Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
aligned_allocator< T >STL compatible allocator to use with with 16 byte aligned types
aligned_allocator_indirection< T >
AlignedBox< _Scalar, _AmbientDim >An axis aligned box
AngleAxis< _Scalar >Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
Array< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >General-purpose arrays with easy API for coefficient-wise operations
ArrayBase< Derived >Base class for all 1D and 2D array, and related expressions
ArrayWrapper< ExpressionType >Expression of a mathematical vector or matrix as an array object
ArrayXpr
assign_impl
BiCGSTAB< _MatrixType, _Preconditioner >A bi conjugate gradient stabilized solver for sparse square problems
Block< XprType, BlockRows, BlockCols, InnerPanel, HasDirectAccess >Expression of a fixed-size or dynamic-size block
Block< XprType, BlockRows, BlockCols, InnerPanel, true >
CholmodBase< _MatrixType, _UpLo, Derived >The base class for the direct Cholesky factorization of Cholmod
CholmodDecomposition< _MatrixType, _UpLo >A general Cholesky factorization and solver based on Cholmod
CholmodSimplicialLDLT< _MatrixType, _UpLo >A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod
CholmodSimplicialLLT< _MatrixType, _UpLo >A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod
CholmodSupernodalLLT< _MatrixType, _UpLo >A supernodal Cholesky (LLT) factorization and solver based on Cholmod
CoeffBasedProduct< LhsNested, RhsNested, NestingFlags >
ColPivHouseholderQR< _MatrixType >Householder rank-revealing QR decomposition of a matrix with column-pivoting
CommaInitializer< XprType >Helper class used by the comma initializer operator
ComplexEigenSolver< _MatrixType >Computes eigenvalues and eigenvectors of general complex matrices
ComplexSchur< _MatrixType >Performs a complex Schur decomposition of a real or complex square matrix
ConjugateGradient< _MatrixType, _UpLo, _Preconditioner >A conjugate gradient solver for sparse self-adjoint problems
MatrixBase< Derived >::ConstDiagonalIndexReturnType< Index >
DenseBase< Derived >::ConstFixedSegmentReturnType< Size >
MatrixBase< Derived >::ConstSelfAdjointViewReturnType< UpLo >
MatrixBase< Derived >::ConstTriangularViewReturnType< Mode >
CwiseBinaryOp< BinaryOp, Lhs, Rhs >Generic expression where a coefficient-wise binary operator is applied to two expressions
CwiseBinaryOpImpl
CwiseBinaryOpImpl< BinaryOp, Lhs, Rhs, Dense >
CwiseBinaryOpImpl< BinaryOp, Lhs, Rhs, Sparse >
CwiseNullaryOp< NullaryOp, PlainObjectType >Generic expression of a matrix where all coefficients are defined by a functor
CwiseUnaryOp< UnaryOp, XprType >Generic expression where a coefficient-wise unary operator is applied to an expression
CwiseUnaryOpImpl
CwiseUnaryOpImpl< UnaryOp, MatrixType, Sparse >
CwiseUnaryOpImpl< UnaryOp, XprType, Dense >
CwiseUnaryView< ViewOp, MatrixType >Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector
CwiseUnaryViewImpl
CwiseUnaryViewImpl< ViewOp, MatrixType, Dense >
CwiseUnaryViewImpl< ViewOp, MatrixType, Sparse >
Dense
DenseBase< Derived >Base class for all dense matrices, vectors, and arrays
DenseCoeffsBase
DenseCoeffsBase< Derived, DirectAccessors >Base class providing direct read-only coefficient access to matrices and arrays
DenseCoeffsBase< Derived, DirectWriteAccessors >Base class providing direct read/write coefficient access to matrices and arrays
DenseCoeffsBase< Derived, ReadOnlyAccessors >Base class providing read-only coefficient access to matrices and arrays
DenseCoeffsBase< Derived, WriteAccessors >Base class providing read/write coefficient access to matrices and arrays
DenseSparseProductReturnType< Lhs, Rhs, InnerSize >
DenseSparseProductReturnType< Lhs, Rhs, 1 >
DenseStorage< T, Size, _Rows, _Cols, _Options >
DenseTimeSparseProduct< Lhs, Rhs >
DenseTimeSparseSelfAdjointProduct< Lhs, Rhs, UpLo >
deque
deque< T, EIGEN_ALIGNED_ALLOCATOR< T > >
Diagonal< MatrixType, DiagIndex >Expression of a diagonal/subdiagonal/superdiagonal in a matrix
DiagonalBase
MatrixBase< Derived >::DiagonalIndexReturnType< Index >
DiagonalMatrix< _Scalar, SizeAtCompileTime, MaxSizeAtCompileTime >Represents a diagonal matrix with its storage
DiagonalPreconditioner< _Scalar >A preconditioner based on the digonal entries
DiagonalProduct< MatrixType, DiagonalType, ProductOrder >
DiagonalWrapper< _DiagonalVectorType >Expression of a diagonal matrix
EIGEN_ALIGNED_ALLOCATOR
EigenBase< Derived >
EigenSolver< _MatrixType >Computes eigenvalues and eigenvectors of general matrices
VectorwiseOp< ExpressionType, Direction >::ExtendedType< OtherDerived >
DenseBase< Derived >::FixedSegmentReturnType< Size >
ForceAlignedAccess< ExpressionType >Enforce aligned packet loads and stores regardless of what is requested
FullPivHouseholderQR< _MatrixType >Householder rank-revealing QR decomposition of a matrix with full pivoting
FullPivLU< _MatrixType >LU decomposition of a matrix with complete pivoting, and related features
general_matrix_matrix_triangular_product
general_matrix_vector_product
GeneralizedSelfAdjointEigenSolver< _MatrixType >Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem
GeneralProductExpression of the product of two general matrices or vectors
GeneralProduct< Lhs, Rhs, GemmProduct >
GeneralProduct< Lhs, Rhs, GemvProduct >
GeneralProduct< Lhs, Rhs, InnerProduct >
GeneralProduct< Lhs, Rhs, OuterProduct >
GenericNumTraits< T >
HessenbergDecomposition< _MatrixType >Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation
Homogeneous< MatrixType, _Direction >Expression of one (or a set of) homogeneous vector(s)
HouseholderQR< _MatrixType >Householder QR decomposition of a matrix
HouseholderSequence< VectorsType, CoeffsType, Side >Sequence of Householder reflections acting on subspaces with decreasing size
Hyperplane< _Scalar, _AmbientDim, _Options >A hyperplane
IdentityPreconditionerA naive preconditioner which approximates any matrix as the identity matrix
IncompleteLUT< _Scalar >Incomplete LU factorization with dual-threshold strategy During the numerical factorization, two dropping rules are used : 1) any element whose magnitude is less than some tolerance is dropped. This tolerance is obtained by multiplying the input tolerance droptol by the average magnitude of all the original elements in the current row. 2) After the elimination of the row, only the fill largest elements in the L part and the fill largest elements in the U part are kept (in addition to the diagonal element ). Note that fill is computed from the input parameter fillfactor which is used the ratio to control the fill_in relatively to the initial number of nonzero elements
InnerStride< Value >Convenience specialization of Stride to specify only an inner stride See class Map for some examples
IOFormatStores a set of parameters controlling the way matrices are printed
IterativeSolverBase< Derived >Base class for linear iterative solvers
JacobiRotation< Scalar >Rotation given by a cosine-sine pair
JacobiSVD< _MatrixType, QRPreconditioner >Two-sided Jacobi SVD decomposition of a rectangular matrix
IncompleteLUT< _Scalar >::keep_diag
SimplicialCholeskyBase< Derived >::keep_diag
LazyProductReturnType< Lhs, Rhs >
LDLT< _MatrixType, _UpLo >Robust Cholesky decomposition of a matrix with pivoting
list
list< T, EIGEN_ALIGNED_ALLOCATOR< T > >
LLT< _MatrixType, _UpLo >Standard Cholesky decomposition (LL^T) of a matrix and associated features
Map< PlainObjectType, MapOptions, StrideType >A matrix or vector expression mapping an existing array of data
Map< const Quaternion< _Scalar >, _Options >Quaternion expression mapping a constant memory buffer
Map< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, IndexType >, _PacketAccess >
Map< Quaternion< _Scalar >, _Options >Expression of a quaternion from a memory buffer
Map< Transpositions< SizeAtCompileTime, MaxSizeAtCompileTime, IndexType >, PacketAccess >
MapBaseBase class for Map and Block expression with direct access
MapBase< Derived, ReadOnlyAccessors >
MapBase< Derived, WriteAccessors >
MappedSparseMatrix< _Scalar, _Flags, _Index >Sparse matrix
Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >The matrix class, also used for vectors and row-vectors
MatrixBase< Derived >Base class for all dense matrices, vectors, and expressions
MatrixTypeIterator
MatrixTypeIterator
MatrixTypeReverseIterator
MatrixTypeReverseIterator
MatrixWrapper< ExpressionType >Expression of an array as a mathematical vector or matrix
MatrixXpr
NestByValue< ExpressionType >Expression which must be nested by value
NoAlias< ExpressionType, StorageBase >Pseudo expression providing an operator = assuming no aliasing
NumTraits< T >Holds information about the various numeric (i.e. scalar) types allowed by Eigen
NumTraits< Array< Scalar, Rows, Cols, Options, MaxRows, MaxCols > >
NumTraits< double >
NumTraits< float >
NumTraits< long double >
NumTraits< std::complex< _Real > >
OuterStride< Value >Convenience specialization of Stride to specify only an outer stride See class Map for some examples
ParametrizedLine< _Scalar, _AmbientDim, _Options >A parametrized line
PardisoImpl< Derived >
PardisoLDLT< MatrixType, Options >A sparse direct Cholesky (LDLT) factorization and solver based on the PARDISO library
PardisoLLT< MatrixType, _UpLo >A sparse direct Cholesky (LLT) factorization and solver based on the PARDISO library
PardisoLU< MatrixType >A sparse direct LU factorization and solver based on the PARDISO library
PartialPivLU< _MatrixType >LU decomposition of a matrix with partial pivoting, and related features
PartialReduxExpr< MatrixType, MemberOp, Direction >Generic expression of a partially reduxed matrix
PastixBase< Derived >
PastixLDLT< _MatrixType, _UpLo >A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library
PastixLLT< _MatrixType, _UpLo >A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library
PastixLU< _MatrixType, IsStrSym >Sparse direct LU solver based on PaStiX library
PermutationBase< Derived >Base class for permutations
PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, IndexType >Permutation matrix
PermutationStorage
PermutationWrapper< _IndicesType >Class to view a vector of integers as a permutation matrix
PlainObjectBase< Derived >Dense storage base class for matrices and arrays
Product< Lhs, Rhs >Expression of the product of two arbitrary matrices or vectors
product_triangular_matrix_matrix
ProductBase< Derived, Lhs, Rhs >
ProductImpl
ProductImpl< Lhs, Rhs, Dense >
ProductReturnType< Lhs, Rhs, ProductType >Helper class to get the correct and optimized returned type of operator*
ProductReturnType< Lhs, Rhs, CoeffBasedProductMode >
ProductReturnType< Lhs, Rhs, LazyCoeffBasedProductMode >
Quaternion< _Scalar, _Options >The quaternion class used to represent 3D orientations and rotations
QuaternionBase< Derived >Base class for quaternion expressions
RealSchur< _MatrixType >Performs a real Schur decomposition of a square matrix
aligned_allocator_indirection< T >::rebind< U >
aligned_allocator< T >::rebind< U >
VectorwiseOp< ExpressionType, Direction >::ReduxReturnType< BinaryOp >
Replicate< MatrixType, RowFactor, ColFactor >Expression of the multiple replication of a matrix or vector
ReturnByValue< Derived >
VectorwiseOp< ExpressionType, Direction >::ReturnType< Functor, Scalar >
Reverse< MatrixType, Direction >Expression of the reverse of a vector or matrix
Rotation2D< _Scalar >Represents a rotation/orientation in a 2 dimensional space
RotationBase< Derived, _Dim >Common base class for compact rotation representations
ScaledProduct< NestedProduct >
ScalingRepresents a generic uniform scaling transformation
Select< ConditionMatrixType, ThenMatrixType, ElseMatrixType >Expression of a coefficient wise version of the C++ ternary operator ?:
selfadjoint_product_selector< MatrixType, OtherType, UpLo, false >
selfadjoint_product_selector< MatrixType, OtherType, UpLo, true >
selfadjoint_rank1_update< Scalar, Index, ColMajor, UpLo, ConjLhs, ConjRhs >
selfadjoint_rank1_update< Scalar, Index, RowMajor, UpLo, ConjLhs, ConjRhs >
SelfAdjointEigenSolver< _MatrixType >Computes eigenvalues and eigenvectors of selfadjoint matrices
SelfadjointProductMatrix< Lhs, 0, true, Rhs, RhsMode, false >
SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, 0, true >
SelfadjointProductMatrix< Lhs, LhsMode, false, Rhs, RhsMode, false >
SelfAdjointView< MatrixType, UpLo >Expression of a selfadjoint matrix from a triangular part of a dense matrix
MatrixBase< Derived >::SelfAdjointViewReturnType< UpLo >
SelfCwiseBinaryOp< BinaryOp, Lhs, Rhs >
SimplicialCholesky< _MatrixType, _UpLo >
SimplicialCholeskyBase< Derived >A direct sparse Cholesky factorizations
SimplicialLDLT< _MatrixType, _UpLo >A direct sparse LDLT Cholesky factorizations without square root
SimplicialLLT< _MatrixType, _UpLo >A direct sparse LLT Cholesky factorizations
SparseMatrix< _Scalar, _Options, _Index >::SingletonVector
SluMatrix
SluMatrixMapHelper< Matrix< Scalar, Rows, Cols, Options, MRows, MCols > >
SluMatrixMapHelper< SparseMatrixBase< Derived > >
Sparse
SparseDenseOuterProduct< Lhs, Rhs, Tr >
SparseDenseProductReturnType< Lhs, Rhs, InnerSize >
SparseDenseProductReturnType< Lhs, Rhs, 1 >
SparseDiagonalProduct< Lhs, Rhs >
SparseInnerVectorSet< MatrixType, Size >
SparseInnerVectorSet< SparseMatrix< _Scalar, _Options, _Index >, Size >
SparseMatrix< _Scalar, _Options, _Index >A versatible sparse matrix representation
SparseMatrixBase< Derived >Base class of any sparse matrices or sparse expressions
SparseSelfAdjointTimeDenseProduct< Lhs, Rhs, UpLo >
SparseSelfAdjointView< MatrixType, UpLo >Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix
SparseSparseProduct< LhsNested, RhsNested >
SparseSparseProductReturnType< Lhs, Rhs >
SparseSymmetricPermutationProduct< MatrixType, UpLo >
SparseTimeDenseProduct< Lhs, Rhs >
SparseTriangularView< MatrixType, Mode >
SparseVector< _Scalar, _Options, _Index >Sparse vector class
SparseView< MatrixType >
Stride< _OuterStrideAtCompileTime, _InnerStrideAtCompileTime >Holds strides information for Map
PlainObjectBase< Derived >::StridedAlignedMapType< StrideType >
PlainObjectBase< Derived >::StridedConstAlignedMapType< StrideType >
PlainObjectBase< Derived >::StridedConstMapType< StrideType >
PlainObjectBase< Derived >::StridedMapType< StrideType >
SuperILU< _MatrixType >A sparse direct incomplete LU factorization and solver based on the SuperLU library
SuperLU< _MatrixType >A sparse direct LU factorization and solver based on the SuperLU library
SuperLUBase< _MatrixType, Derived >The base class for the direct and incomplete LU factorization of SuperLU
SwapWrapper< ExpressionType >
traits
Transform< _Scalar, _Dim, _Mode, _Options >Represents an homogeneous transformation in a N dimensional space
Translation< _Scalar, _Dim >Represents a translation transformation
Transpose< MatrixType >Expression of the transpose of a matrix
Transpose< PermutationBase< Derived > >
Transpose< TranspositionsBase< TranspositionsDerived > >
TransposeImpl
TransposeImpl< MatrixType, Dense >
TransposeImpl< MatrixType, Sparse >
Transpositions< SizeAtCompileTime, MaxSizeAtCompileTime, IndexType >Represents a sequence of transpositions (row/column interchange)
TranspositionsBase< Derived >
TranspositionsWrapper< _IndicesType >
triangular_matrix_vector_product
TriangularBase< Derived >
TriangularProduct< Mode, false, Lhs, true, Rhs, false >
TriangularProduct< Mode, LhsIsTriangular, Lhs, false, Rhs, false >
TriangularProduct< Mode, true, Lhs, false, Rhs, true >
TriangularView< _MatrixType, _Mode >Base class for triangular part in a matrix
MatrixBase< Derived >::TriangularViewReturnType< Mode >
Tridiagonalization< _MatrixType >Tridiagonal decomposition of a selfadjoint matrix
Triplet< Scalar, Index >A small structure to hold a non zero as a triplet (i,j,value)
UmfPackLU< _MatrixType >A sparse LU factorization and solver based on UmfPack
UniformScaling< _Scalar >
vector
vector< T, EIGEN_ALIGNED_ALLOCATOR< T > >
VectorBlock< VectorType, Size >Expression of a fixed-size or dynamic-size sub-vector
VectorwiseOp< ExpressionType, Direction >Pseudo expression providing partial reduction operations
WithFormat< ExpressionType >Pseudo expression providing matrix output with given format