖L2 ‖u2 − uex‖L2

11 2.52e-8 2.16e-8

8.3.4 Numerical solutions in 2D case

(a) first iteration (b) 10th iteration

Figure 8.2: isovalues of solution in 2D

8.4 Computing the eigenmodes of the Dirichlet to Neumann oper-
ator

8.4.1 Problem description and variational formulation

We consider at the continuous level the Dirichlet-to-Neumann(DtN) map on Ω, denoted by DtNΩ.
Let u : Γ 7−→ R,

DtNΩ(u) = κ
∂v

n

∣∣∣
Γ

where v satisfies {
L(v) := (η − div(κ∇))v = 0 dans Ω,

v = u sur Γ
(8.6)

where Ω is a bounded domain of Rd (d=2 or 3), and Γ it border, κ is a positive diffusion function which
can be discontinuous, and η ≥ 0. The eigenmodes of the Dirichlet-to-Neumann operator are solutions of
the following eigenvalues problem

DtNΩ(u) = λκu (8.7)

To obtain the discrete form of the DtN map, we consider the variational form of (8.6). let’s define the
bilinear form a : H1(Ω)×H1(Ω) −→ R,

a(w, v) :=

∫
Ω

ηwv + κ∇w · ∇v.

With a finite element basis {φk}, the coefficient matrix of a Neumann boundary value problem in Ω is

Akl :=

∫
Ω

ηφkφl + κ∇φk · ∇φl.

A variational formulation of the flux reads∫
Γ

κ
∂v

∂n
φk =

∫
Ω

ηvφk + κ∇v · ∇φk ∀ φk.

78

Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme

So the variational formulation of the eigenvalue problem (8.7) reads∫
Ω

ηvφk + κ∇v · ∇φk = λ

∫
Γ

κvφk ∀ φk. (8.8)

Let B be the weighted mass matrix

(B)kl =

∫
Γ

κφkφl

The compact form of (8.8) is
Av = λBv (8.9)

FEEL++ implementation

// Assembly of the right hand side B =

∫
Γ

κvw

auto B = M_backend->newMatrix(Xh, Xh) ;
form2(_test=Xh, _trial=Xh, _matrix=B, _init=true);
BOOST_FOREACH(int marker, flags)
{

form2(Xh, Xh, B) +=
integrate(markedfaces(mesh,marker), kappa*idt(u)*id(v));

}
B->close();

// Assembly of the left hand side A =

∫
Ω

ηvw + κ∇v · ∇w
auto A = M_backend->newMatrix(Xh, Xh) ;
form2(_test=Xh, _trial=Xh, _matrix=A, _init=true) =
integrate(elements(mesh), kappa*gradt(u)*trans(grad(v)) + nu*idt(u)*id(v));
A->close();

// eigenvalue solver options
int nev = this->vm()["solvereigen-nev"].template as<int>();
int ncv = this->vm()["solvereigen-ncv"].template as<int>();;

// definition of the eigenmodes
SolverEigen<double>::eigenmodes_type modes;

// solve the eigenvalue problem Av = λBv
modes=

eigs(_matrixA=A,
_matrixB=B,
_nev=nev,
_ncv=ncv,
_transform=SINVERT,
_spectrum=SMALLEST_MAGNITUDE,
_verbose = true);

}

8.4.2 Numerical solutions

(a) first mode (b) second mode (c) third mode

Figure 8.3: three eigenmodes

79

Domain decomposition methods

These numerical solutions correspond to the following configuration :

1. P2 approximation : the lagrange polynomial order

2. hsize = 0.02 : the mesh size

3. µ = κ = 1.

80

Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme

Part III

Programming with FEEL++

81

Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme

Part IV

Appendix

83

Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme

APPENDIX A

How to ?

A.1 Introduction

This section includes the FAQ avaible on Feel web site, if you want to post a question, please visit it and
follow the instruction to edit the FAQ.

A.2 Meshes

A.2.1 What are the main execution options of a FEEL++ application ?

Let’s consider that your application is named feelapp, in that case you can modify the main execution
options of your application with

./feelapp --shape="simplex" --nochdir --exporter-format=gmsh

These options are :

• shape=["simplex","hypercube"] which is the shape of the generated mesh

• nochdir means that you want the result in the current directory (by default in ~/feel)

• exporter-format enables you to choose the format of mesh results output

A.2.2 How to create a mesh?

Here is an example of how to create a mesh with GMSH generator :
mesh_ptrtype mesh =

createGMSHMesh(_mesh=new mesh_type,
_update=MESH_CHECK!MESH_UPDATE_FACES!MESH_UPDATE_EDGES!MESH_RENUMBER,
_desc=domain(_name= (boost::format("%1%-%2%-%3%") %"hypercube" %Dim %1).str(),
_shape="hypercube",
_dim=Dim,
_h=meshSize,
_xmin=-1.,
_xmax=1.,
_ymin=-1.,
_ymax=1.));

Here is an example of how to create a mesh with a .geo file :

85

https://trac.feelpp.org/wiki/FAQ

Domain decomposition methods

mesh_ptrtype mesh =
createGMSHMesh(_mesh=new mesh_type,
_update=MESH_CHECK!MESH_UPDATE_FACES!MESH_UPDATE_EDGES!MESH_RENUMBER,
_desc="???");

A.2.3 What are the different parameters of the function domain() ?

The function domain() is located in feel/feel/feefilters/gmsh.hpp and enables to generate a
simple geometrical domain from required and optional parameters. Its avaible options are :

• _name = "string" gives the prefix of the gmsh geo and mesh files,

• _shape = "simplex", "hypercube", "ellipsoid" gives the shape of the domain, it is one
of these three possibilities

• _dim = 1, 2 or 3 gives the topological dimension of the domain. For example if _dim=2 and
_shape="simplex" this will produce a triangle

• _h = real value gives the characteristic size of the mesh, e.g. _h=0.1

• _xmin = real gives the minimum x value of the domain for example _xmin=-1

• _xmax = real gives the maximum x value of the domain for example _xmax=-1

• _ymin = real gives the minimum x value of the domain for example _ymin=-1.

• _ymax = real gives the maximum y value of the domain for example _ymax=1.

A.2.4 How to loop on the degrees of freedom coordinates of a function ?

Take a look at the example which is in feel/examples/snippets/dofpoints.cpp

A.2.5 How to work with specific meshes ?
loadmesh.cpp

FEEL++ supports several meshes file formats. It supports essentially Gmsh mesh file format but other are
acceptable, with some modifications :

• medit (.mesh)
There is a small difference between medit meshes and gmsh ones. The medit reader of Gmsh is
able to read medit meshes, the issue comes from markers for areas of the edges were we want to
apply different boundary conditions. Gmsh is currently using the Physical Entities (physical line,
area, volume). Unfortunetly, the medit reader of Gmsh considers the physical flag as null (to go
deeper, you can check this part on Gmsh web site). This option is took into account in FEEL++,
the only modification is to put the optional parameter physical_are_elementary_regions as
true in both functions createGMSHMesh and/or loadGMSHMesh. We have prepared a simple ex-
ample which imports a medit mesh with a surface and volume calculation on it. You can find it in
feel/doc/manual/loadmesh.cpp.

Please not that furthers meditmeshes are presented in example in the directory /feel/data/medit/.
The geo scripts are those which are produced by FEEL++ when reading those meshes.

• Stl (.stl)
You can also use stl files, those files are native to the stereolithography CAD software created by
3D Systems. These files describe only the surface geometry of a three dimensional object without
any representation of color, texture or other common attributes. You have further examples of such
files in feel/data/stl.

To use FEEL++ with stl files, you have to create a geo script to enable gmsh to remesh the file. The
stl file you want to use has to be a volume mesh. The script is very small, you have all informations
to make one at Gmsh/slt section on their web site. Once it’s done, you juste have to type

86

http://geuz.org/gmsh/doc/texinfo/gmsh.html#Elementary-vs-physical-entities
https://geuz.org/trac/gmsh/wiki/STLRemeshing

Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme

gmsh stl_file_name.geo -3

with stl_file_name.stl in the same directory. That command will produce you the correct .msh
mesh that you could now use as usual without any modification in your FEEL++ application.

Take a look above how the remesh has produced a complete mesh with the file pelvis.stl and
pelvis.geo:

Figure A.1: Pelvis before remesh (stl) Figure A.2: Pelvis after remesh (msh)

A.3 Language for Partial Differential Equations

A.3.1 What is the difference between using the "vf::project" function and solve a weak
projection problem ?

To make it clear, let’s considerate that we want to project a P1 scalar function σ on a P0 space. We have
two alternatives to do it :

• Computing the L2 projection of σ onto the space
Here kappa and v are P0 functions :
Matrix_M=integrate(elements(mesh), idt(kappa) * id(v));
Vector_F=integrate(elements(mesh), idv(sigma) * id(v));

• Use the project function vf::project

This function does a nodal projection : at the dof point the projection will be exactly equal to the
projected function σ. It works as follow
kappa=vf::project(P0_space, elements(mesh), idv(sigma));

These two projections are in general different, if you compare the values in the vector, they will be
(slightly) different. However as h→ 0 they should both converge to the σ function.

A.3.2 How to do a quick L2 projection of an expression ?

Let say that we have created two spaces, one scalar and one vectorial, we call them Xh and XhV ec and one
wants to project some expressions on those spaces.

For example, we want to project (x, y)→
√
x2 − y2 − 1 on the scalar space and (−2y, cosx) on the

vectorial space. First of all, one has to create projectors for the scalar and vectorial spaces, the code reads
as follow :
#include <feel/feeldiscr/projector.hpp>
auto l2p = projector(Xh, Xh);
auto l2pVec = projector(XhVec, XhVec);

87

Domain decomposition methods

You can note that projector(Space, Space) returns a boost::shared_ptr on a Projector object
which makes projecting functions on Space possible.

Then, one uses the function Projector::project(Expression) :
auto Circle = l2p->project(sqrt(pow((vf::Px()),2.0)+ pow((vf::Py()),2.0)) - 1);

auto F = l2pVec->project(-2 * Py() * oneX() + cos(vf::Px()) * oneY());

Here you can note that the types of Circle and F are respectively : Xh_type :: element_type and
XhV ec_type :: element_type
An equivalent way to write it is to use the Projector::operator()(Expression) :
auto Circle = (*l2p)(sqrt(pow((vf::Px()),2.0)+ pow((vf::Py()),2.0)) - 1);

auto F = (*l2pVec)(-2 * Py() * oneX() + cos(vf::Px()) * oneY());

Projector::operator() accepts many types of arguments, see feel/feeldiscr/projector.hpp

for details.

A.3.3 How to compose FEEL++ operators ?

Let’s considerate that we have created two spaces, one scalar Xh and one vectorial XhV ec. We also have
two vectors a and b (of type Xh_type :: element_type).

One wants to do the following operation : div(grad(a ∗ b)). The following expression is not yet
implemented in FEEL++:
divv(gradv(idv(a) * idv(b)))

One has to do intermediate projections to compose the operators. Using the Projector class, the code reads
:
#include <feel/feeldiscr/projector.hpp>

// create projectors on Xh and XhVec spaces
auto l2p = projector(Xh, Xh);
auto l2pVec = projector(XhVec, XhVec);

auto ab = l2p->project(idv(a)*idv(b));
auto grad_ab = l2pVec->project(gradv(ab));
auto div_grad_ab = l2p->project(divv(grad_ab));

Here div_grad_ab has the type Xh_type :: elementtype. There is an equivalent but verboseless way to
write this composition : use the Projector::operator() which accepts has argument an expression or
an element_type. So one could write :
#include <feel/feeldiscr/projector.hpp>

//create projectors on Xh and XhVec spaces
auto l2p = projector(Xh, Xh);
auto l2pVec = projector(XhVec, XhVec);

auto div_grad_ab = (*l2p)(divv((*l2pVec)(gradv((*l2p)(idv(a)*idv(b))))));

the * is needed before l2p or l2pVec since there are boost::shared_ptr objects. One could also create
directly Projector objects :
Projector<Xh_type, Xh_type> l2p(Xh, Xh);

auto ab = l2p(idv(a)*idv(b));

88

Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme

APPENDIX B

Random notes

B.1 Becoming a Feel++ developer

B.1.1 Interest

Becoming a FEEL++ developer makes library improvements possible, you may have several proposals
which may be usefull. Taking part of the project will enable you to commit some modifications or new
applications, we will be glad to count you among us. As an open-source project under GNU licence, you
will be able to commit and participate to the entire project and its various aspects. Our aim is that each
user should be involved in the library’s expansion. In the following part, you will see how you can become
a FEEL++ collaborator.

B.1.2 Creating RSA keys

At the top of the manual, you have seen how to get the sources anonymously, if you want to checkout or
commit properly, you will need an account on . After the administrator approval, you have to demand the
rights to see the project tree.

Once it’s done, you will have to create RSA keys to be able to connect to the server using ssh. To do
that you have to type the commands : ssh-keygen and accept the 3 questions without typing anything.
The generated key is placed in ~/.ssh/id_rsa.pub, you just need to copy this file’s content in your
forge account. To make it, go on the Forge website and enter into your account’s personnal page. At
the bottom of the page, you’ll have the possibility to edit your SSH keys, go into it and copy/paste the
id_rsa.pub content. Once it’s done, the number of your SSH keys in that page should have increased. Now,
you will be able to connect to the server within an hour.

Important : If you don’t have the same login on your computer as on Forge, you must add the com-
mands in the ~/.ssh/config file :
host forge.imag.fr

user <your_login_forge>

B.1.3 Downloading the sources

To be able to download the FEEL++ sources, you need subversion and SSH > 1.xxx installed on your
computer. In a command prompt, go where you want FEEL++ to be downloaded and type the following

89

https://forge.imag.fr/

Domain decomposition methods

command :
svn co svn+ssh://login@scm.forge.imag.fr/var/lib/gforge/chroot/scmrepos
/svn/life/trunk/life/trunk feel
where login is your login name in the Forge plateform.

You are now able to checkout, commit or add the file your judge usefull using svn, please don’t forget
to comment on your various actions. The first commit is subject to the approbation of one of the main
developers.

B.2 Linear Algebra with PETSC

B.2.1 Using the Petsc Backend: recommended

Using the Petsc backend is recommended. To do that type in the command line
myprog --backend=petsc

then you can change the type of solvers and preconditioners by adding Petsc options at the end of the
command lines, for example

-pc_type lu

will actually solve the problem in one iteration of an iterative solver (p.ex. gmres).

PAx = PB (B.1)

where P ≈ A−1. Here A is decomposed in LU form and (B.1) is solved in one iteration.

B.2.2 List of solvers and preconditioners

List of some iterative solvers (Krylov subspace)

• cg, bicg

• gmres, fgmres, lgmres

• bcgs, bcgsl

• see petsc/petscksp.h for more

List of some preconditioners

• lu, choleski

• jacobi, sor

• ilu, icc

• see petsc/petscpc.h for more

B.2.3 What is going on in the solvers?

In order to monitor what is going on (iterations, residual...) Petsc provides some monitoring options

-ksp_monitor

For example

myprog -backend=petsc -ksp_monitor -pc_type lu

it should show only one iteration.
See http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-current/docs/manualpages/KSP/KSPMonitorSet.html for more details

90

Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme

B.3 Weak Dirichlet boudary conditions

B.3.1 Basic idea

Weak treatment

In order to treat the boundary conditions uniformly (i.e. the same way as Neumann and Robin Conditions),
we wish to treat the Dirichlet BC (e.g. u = g) weakly.

Remark 6 Initial Idea add the penalisation term
∫
∂Ω

µ(u − g) where µ is a constant. But this is not
enough, this is not consistent with the initial formulation.

One can use the Nitsche “trick” to implement weak Dirichlet conditions.

• write the equations in conservative form (i.e. identify the flux);

• add the terms to ensure consistency (i.e the flux on the boundary);

• symmetrize to ensure adjoint consistency;

• add a penalisation term with factor γ(u− g)/h that ensures that the solution will be set to the proper
value at the boundary;

Penalisation parameter

Remark 7 Choosing γ γ must be chosen such that the coercivity(or inf-sup) property is satisfied. Difficult
to do in general. Increase γ until the BC are properly satisfied, e.g. start with γ = 1, typical values are
between 1 and 10.

The choice of γ is a problem specially when h is small.

Advantages, disadvantages

Remark 8 Weak treatment: Advantages

• uniform(weak) treatment of all boundary conditions type

• if boundary condition is independant of time, the terms are assembled once for all

• the boundary condition is not enforced exactely but the convergence order remain optimal

Remark 9 Weak treatment: Disadvantages

• Introduction of the penalisation parameter γ that needs to be tweaked

Advantages, disadvantages

Remark 10 Strong treatment: Advantages

• Enforce exactely the boundary conditions

Remark 11 Strong treatment : Disadvantages

• Need to modify the matrix once assembled to reflect that the Dirichlet degree of freedom are actually
known. Then even if the boundary condition is independant of time, at every time step if there are
terms depending on time that need reassembly (e.g. convection) the strong treatment needs to be
reapplied.

• it can be expensive to apply depending on the type of sparse matrix used, for example using CSR
format setting rows to 0 except on the diagonal to 1 is not expensive but one must do that also for the
columns associated with each Dirichlet degree of freedom and that is expensive.

91

Domain decomposition methods

B.3.2 Laplacian

Example: Laplacian

−∆u = f(non conservative), −∇ · (∇u) = f(conservative), u = g|∂Ω (B.2)

the flux is vector ∇u

∫
Ω

∇u · ∇v +

∫
∂Ω

−∂u
∂n

v︸ ︷︷ ︸
integration by part

− ∂v
∂n

u︸ ︷︷ ︸
adjoint consistency: symetrisation

+
γ

h
uv︸︷︷︸

penalisation: enforce Dirichlet condition

(B.3)

∫
Ω

f∇v +

∫
∂Ω

(− ∂v
∂n

g︸ ︷︷ ︸
adjoint consistency

+
γ

h
v)g︸ ︷︷ ︸

penalisation: enforce Dirichlet condition

(B.4)

Example: Laplacian

// bilinear form (left hand side)
form2(Xh, Xh, D) +=
integrate(boundaryfaces(mesh), im_type(),

-(gradt(u)*N())*id(v) // integration by part
-(grad(v)*N())*idt(u) // adjoint consistency
+gamma*id(v)*idt(u)/hFace()); // penalisation

// linear form (right hand side)
form1(Xh, F) +=
integrate(boundaryfaces(mesh), im_type(),

-(grad(v)*N())*g // adjoint consistency
+gamma*id(v)*g/hFace()); // penalisation

B.3.3 Convection-Diffusion

Example: Convection-Diffusion

Remark 12 Convection Diffusion Consider now the following problem, find u such that

−∆u+ c · ∇u = f, u = g|∂Ω , ∇ · c = 0 (B.5)

under conservative form the equation reads

∇ · (−∇u+ cu) = f, u = g|∂Ω , ∇ · c = 0 (B.6)

the flux vector field is F = −∇u + cu. Note that here the condition, ∇ · c = 0 was crucial to expand
∇ · (cu) into c · ∇u since

∇ · (cu) = c · ∇u+ u∇ · c︸ ︷︷ ︸
=0

(B.7)

Weak formulation for convection diffusion

Multiplying by any test function v and integration by part of (B.6) gives∫
Ω

∇u · ∇v + (c · ∇u)v +

∫
∂Ω

(F · n)v =

∫
Ω

fv (B.8)

where n is the outward unit normal to ∂Ω. We now introduce the penalisation term that will ensure that
u→ g as h→ 0 on ∂Ω. (B.8) reads now∫

Ω

∇u · ∇v + (c · ∇u)v +

∫
∂Ω

(F · n)v +
γ

h
uv =

∫
Ω

fv +

∫
∂Ω

γ

h
gv (B.9)

92

Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme

Finally we incorporate the symetrisation of the bilinear form to ensure adjoint consistency and hence
proper convergence order∫

Ω

∇u · ∇v + (c · ∇u)v +

∫
∂Ω

((−∇u+ cu) · n)v + ((−∇v + cv) · n)u +
γ

h
uv =∫

Ω

fv +

∫
∂Ω

((−∇v + cv) · n)g +
γ

h
gv

(B.10)

Example: Convection-Diffusion

// bilinear form (left hand side)
form2(Xh, Xh, D) +=
integrate(boundaryfaces(mesh), im_type(),

// integration by part
-(gradt(u)*N())*id(v) + (idt(u)*trans(idv(c))*N())*id(v)
// adjoint consistency
-(grad(v)*N())*idt(u) + (id(v)*trans(idv(c))*N())*idt(u)
// penalisation
+gamma*id(v)*idt(u)/hFace());

// linear form (right hand side)
form1(Xh, F) +=
integrate(boundaryfaces(mesh), im_type(),

// adjoint consistency
-(grad(v)*N())*g + (id(v)*trans(idv(c))*N())*g
// penalisation
+gamma*id(v)*g/hFace());

B.3.4 Stokes

Example: Stokes

Remark 13 Stokes Consider now the following problem, find (u, p) such that

−∆u +∇p = f , u = g|∂Ω , ∇ · u = 0 (B.11)

under conservative form the equation reads

∇ · (−∇u + pI) = f , (B.12)
∇ · u = 0, (B.13)

u = g|∂Ω (B.14)

where I(x) =

(
1 0
0 1

)
(in 2D) ∀x ∈ Ω is the identity tensor(matrix) field ∈ Rd×d. The flux tensor field is

F = −∇u + pI. Indeed we have the following relation, if M is a tensor (rank 2) field and v is a vector
field

∇ · (Mv) = (∇ ·M) · v + M : (∇v) (B.15)

where M : (∇v) = trace(M ∗ ∇vT), ∗ is the matrix-matrix multiplication and ∇ ·M is the vector field

with components the divergence of each row of M. For example∇ · (p I) = ∇ ·
(
p 0
0 p

)
(in 2D) = ∇p.

Weak formulation for Stokes

Taking the scalar product of (B.12) by any test function v (associated to velocity) and multiplying (B.13)
by any test function q (associated to pressure), the variational formulation of (B.12) reads, thanks to (B.15),∫

Ω

∇u : ∇v + p∇ · v +

∫
∂Ω

((−∇u + pI)n) · v =

∫
Ω

f · v (B.16)

93

Domain decomposition methods

where n is the outward unit normal to ∂Ω. We now introduce the penalisation term that will ensure that
u→ g as h→ 0 on ∂Ω. (B.16) reads now∫

Ω

∇u : ∇v + p∇ · v +

∫
∂Ω

((−∇u + pI)n) · v +
γ

h
u · v =

∫
Ω

f · v +

∫
∂Ω

γ

h
g · v (B.17)

Finally we incorporate the symetrisation of the bilinear form to ensure adjoint consistency and hence
proper convergence order∫

Ω

∇u : ∇v + p∇ · v +

∫
∂Ω

((−∇u + pI)n) · v + ((−∇v + qI)n) · u +
γ

h
u · v =∫

Ω

f · v +

∫
∂Ω

((−∇v + qI)n) · g +
γ

h
g · v

(B.18)

Example: Stokes

// total stress tensor (trial)
AUTO(SigmaNt, (-idt(p)*N()+mu*gradt(u)*N()));
// total stress tensor (test)
AUTO(SigmaN, (-id(p)*N()+mu*grad(v)*N()));
// linear form (right hand side)
form1(Xh, F) +=
integrate(boundaryfaces(mesh), im,

trans(g)*(-SigmaN+gamma*id(v)/hFace()));
// bilinear form (left hand side)
form2(Xh, Xh, D)+=
integrate(boundaryfaces(mesh), im,

-trans(SigmaNt)*id(v)
-trans(SigmaN)*idt(u)
+gamma*trans(idt(u))*id(v)/hFace());

B.4 Stabilisation techniques

B.4.1 Convection dominated flows

Consider this type of problem

− ε∆u+ c · ∇u+ γu = f, ∇ · c = 0 (B.19)

Introduce Pe = |c|h
ε the Péclet number. The dominating convection occurs when, on at least some cells,

Pe >> 1. We talk about singularly (i.e. ε << h) perturbed flows.
Without doing anything wiggles occur. There are remedies so called Stabilisation Methods, here some

some examples:

• Artificial diffusion (streamline diffusion) (SDFEM)

• Galerkin Least Squares method (GaLS)

• Streamline Upwind Petrov Galerkin (SUPG)

• Continuous Interior Penalty methods (CIP)

B.4.2 The CIP methods

Add the term ∑
F∈Γint

∫
F

γ h2
F |c · n| [∇u][∇v] (B.20)

94

Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme

where Γint is the set of internal faces where the Pe >> 1 (typically it is applied to all internal faces) and

[∇u] = ∇u · n|1 +∇u · n|2 (B.21)

is the jump of∇u(scalar valued) across the face. In the case of scalar valued functions

[u] = un|1 + un|2 (B.22)

Remark 14 (Choice for γ) γ can be taken in the range [1e− 2; 1e− 1]. A typical value is 2.5e− 2.

// define the stabilisation coefficient expression
AUTO(stab_coeff , (γβ abs(trans(N())*idv(beta)))*

vf::pow(hFace(),2.0));

// assemble the stabilisation operator
form2(Xh, Xh, M) +=
integrate(

// internal faces of the mesh
internalfaces(Xh->mesh()),
// integration method
_Q<OrderOfPolynomialToBeIntegratedExactely>,
// stabilisation term
stab_coeff*(trans(jumpt(gradt(u)))*jump(grad(v))));

B.5 Interpolation

In order to interpolate a function defined on one domain to another domain, one can use the interpolate
function. The basis function of the image space must be of Lagrange type.
typedef bases<Lagrange<Order, Vectorial> > basis_type; // velocity
typedef FunctionSpace<mesh_type, basis_type, value_type> space_type;
// ...
space_ptrtype Xh = space_type::New(mesh1);
element_type u(Xh, "u");
space_ptrtype Yh = space_type::New(mesh2);
element_type v(Yh, "v");

// interpolate u on mesh2 and store the result in v
interpolate(Yh, u, v);

95

Domain decomposition methods

96

Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme

APPENDIX C

GNU Free Documentation License

GNU Free Documentation License Version 1.2, November 2002
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA

02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document must them-
selves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

Applicability and definitions

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject

97

Domain decomposition methods

(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo in-
put format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word proces-
sors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorse-
ments", or "History".) To "Preserve the Title" of such a section when you modify the Document means that
it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

Verbatim copying

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

98

Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme

Copying in quantity

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Document.

Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

3. State on the Title page the name of the publisher of the Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

6. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

8. Include an unaltered copy of this License.

99

Domain decomposition methods

9. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled "History" in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

10. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

11. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

13. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

14. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of
your Modified Version by various parties–for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

Combining documents

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

100

Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme

In the combination, you must combine any sections Entitled "History" in the various original docu-
ments, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledge-
ments", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

Collections of documents

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License in
all other respects regarding verbatim copying of that document.

Aggregation with independent works

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the compilation’s users beyond what the indi-
vidual works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

Translation

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

Future revisions of this license

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail

101

Domain decomposition methods

to address new problems or concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document specifies that

a particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this docu-
ment under the terms of the GNU Free Documentation License, Version 1.2 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts."
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these exam-
ples in parallel under your choice of free software license, such as the GNU General Public License, to
permit their use in free software.

102

INDEX Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme 103

Index

Boost
Parameter, 15

boost
shared_ptr, 30

Class
Application, 21
Backend, 30
Mesh, 21

cmake, 14

formulation
variational, 32

laplacian, 32
formulation

feel, 34
mathematical, 32

Libraries
PETSc, 21
Trilinos, 21

mesh, 21

PETSc, 21

Stokes, 36
formulation

feel, 37
mathematical, 36

Trilinos, 21

104 Domain decomposition methods INDEX

BIBLIOGRAPHY Abdoulaye Samake, Vincent Chabannes, Christophe Prud’homme 105

Bibliography

[1] Wikipedia. http://fr.wikipedia.org.

[2] Vincent Chabannes, Gonçalo Pena, and Christophe Prud’Homme. High order fluid structure interac-
tion in 2D and 3D. Application to blood flow in arteries. Submitted to Elsevier Journal of Computa-
tional and Applied Mathematics (JCAM), February 2012.

[3] Vincent Doyeux, Yann Guyot, Vincent Chabannes, Christophe Prud’Homme, and Mourad Ismail.
Simulation of two-fluid flows using a finite element/level set method. Application to bubbles and
vesicle dynamics. Submitted to Elsevier Journal of Computational and Applied Mathematics (JCAM),
February 2012.

[4] J.-L. GUERMOND. Fluid Mechanics: Numerical Methods., pages 365–374. Oxford: Elsevier,
Ecyclopedia of Mathematical Physics, eds. J.-P. Françoise, G.L. Naber, and Tsou S.T. , (ISBN 978-0-
1251-2666-3), volume 2 edition, 2006.

[5] Incropera, DeWitt, Bergman, and Lavine. Fundamentals of heat and mass transfer. Wiley, 6 edition,
2007.

[6] Gonçalo Pena. Spectral element approximation of the incompressible Navier-Stokes equations in a
moving domain and applications. PhD thesis, Lausanne, 2009.

[7] Gonçalo Pena and Christophe Prud’homme. Construction of a high order fluid-structure interaction
solver. Journal of Computational and Applied Mathematics, In Press, Accepted Manuscript, 2009.

[8] Christophe Prud’homme. A domain specific embedded language in c++ for automatic differentiation,
projection, integration and variational formulations. Scientific Programming, 14(2):81–110, 2006.
http://iospress.metapress.com/link.asp?id=8xwd8r59hg1hmlcl.

[9] Christophe Prud’homme. Life: Overview of a unified c++ implementation of the finite and spectral
element methods in 1d, 2d and 3d. In Workshop On State-Of-The-Art In Scientific And Parallel
Computing, Lecture Notes in Computer Science, page 10. Springer-Verlag, 2006. Accepted.

[10] Christophe Prud’Homme, Vincent Chabannes, Vincent Doyeux, Mourad Ismail, Abdoulaye Samake,
and Gonçalo Pena. Feel++: A Computational Framework for Galerkin Methods and Advanced Nu-
merical Methods. Submitted to ESAIM Proc., January 2012.

[11] Benjamin Stamm. Stabilization strategies for discontinuous Galerkin methods. PhD thesis, Lausanne,
2008.

[12] Christoph Winkelmann. Interior penalty finite element approximation of Navier-Stokes equations and
application to free surface flows. PhD thesis, Lausanne, 2007.

http://fr.wikipedia.org
http://iospress.metapress.com/link.asp?id=8xwd8r59hg1hmlcl

	I Tutorial
	Building Feel++ By Christophe Prud'homme, Baptiste Morin
	Building Feel++
	Getting the source via an archive
	Getting the source via Subversion
	Unix : dependencies
	Feel++ on Debian and Ubuntu
	Feel++ on Mac OS X
	Compiling Feel

	Programming environment
	Boost C++ Libraries
	Feel++ Namepaces

	Getting Started with Feel++ By Christophe Prud'homme, Baptiste Morin
	Creating applications
	Application and Options
	Application, Logging, Archiving, Configuring
	Initializing PETSc and Trilinos

	Mesh Manipulation
	Mesh definition
	Mesh file format
	Examples
	Exporting meshes for post-processing
	Iterating over the entities of a mesh
	Load meshes

	Computing integrals
	Problem statement
	Implementation
	Quadrature
	Complete example : application, mesh and integrals
	Results

	Function Spaces
	Functions spaces definition
	Using function space and functions
	Results

	Linear Algebra
	Choosing a linear algebra backend
	Solving

	Variational Formulation
	Principle
	Standard formulation: the Laplacian case
	Mixed formulation: the Stokes case

	Feel++ Language Keywords By Christophe Prud'homme
	Keywords
	Operators
	Integrals
	Projections
	Meshes

	II Learning by Examples
	Non-Linear examples By Christophe Prud'homme
	Solving nonlinear equations
	A first nonlinear problem
	Simplified combustion problem: Bratu

	Heat sink By Baptiste Morin, Christophe Prud'homme
	Problem description
	Domain
	Inputs

	Theory
	Figure
	Equations
	Boundary conditions
	Finite Element Method

	Implementation
	Application parameters
	Surfaces
	Equations
	Outputs

	Use cases
	How to use it ?
	Results

	Natural convection in a heated tank By Christophe Prud'homme
	Description
	Influence of parameters
	Quantities of interest
	Mean temperature
	Flow rate

	Implementation
	Numerical Schemes
	Stokes problem formulation and the pressure
	The Stokes problem
	Reformulation
	Variational formulation
	Implementation
	Fix point iteration for Navier-Stokes
	A Fix point coupling algorithm
	A Newton coupling algorithm

	2D Maxwell simulation in a diode By Thomas Strub, Philippe Helluy, Christophe Prud'homme
	Description
	Variational formulation
	Implementation
	Numerical Results

	Domain decomposition methods By Abdoulaye Samake, Vincent Chabannes, Christophe Prud'homme
	A Really Short Introduction
	A 1D model
	Schwartz algorithms
	Variational formulations

	A 2 domain overlapping Schwartz method in 2D and 3D
	Schwartz algorithms
	Variational formulations
	Numerical results in 2D case
	Numerical solutions in 2D case

	Computing the eigenmodes of the Dirichlet to Neumann operator
	Problem description and variational formulation
	Numerical solutions

	III Programming with Feel++
	IV Appendix
	How to ?
	Introduction
	Meshes
	What are the main execution options of a Feel++ application ?
	How to create a mesh?
	What are the different parameters of the function domain() ?
	How to loop on the degrees of freedom coordinates of a function ?
	How to work with specific meshes ?

	Language for Partial Differential Equations
	What is the difference between using the "vf::project" function and solve a weak projection problem ?
	How to do a quick L2 projection of an expression ?
	How to compose Feel++ operators ?

	Random notes
	Becoming a Feel++ developer
	Interest
	Creating RSA keys
	Downloading the sources

	Linear Algebra with PETSC
	Using the Petsc Backend: recommended
	List of solvers and preconditioners
	What is going on in the solvers?

	Weak Dirichlet boudary conditions
	Basic idea
	Laplacian
	Convection-Diffusion
	Stokes

	Stabilisation techniques
	Convection dominated flows
	The CIP methods

	Interpolation

	GNU Free Documentation License
	Index

