Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Protected Attributes | Friends
ArrayWrapper< ExpressionType > Class Template Reference

Expression of a mathematical vector or matrix as an array object. More...

#include <ArrayWrapper.h>

+ Inheritance diagram for ArrayWrapper< ExpressionType >:

List of all members.

Public Types

enum  
enum  
typedef ArrayBase< ArrayWrapperBase
typedef Base::CoeffReturnType CoeffReturnType
typedef VectorwiseOp
< ArrayWrapper< ExpressionType >
, Vertical
ColwiseReturnType
typedef const VectorwiseOp
< const ArrayWrapper
< ExpressionType >, Vertical
ConstColwiseReturnType
typedef const Reverse< const
ArrayWrapper< ExpressionType >
, BothDirections
ConstReverseReturnType
typedef const VectorwiseOp
< const ArrayWrapper
< ExpressionType >, Horizontal
ConstRowwiseReturnType
typedef const VectorBlock
< const ArrayWrapper
< ExpressionType > > 
ConstSegmentReturnType
typedef const Transpose< const
ArrayWrapper< ExpressionType > > 
ConstTransposeReturnType
typedef
internal::add_const_on_value_type
< typename internal::eval
< ArrayWrapper< ExpressionType >
>::type >::type 
EvalReturnType
typedef internal::traits
< ArrayWrapper< ExpressionType >
>::Index 
Index
 The type of indices.
typedef internal::nested
< ExpressionType >::type 
NestedExpressionType
typedef
internal::packet_traits
< Scalar >::type 
PacketScalar
typedef NumTraits< Scalar >::Real RealScalar
typedef Reverse< ArrayWrapper
< ExpressionType >
, BothDirections
ReverseReturnType
typedef VectorwiseOp
< ArrayWrapper< ExpressionType >
, Horizontal
RowwiseReturnType
typedef internal::traits
< ArrayWrapper< ExpressionType >
>::Scalar 
Scalar
typedef internal::conditional
< internal::is_lvalue
< ExpressionType >::value,
Scalar, const Scalar >::type 
ScalarWithConstIfNotLvalue
typedef VectorBlock
< ArrayWrapper< ExpressionType > > 
SegmentReturnType
typedef internal::traits
< ArrayWrapper< ExpressionType >
>::StorageKind 
StorageKind

Public Member Functions

const CwiseUnaryOp
< internal::scalar_abs_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
abs () const
const CwiseUnaryOp
< internal::scalar_abs2_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
abs2 () const
const CwiseUnaryOp
< internal::scalar_acos_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
acos () const
bool all (void) const
bool any (void) const
ArrayBase< ArrayWrapper
< ExpressionType > > & 
array ()
const ArrayBase< ArrayWrapper
< ExpressionType > > & 
array () const
 ArrayWrapper (ExpressionType &matrix)
const CwiseUnaryOp
< internal::scalar_asin_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
asin () const
const CwiseBinaryOp
< CustomBinaryOp, const
ArrayWrapper< ExpressionType >
, const OtherDerived > 
binaryExpr (const Eigen::ArrayBase< OtherDerived > &other, const CustomBinaryOp &func=CustomBinaryOp()) const
Block< ArrayWrapper
< ExpressionType > > 
block (Index startRow, Index startCol, Index blockRows, Index blockCols)
const Block< const
ArrayWrapper< ExpressionType > > 
block (Index startRow, Index startCol, Index blockRows, Index blockCols) const
Block< ArrayWrapper
< ExpressionType >, BlockRows,
BlockCols > 
block (Index startRow, Index startCol)
const Block< const
ArrayWrapper< ExpressionType >
, BlockRows, BlockCols > 
block (Index startRow, Index startCol) const
Block< ArrayWrapper
< ExpressionType > > 
bottomLeftCorner (Index cRows, Index cCols)
const Block< const
ArrayWrapper< ExpressionType > > 
bottomLeftCorner (Index cRows, Index cCols) const
Block< ArrayWrapper
< ExpressionType >, CRows,
CCols > 
bottomLeftCorner ()
const Block< const
ArrayWrapper< ExpressionType >
, CRows, CCols > 
bottomLeftCorner () const
Block< ArrayWrapper
< ExpressionType > > 
bottomRightCorner (Index cRows, Index cCols)
const Block< const
ArrayWrapper< ExpressionType > > 
bottomRightCorner (Index cRows, Index cCols) const
Block< ArrayWrapper
< ExpressionType >, CRows,
CCols > 
bottomRightCorner ()
const Block< const
ArrayWrapper< ExpressionType >
, CRows, CCols > 
bottomRightCorner () const
RowsBlockXpr bottomRows (Index n)
ConstRowsBlockXpr bottomRows (Index n) const
NRowsBlockXpr< N >::Type bottomRows ()
ConstNRowsBlockXpr< N >::Type bottomRows () const
internal::cast_return_type
< ArrayWrapper< ExpressionType >
, const CwiseUnaryOp
< internal::scalar_cast_op
< typename internal::traits
< ArrayWrapper< ExpressionType >
>::Scalar, NewType >, const
ArrayWrapper< ExpressionType >
> >::type 
cast () const
CoeffReturnType coeff (Index row, Index col) const
CoeffReturnType coeff (Index index) const
ScalarcoeffRef (Index row, Index col)
const ScalarcoeffRef (Index row, Index col) const
ScalarcoeffRef (Index index)
const ScalarcoeffRef (Index index) const
ColXpr col (Index i)
ConstColXpr col (Index i) const
Index cols () const
ConstColwiseReturnType colwise () const
ColwiseReturnType colwise ()
ConjugateReturnType conjugate () const
const CwiseUnaryOp
< internal::scalar_cos_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
cos () const
Index count () const
const CwiseUnaryOp
< internal::scalar_cube_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
cube () const
const CwiseUnaryOp
< internal::scalar_abs_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
cwiseAbs () const
const CwiseUnaryOp
< internal::scalar_abs2_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
cwiseAbs2 () const
const CwiseBinaryOp (min)(const Scalar &other) const
const CwiseBinaryOp (max)(const Scalar &other) const
const CwiseBinaryOp
< std::equal_to< Scalar >
, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
cwiseEqual (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseUnaryOp
< std::binder1st
< std::equal_to< Scalar >
>, const ArrayWrapper
< ExpressionType > > 
cwiseEqual (const Scalar &s) const
const CwiseUnaryOp
< internal::scalar_inverse_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
cwiseInverse () const
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
cwiseMax (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
ConstantReturnType > 
cwiseMax (const Scalar &other) const
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
cwiseMin (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
ConstantReturnType > 
cwiseMin (const Scalar &other) const
const CwiseBinaryOp
< std::not_equal_to< Scalar >
, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
cwiseNotEqual (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_quotient_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
cwiseQuotient (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_sqrt_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
cwiseSqrt () const
ScalarWithConstIfNotLvaluedata ()
const Scalardata () const
const EIGEN_CWISE_PRODUCT_RETURN_TYPE (ArrayWrapper< ExpressionType >, OtherDerived) operator*(const Eigen
const EIGEN_CWISE_PRODUCT_RETURN_TYPE (ArrayWrapper< ExpressionType >, OtherDerived) cwiseProduct(const Eigen
EvalReturnType eval () const
template<typename Dest >
void evalTo (Dest &dst) const
const CwiseUnaryOp
< internal::scalar_exp_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
exp () const
void fill (const Scalar &value)
const Flagged< ArrayWrapper
< ExpressionType >, Added,
Removed > 
flagged () const
const ForceAlignedAccess
< ArrayWrapper< ExpressionType > > 
forceAlignedAccess () const
ForceAlignedAccess
< ArrayWrapper< ExpressionType > > 
forceAlignedAccess ()
const internal::conditional
< Enable, ForceAlignedAccess
< ArrayWrapper< ExpressionType >
>, ArrayWrapper
< ExpressionType > & >::type 
forceAlignedAccessIf () const
internal::conditional< Enable,
ForceAlignedAccess
< ArrayWrapper< ExpressionType >
>, ArrayWrapper
< ExpressionType > & >::type 
forceAlignedAccessIf ()
const WithFormat< ArrayWrapper
< ExpressionType > > 
format (const IOFormat &fmt) const
SegmentReturnType head (Index size)
DenseBase::ConstSegmentReturnType head (Index size) const
FixedSegmentReturnType< Size >
::Type 
head ()
ConstFixedSegmentReturnType
< Size >::Type 
head () const
const ImagReturnType imag () const
NonConstImagReturnType imag ()
Index innerSize () const
Index innerStride () const
const CwiseUnaryOp
< internal::scalar_inverse_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
inverse () const
bool isApprox (const DenseBase< OtherDerived > &other, RealScalar prec=NumTraits< Scalar >::dummy_precision()) const
bool isApproxToConstant (const Scalar &value, RealScalar prec=NumTraits< Scalar >::dummy_precision()) const
bool isConstant (const Scalar &value, RealScalar prec=NumTraits< Scalar >::dummy_precision()) const
bool isMuchSmallerThan (const RealScalar &other, RealScalar prec=NumTraits< Scalar >::dummy_precision()) const
bool isMuchSmallerThan (const DenseBase< OtherDerived > &other, RealScalar prec=NumTraits< Scalar >::dummy_precision()) const
bool isOnes (RealScalar prec=NumTraits< Scalar >::dummy_precision()) const
bool isZero (RealScalar prec=NumTraits< Scalar >::dummy_precision()) const
ColsBlockXpr leftCols (Index n)
ConstColsBlockXpr leftCols (Index n) const
NColsBlockXpr< N >::Type leftCols ()
ConstNColsBlockXpr< N >::Type leftCols () const
const CwiseUnaryOp
< internal::scalar_log_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
log () const
RealScalar lpNorm () const
MatrixWrapper< ArrayWrapper
< ExpressionType > > 
matrix ()
const MatrixWrapper< const
ArrayWrapper< ExpressionType > > 
matrix () const
internal::traits< ArrayWrapper
< ExpressionType > >::Scalar 
maxCoeff () const
internal::traits< ArrayWrapper
< ExpressionType > >::Scalar 
maxCoeff (IndexType *row, IndexType *col) const
internal::traits< ArrayWrapper
< ExpressionType > >::Scalar 
maxCoeff (IndexType *index) const
Scalar mean () const
ColsBlockXpr middleCols (Index startCol, Index numCols)
ConstColsBlockXpr middleCols (Index startCol, Index numCols) const
NColsBlockXpr< N >::Type middleCols (Index startCol)
ConstNColsBlockXpr< N >::Type middleCols (Index startCol) const
RowsBlockXpr middleRows (Index startRow, Index numRows)
ConstRowsBlockXpr middleRows (Index startRow, Index numRows) const
NRowsBlockXpr< N >::Type middleRows (Index startRow)
ConstNRowsBlockXpr< N >::Type middleRows (Index startRow) const
internal::traits< ArrayWrapper
< ExpressionType > >::Scalar 
minCoeff () const
internal::traits< ArrayWrapper
< ExpressionType > >::Scalar 
minCoeff (IndexType *row, IndexType *col) const
internal::traits< ArrayWrapper
< ExpressionType > >::Scalar 
minCoeff (IndexType *index) const
const NestByValue
< ArrayWrapper< ExpressionType > > 
nestByValue () const
const internal::remove_all
< NestedExpressionType >::type & 
nestedExpression () const
Index nonZeros () const
const CwiseBinaryOp
< internal::scalar_boolean_and_op,
const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
operator&& (const Eigen::ArrayBase< OtherDerived > &other) const
const ScalarMultipleReturnType operator* (const Scalar &scalar) const
const ScalarMultipleReturnType operator* (const RealScalar &scalar) const
const CwiseUnaryOp
< internal::scalar_multiple2_op
< Scalar, std::complex< Scalar >
>, const ArrayWrapper
< ExpressionType > > 
operator* (const std::complex< Scalar > &scalar) const
ArrayWrapper< ExpressionType > & operator*= (const ArrayBase< OtherDerived > &other)
ArrayWrapper< ExpressionType > & operator*= (const Scalar &other)
const CwiseUnaryOp
< internal::scalar_add_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
operator+ (const Scalar &scalar) const
ArrayWrapper< ExpressionType > & operator+= (const Scalar &scalar)
ArrayWrapper< ExpressionType > & operator+= (const ArrayBase< OtherDerived > &other)
ArrayWrapper< ExpressionType > & operator+= (const EigenBase< OtherDerived > &other)
const CwiseUnaryOp
< internal::scalar_opposite_op
< typename internal::traits
< ArrayWrapper< ExpressionType >
>::Scalar >, const
ArrayWrapper< ExpressionType > > 
operator- () const
const CwiseUnaryOp
< internal::scalar_add_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
operator- (const Scalar &scalar) const
ArrayWrapper< ExpressionType > & operator-= (const Scalar &scalar)
ArrayWrapper< ExpressionType > & operator-= (const ArrayBase< OtherDerived > &other)
ArrayWrapper< ExpressionType > & operator-= (const EigenBase< OtherDerived > &other)
const CwiseBinaryOp
< internal::scalar_quotient_op
< Scalar >, const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
operator/ (const Eigen::ArrayBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_quotient1_op
< typename internal::traits
< ArrayWrapper< ExpressionType >
>::Scalar >, const
ArrayWrapper< ExpressionType > > 
operator/ (const Scalar &scalar) const
ArrayWrapper< ExpressionType > & operator/= (const ArrayBase< OtherDerived > &other)
ArrayWrapper< ExpressionType > & operator/= (const Scalar &other)
CommaInitializer< ArrayWrapper
< ExpressionType > > 
operator<< (const Scalar &s)
CommaInitializer< ArrayWrapper
< ExpressionType > > 
operator<< (const DenseBase< OtherDerived > &other)
const CwiseBinaryOp
< internal::scalar_boolean_or_op,
const ArrayWrapper
< ExpressionType >, const
OtherDerived > 
operator|| (const Eigen::ArrayBase< OtherDerived > &other) const
Index outerSize () const
Index outerStride () const
template<int LoadMode>
const PacketScalar packet (Index row, Index col) const
template<int LoadMode>
const PacketScalar packet (Index index) const
const CwiseUnaryOp
< internal::scalar_pow_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
pow (const Scalar &exponent) const
Scalar prod () const
RealReturnType real () const
NonConstRealReturnType real ()
const Replicate< ArrayWrapper
< ExpressionType >, RowFactor,
ColFactor > 
replicate () const
const Replicate< ArrayWrapper
< ExpressionType >, Dynamic,
Dynamic
replicate (Index rowFacor, Index colFactor) const
void resize (Index size)
void resize (Index rows, Index cols)
ReverseReturnType reverse ()
ConstReverseReturnType reverse () const
void reverseInPlace ()
ColsBlockXpr rightCols (Index n)
ConstColsBlockXpr rightCols (Index n) const
NColsBlockXpr< N >::Type rightCols ()
ConstNColsBlockXpr< N >::Type rightCols () const
RowXpr row (Index i)
ConstRowXpr row (Index i) const
Index rows () const
ConstRowwiseReturnType rowwise () const
RowwiseReturnType rowwise ()
SegmentReturnType segment (Index start, Index size)
DenseBase::ConstSegmentReturnType segment (Index start, Index size) const
FixedSegmentReturnType< Size >
::Type 
segment (Index start)
ConstFixedSegmentReturnType
< Size >::Type 
segment (Index start) const
const Select< ArrayWrapper
< ExpressionType >
, ThenDerived, ElseDerived > 
select (const DenseBase< ThenDerived > &thenMatrix, const DenseBase< ElseDerived > &elseMatrix) const
const Select< ArrayWrapper
< ExpressionType >
, ThenDerived, typename
ThenDerived::ConstantReturnType > 
select (const DenseBase< ThenDerived > &thenMatrix, typename ThenDerived::Scalar elseScalar) const
const Select< ArrayWrapper
< ExpressionType >, typename
ElseDerived::ConstantReturnType,
ElseDerived > 
select (typename ElseDerived::Scalar thenScalar, const DenseBase< ElseDerived > &elseMatrix) const
ArrayWrapper< ExpressionType > & setConstant (const Scalar &value)
ArrayWrapper< ExpressionType > & setLinSpaced (Index size, const Scalar &low, const Scalar &high)
ArrayWrapper< ExpressionType > & setLinSpaced (const Scalar &low, const Scalar &high)
ArrayWrapper< ExpressionType > & setOnes ()
ArrayWrapper< ExpressionType > & setRandom ()
ArrayWrapper< ExpressionType > & setZero ()
const CwiseUnaryOp
< internal::scalar_sin_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
sin () const
const CwiseUnaryOp
< internal::scalar_sqrt_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
sqrt () const
const CwiseUnaryOp
< internal::scalar_square_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
square () const
Scalar sum () const
void swap (const DenseBase< OtherDerived > &other, int=OtherDerived::ThisConstantIsPrivateInPlainObjectBase)
void swap (PlainObjectBase< OtherDerived > &other)
SegmentReturnType tail (Index size)
DenseBase::ConstSegmentReturnType tail (Index size) const
FixedSegmentReturnType< Size >
::Type 
tail ()
ConstFixedSegmentReturnType
< Size >::Type 
tail () const
const CwiseUnaryOp
< internal::scalar_tan_op
< Scalar >, ArrayWrapper
< ExpressionType > > 
tan () const
Block< ArrayWrapper
< ExpressionType > > 
topLeftCorner (Index cRows, Index cCols)
const Block< const
ArrayWrapper< ExpressionType > > 
topLeftCorner (Index cRows, Index cCols) const
Block< ArrayWrapper
< ExpressionType >, CRows,
CCols > 
topLeftCorner ()
const Block< const
ArrayWrapper< ExpressionType >
, CRows, CCols > 
topLeftCorner () const
Block< ArrayWrapper
< ExpressionType > > 
topRightCorner (Index cRows, Index cCols)
const Block< const
ArrayWrapper< ExpressionType > > 
topRightCorner (Index cRows, Index cCols) const
Block< ArrayWrapper
< ExpressionType >, CRows,
CCols > 
topRightCorner ()
const Block< const
ArrayWrapper< ExpressionType >
, CRows, CCols > 
topRightCorner () const
RowsBlockXpr topRows (Index n)
ConstRowsBlockXpr topRows (Index n) const
NRowsBlockXpr< N >::Type topRows ()
ConstNRowsBlockXpr< N >::Type topRows () const
Scalar trace () const
Eigen::Transpose< ArrayWrapper
< ExpressionType > > 
transpose ()
ConstTransposeReturnType transpose () const
void transposeInPlace ()
const CwiseUnaryOp
< CustomUnaryOp, const
ArrayWrapper< ExpressionType > > 
unaryExpr (const CustomUnaryOp &func=CustomUnaryOp()) const
 Apply a unary operator coefficient-wise.
const CwiseUnaryView
< CustomViewOp, const
ArrayWrapper< ExpressionType > > 
unaryViewExpr (const CustomViewOp &func=CustomViewOp()) const
CoeffReturnType value () const
void visit (Visitor &func) const
template<int LoadMode>
void writePacket (Index row, Index col, const PacketScalar &x)
template<int LoadMode>
void writePacket (Index index, const PacketScalar &x)

Static Public Member Functions

static const ConstantReturnType Constant (Index rows, Index cols, const Scalar &value)
static const ConstantReturnType Constant (Index size, const Scalar &value)
static const ConstantReturnType Constant (const Scalar &value)
static const
SequentialLinSpacedReturnType 
LinSpaced (Sequential_t, Index size, const Scalar &low, const Scalar &high)
static const
RandomAccessLinSpacedReturnType 
LinSpaced (Index size, const Scalar &low, const Scalar &high)
static const
SequentialLinSpacedReturnType 
LinSpaced (Sequential_t, const Scalar &low, const Scalar &high)
static const
RandomAccessLinSpacedReturnType 
LinSpaced (const Scalar &low, const Scalar &high)
static const CwiseNullaryOp
< CustomNullaryOp,
ArrayWrapper< ExpressionType > > 
NullaryExpr (Index rows, Index cols, const CustomNullaryOp &func)
static const CwiseNullaryOp
< CustomNullaryOp,
ArrayWrapper< ExpressionType > > 
NullaryExpr (Index size, const CustomNullaryOp &func)
static const CwiseNullaryOp
< CustomNullaryOp,
ArrayWrapper< ExpressionType > > 
NullaryExpr (const CustomNullaryOp &func)
static const ConstantReturnType Ones (Index rows, Index cols)
static const ConstantReturnType Ones (Index size)
static const ConstantReturnType Ones ()
static const CwiseNullaryOp
< internal::scalar_random_op
< Scalar >, ArrayWrapper
< ExpressionType > > 
Random (Index rows, Index cols)
static const CwiseNullaryOp
< internal::scalar_random_op
< Scalar >, ArrayWrapper
< ExpressionType > > 
Random (Index size)
static const CwiseNullaryOp
< internal::scalar_random_op
< Scalar >, ArrayWrapper
< ExpressionType > > 
Random ()
static const ConstantReturnType Zero (Index rows, Index cols)
static const ConstantReturnType Zero (Index size)
static const ConstantReturnType Zero ()

Protected Member Functions

void checkTransposeAliasing (const OtherDerived &other) const
ArrayWrapper< ExpressionType > & operator+= (const MatrixBase< OtherDerived > &)
ArrayWrapper< ExpressionType > & operator-= (const MatrixBase< OtherDerived > &)

Protected Attributes

NestedExpressionType m_expression

Friends

const ScalarMultipleReturnType operator* (const Scalar &scalar, const StorageBaseType &matrix)
const CwiseUnaryOp
< internal::scalar_multiple2_op
< Scalar, std::complex< Scalar >
>, const ArrayWrapper
< ExpressionType > > 
operator* (const std::complex< Scalar > &scalar, const StorageBaseType &matrix)
const CwiseUnaryOp
< internal::scalar_add_op
< Scalar >, const ArrayWrapper
< ExpressionType > > 
operator+ (const Scalar &scalar, const Eigen::ArrayBase< ArrayWrapper< ExpressionType > > &other)
const CwiseUnaryOp
< internal::scalar_add_op
< Scalar >, const CwiseUnaryOp
< internal::scalar_opposite_op
< Scalar >, const ArrayWrapper
< ExpressionType > > > 
operator- (const Scalar &scalar, const Eigen::ArrayBase< ArrayWrapper< ExpressionType > > &other)

Detailed Description

template<typename ExpressionType>
class Eigen::ArrayWrapper< ExpressionType >

Expression of a mathematical vector or matrix as an array object.

This class is the return type of MatrixBase::array(), and most of the time this is the only way it is use.

See also:
MatrixBase::array(), class MatrixWrapper

Member Typedef Documentation

typedef VectorwiseOp<ArrayWrapper< ExpressionType > , Vertical> ColwiseReturnType [inherited]
typedef const VectorwiseOp<const ArrayWrapper< ExpressionType > , Vertical> ConstColwiseReturnType [inherited]
typedef const Reverse<const ArrayWrapper< ExpressionType > , BothDirections> ConstReverseReturnType [inherited]
typedef const VectorwiseOp<const ArrayWrapper< ExpressionType > , Horizontal> ConstRowwiseReturnType [inherited]
typedef const VectorBlock<const ArrayWrapper< ExpressionType > > ConstSegmentReturnType [inherited]
typedef const Transpose<const ArrayWrapper< ExpressionType > > ConstTransposeReturnType [inherited]
typedef internal::add_const_on_value_type<typename internal::eval<ArrayWrapper< ExpressionType > >::type>::type EvalReturnType [inherited]
typedef internal::traits<ArrayWrapper< ExpressionType > >::Index Index [inherited]

The type of indices.

To change this, #define the preprocessor symbol EIGEN_DEFAULT_DENSE_INDEX_TYPE.

See also:
Preprocessor directives.
typedef internal::nested<ExpressionType>::type NestedExpressionType
typedef internal::packet_traits<Scalar>::type PacketScalar [inherited]
typedef NumTraits<Scalar>::Real RealScalar [inherited]
typedef Reverse<ArrayWrapper< ExpressionType > , BothDirections> ReverseReturnType [inherited]
typedef VectorwiseOp<ArrayWrapper< ExpressionType > , Horizontal> RowwiseReturnType [inherited]
typedef internal::traits<ArrayWrapper< ExpressionType > >::Scalar Scalar [inherited]
typedef internal::conditional< internal::is_lvalue<ExpressionType>::value, Scalar, const Scalar >::type ScalarWithConstIfNotLvalue
typedef VectorBlock<ArrayWrapper< ExpressionType > > SegmentReturnType [inherited]
typedef internal::traits<ArrayWrapper< ExpressionType > >::StorageKind StorageKind [inherited]

Member Enumeration Documentation

anonymous enum [inherited]
anonymous enum [inherited]

Constructor & Destructor Documentation

ArrayWrapper ( ExpressionType &  matrix) [inline]

Member Function Documentation

const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const ArrayWrapper< ExpressionType > > abs ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise absolute value of *this

Example:

Array3d v(1,-2,-3);
cout << v.abs() << endl;

Output:

1
2
3
See also:
abs2()
const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const ArrayWrapper< ExpressionType > > abs2 ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise squared absolute value of *this

Example:

Array3d v(1,-2,-3);
cout << v.abs2() << endl;

Output:

1
4
9
See also:
abs(), square()
const CwiseUnaryOp<internal::scalar_acos_op<Scalar>, const ArrayWrapper< ExpressionType > > acos ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise arc cosine of *this.

Example:

Array3d v(0, sqrt(2.)/2, 1);
cout << v.acos() << endl;

Output:

1.57
0.785
0
See also:
cos(), asin()
bool all ( void  ) const [inherited]
Returns:
true if all coefficients are true

Example:

Vector3f boxMin(Vector3f::Zero()), boxMax(Vector3f::Ones());
Vector3f p0 = Vector3f::Random(), p1 = Vector3f::Random().cwiseAbs();
// let's check if p0 and p1 are inside the axis aligned box defined by the corners boxMin,boxMax:
cout << "Is (" << p0.transpose() << ") inside the box: "
     << ((boxMin.array()<p0.array()).all() && (boxMax.array()>p0.array()).all()) << endl;
cout << "Is (" << p1.transpose() << ") inside the box: "
     << ((boxMin.array()<p1.array()).all() && (boxMax.array()>p1.array()).all()) << endl;

Output:

Is (  0.68 -0.211  0.566) inside the box: 0
Is (0.597 0.823 0.605) inside the box: 1
See also:
any(), Cwise::operator<()
bool any ( void  ) const [inherited]
Returns:
true if at least one coefficient is true
See also:
all()
ArrayBase<ArrayWrapper< ExpressionType > >& array ( ) [inline, inherited]
const ArrayBase<ArrayWrapper< ExpressionType > >& array ( ) const [inline, inherited]
const CwiseUnaryOp<internal::scalar_asin_op<Scalar>, const ArrayWrapper< ExpressionType > > asin ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise arc sine of *this.

Example:

Output:

See also:
sin(), acos()
const CwiseBinaryOp<CustomBinaryOp, const ArrayWrapper< ExpressionType > , const OtherDerived> binaryExpr ( const Eigen::ArrayBase< OtherDerived > &  other,
const CustomBinaryOp &  func = CustomBinaryOp() 
) const [inline, inherited]
Returns:
an expression of the difference of *this and other
Note:
If you want to substract a given scalar from all coefficients, see Cwise::operator-().
See also:
class CwiseBinaryOp, operator-=()
Returns:
an expression of the sum of *this and other
Note:
If you want to add a given scalar to all coefficients, see Cwise::operator+().
See also:
class CwiseBinaryOp, operator+=()
Returns:
an expression of a custom coefficient-wise operator func of *this and other

The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)

Here is an example illustrating the use of custom functors:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define a custom template binary functor
template<typename Scalar> struct MakeComplexOp {
  EIGEN_EMPTY_STRUCT_CTOR(MakeComplexOp)
  typedef complex<Scalar> result_type;
  complex<Scalar> operator()(const Scalar& a, const Scalar& b) const { return complex<Scalar>(a,b); }
};

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random(), m2 = Matrix4d::Random();
  cout << m1.binaryExpr(m2, MakeComplexOp<double>()) << endl;
  return 0;
}

Output:

   (0.68,0.271)  (0.823,-0.967) (-0.444,-0.687)   (-0.27,0.998)
 (-0.211,0.435) (-0.605,-0.514)  (0.108,-0.198) (0.0268,-0.563)
 (0.566,-0.717)  (-0.33,-0.726) (-0.0452,-0.74)  (0.904,0.0259)
  (0.597,0.214)   (0.536,0.608)  (0.258,-0.782)   (0.832,0.678)
See also:
class CwiseBinaryOp, operator+(), operator-(), cwiseProduct()
Block<ArrayWrapper< ExpressionType > > block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
) [inline, inherited]
Returns:
a dynamic-size expression of a block in *this.
Parameters:
startRowthe first row in the block
startColthe first column in the block
blockRowsthe number of rows in the block
blockColsthe number of columns in the block

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.block(1, 1, 2, 2):" << endl << m.block(1, 1, 2, 2) << endl;
m.block(1, 1, 2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.block(1, 1, 2, 2):
-6 1
-3 0
Now the matrix m is:
 7  9 -5 -3
-2  0  0  0
 6  0  0  9
 6  6  3  9
Note:
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size matrix, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also:
class Block, block(Index,Index)
const Block<const ArrayWrapper< ExpressionType > > block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
) const [inline, inherited]

This is the const version of block(Index,Index,Index,Index).

Block<ArrayWrapper< ExpressionType > , BlockRows, BlockCols> block ( Index  startRow,
Index  startCol 
) [inline, inherited]
Returns:
a fixed-size expression of a block in *this.

The template parameters BlockRows and BlockCols are the number of rows and columns in the block.

Parameters:
startRowthe first row in the block
startColthe first column in the block

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.block<2,2>(1,1):" << endl << m.block<2,2>(1,1) << endl;
m.block<2,2>(1,1).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.block<2,2>(1,1):
-6 1
-3 0
Now the matrix m is:
 7  9 -5 -3
-2  0  0  0
 6  0  0  9
 6  6  3  9
Note:
since block is a templated member, the keyword template has to be used if the matrix type is also a template parameter:
 m.template block<3,3>(1,1); 
See also:
class Block, block(Index,Index,Index,Index)
const Block<const ArrayWrapper< ExpressionType > , BlockRows, BlockCols> block ( Index  startRow,
Index  startCol 
) const [inline, inherited]

This is the const version of block<>(Index, Index).

Block<ArrayWrapper< ExpressionType > > bottomLeftCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
a dynamic-size expression of a bottom-left corner of *this.
Parameters:
cRowsthe number of rows in the corner
cColsthe number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner(2, 2):" << endl;
cout << m.bottomLeftCorner(2, 2) << endl;
m.bottomLeftCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner(2, 2):
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9
See also:
class Block, block(Index,Index,Index,Index)
const Block<const ArrayWrapper< ExpressionType > > bottomLeftCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of bottomLeftCorner(Index, Index).

Block<ArrayWrapper< ExpressionType > , CRows, CCols> bottomLeftCorner ( ) [inline, inherited]
Returns:
an expression of a fixed-size bottom-left corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner<2,2>():" << endl;
cout << m.bottomLeftCorner<2,2>() << endl;
m.bottomLeftCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner<2,2>():
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9
See also:
class Block, block(Index,Index,Index,Index)
const Block<const ArrayWrapper< ExpressionType > , CRows, CCols> bottomLeftCorner ( ) const [inline, inherited]

This is the const version of bottomLeftCorner<int, int>().

Block<ArrayWrapper< ExpressionType > > bottomRightCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
a dynamic-size expression of a bottom-right corner of *this.
Parameters:
cRowsthe number of rows in the corner
cColsthe number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner(2, 2):" << endl;
cout << m.bottomRightCorner(2, 2) << endl;
m.bottomRightCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner(2, 2):
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0
See also:
class Block, block(Index,Index,Index,Index)
const Block<const ArrayWrapper< ExpressionType > > bottomRightCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of bottomRightCorner(Index, Index).

Block<ArrayWrapper< ExpressionType > , CRows, CCols> bottomRightCorner ( ) [inline, inherited]
Returns:
an expression of a fixed-size bottom-right corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner<2,2>():" << endl;
cout << m.bottomRightCorner<2,2>() << endl;
m.bottomRightCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner<2,2>():
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0
See also:
class Block, block(Index,Index,Index,Index)
const Block<const ArrayWrapper< ExpressionType > , CRows, CCols> bottomRightCorner ( ) const [inline, inherited]

This is the const version of bottomRightCorner<int, int>().

RowsBlockXpr bottomRows ( Index  n) [inline, inherited]
Returns:
a block consisting of the bottom rows of *this.
Parameters:
nthe number of rows in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.bottomRows(2):" << endl;
cout << a.bottomRows(2) << endl;
a.bottomRows(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.bottomRows(2):
 6 -3  0  9
 6  6  3  9
Now the array a is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  0
 0  0  0  0
See also:
class Block, block(Index,Index,Index,Index)
ConstRowsBlockXpr bottomRows ( Index  n) const [inline, inherited]

This is the const version of bottomRows(Index).

NRowsBlockXpr<N>::Type bottomRows ( ) [inline, inherited]
Returns:
a block consisting of the bottom rows of *this.
Template Parameters:
Nthe number of rows in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.bottomRows<2>():" << endl;
cout << a.bottomRows<2>() << endl;
a.bottomRows<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.bottomRows<2>():
 6 -3  0  9
 6  6  3  9
Now the array a is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  0
 0  0  0  0
See also:
class Block, block(Index,Index,Index,Index)
ConstNRowsBlockXpr<N>::Type bottomRows ( ) const [inline, inherited]

This is the const version of bottomRows<int>().

internal::cast_return_type<ArrayWrapper< ExpressionType > ,const CwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<ArrayWrapper< ExpressionType > >::Scalar, NewType>, const ArrayWrapper< ExpressionType > > >::type cast ( ) const [inline, inherited]
Returns:
an expression of *this with the Scalar type casted to NewScalar.

The template parameter NewScalar is the type we are casting the scalars to.

See also:
class CwiseUnaryOp
void checkTransposeAliasing ( const OtherDerived &  other) const [protected, inherited]
CoeffReturnType coeff ( Index  row,
Index  col 
) const [inline]
CoeffReturnType coeff ( Index  index) const [inline]
Scalar& coeffRef ( Index  row,
Index  col 
) [inline]
const Scalar& coeffRef ( Index  row,
Index  col 
) const [inline]
Scalar& coeffRef ( Index  index) [inline]
const Scalar& coeffRef ( Index  index) const [inline]
ColXpr col ( Index  i) [inline, inherited]
Returns:
an expression of the i-th column of *this. Note that the numbering starts at 0.

Example:

Matrix3d m = Matrix3d::Identity();
m.col(1) = Vector3d(4,5,6);
cout << m << endl;

Output:

1 4 0
0 5 0
0 6 1
See also:
row(), class Block

Referenced by ArrayWrapper< ExpressionType >::packet(), and ArrayWrapper< ExpressionType >::writePacket().

ConstColXpr col ( Index  i) const [inline, inherited]

This is the const version of col().

Index cols ( ) const [inline]
ConstColwiseReturnType colwise ( ) const [inherited]
Returns:
a VectorwiseOp wrapper of *this providing additional partial reduction operations

Example:

Matrix3d m = Matrix3d::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the sum of each column:" << endl << m.colwise().sum() << endl;
cout << "Here is the maximum absolute value of each column:"
     << endl << m.cwiseAbs().colwise().maxCoeff() << endl;

Output:

Here is the matrix m:
  0.68  0.597  -0.33
-0.211  0.823  0.536
 0.566 -0.605 -0.444
Here is the sum of each column:
  1.04  0.815 -0.238
Here is the maximum absolute value of each column:
 0.68 0.823 0.536
See also:
rowwise(), class VectorwiseOp, Tutorial page 7 - Reductions, visitors and broadcasting
ColwiseReturnType colwise ( ) [inherited]
Returns:
a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
See also:
rowwise(), class VectorwiseOp, Tutorial page 7 - Reductions, visitors and broadcasting
ConjugateReturnType conjugate ( ) const [inline, inherited]
Returns:
an expression of the complex conjugate of *this.
See also:
adjoint()
static const ConstantReturnType Constant ( Index  rows,
Index  cols,
const Scalar value 
) [static, inherited]
Returns:
an expression of a constant matrix of value value

The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this DenseBase type.

This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Zero() should be used instead.

The template parameter CustomNullaryOp is the type of the functor.

See also:
class CwiseNullaryOp
static const ConstantReturnType Constant ( Index  size,
const Scalar value 
) [static, inherited]
Returns:
an expression of a constant matrix of value value

The parameter size is the size of the returned vector. Must be compatible with this DenseBase type.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

This variant is meant to be used for dynamic-size vector types. For fixed-size types, it is redundant to pass size as argument, so Zero() should be used instead.

The template parameter CustomNullaryOp is the type of the functor.

See also:
class CwiseNullaryOp
static const ConstantReturnType Constant ( const Scalar value) [static, inherited]
Returns:
an expression of a constant matrix of value value

This variant is only for fixed-size DenseBase types. For dynamic-size types, you need to use the variants taking size arguments.

The template parameter CustomNullaryOp is the type of the functor.

See also:
class CwiseNullaryOp
const CwiseUnaryOp<internal::scalar_cos_op<Scalar>, const ArrayWrapper< ExpressionType > > cos ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise cosine of *this.

Example:

Array3d v(M_PI, M_PI/2, M_PI/3);
cout << v.cos() << endl;

Output:

-1
6.12e-17
0.5
See also:
sin(), acos()
Index count ( ) const [inherited]
Returns:
the number of coefficients which evaluate to true
See also:
all(), any()
const CwiseUnaryOp<internal::scalar_cube_op<Scalar>, const ArrayWrapper< ExpressionType > > cube ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise cube of *this.

Example:

Array3d v(2,3,4);
cout << v.cube() << endl;

Output:

8
27
64
See also:
square(), pow()
const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const ArrayWrapper< ExpressionType > > cwiseAbs ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,   
     -5, 1, 0;
cout << m.cwiseAbs() << endl;

Output:

2 4 6
5 1 0
See also:
cwiseAbs2()
const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const ArrayWrapper< ExpressionType > > cwiseAbs2 ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise squared absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,   
     -5, 1, 0;
cout << m.cwiseAbs2() << endl;

Output:

 4 16 36
25  1  0
See also:
cwiseAbs()
const CwiseBinaryOp ( min  ) const [inline, inherited]
Returns:
an expression of the coefficient-wise min of *this and other

Example:

Array3d v(2,3,4), w(4,2,3);
cout << v.min(w) << endl;

Output:

2
2
3
See also:
max()
Returns:
an expression of the coefficient-wise min of *this and scalar other
See also:
max()
const CwiseBinaryOp ( max  ) const [inline, inherited]
Returns:
an expression of the coefficient-wise max of *this and other

Example:

Array3d v(2,3,4), w(4,2,3);
cout << v.max(w) << endl;

Output:

4
3
4
See also:
min()
Returns:
an expression of the coefficient-wise max of *this and scalar other
See also:
min()
const CwiseBinaryOp<std::equal_to<Scalar>, const ArrayWrapper< ExpressionType > , const OtherDerived> cwiseEqual ( const Eigen::ArrayBase< OtherDerived > &  other) const [inline, inherited]
Returns:
an expression of the coefficient-wise == operator of *this and other
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
     1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are equal: " << count << endl;

Output:

Comparing m with identity matrix:
1 1
0 1
Number of coefficients that are equal: 3
See also:
cwiseNotEqual(), isApprox(), isMuchSmallerThan()
const CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >, const ArrayWrapper< ExpressionType > > cwiseEqual ( const Scalar s) const [inline, inherited]
Returns:
an expression of the coefficient-wise == operator of *this and a scalar s
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().
See also:
cwiseEqual(const MatrixBase<OtherDerived> &) const
const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const ArrayWrapper< ExpressionType > > cwiseInverse ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise inverse of *this.

Example:

MatrixXd m(2,3);
m << 2, 0.5, 1,   
     3, 0.25, 1;
cout << m.cwiseInverse() << endl;

Output:

0.5 2 1
0.333 4 1
See also:
cwiseProduct()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const ArrayWrapper< ExpressionType > , const OtherDerived> cwiseMax ( const Eigen::ArrayBase< OtherDerived > &  other) const [inline, inherited]
Returns:
an expression of the coefficient-wise max of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMax(w) << endl;

Output:

4
3
4
See also:
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const ArrayWrapper< ExpressionType > , const ConstantReturnType> cwiseMax ( const Scalar other) const [inline, inherited]
Returns:
an expression of the coefficient-wise max of *this and scalar other
See also:
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const ArrayWrapper< ExpressionType > , const OtherDerived> cwiseMin ( const Eigen::ArrayBase< OtherDerived > &  other) const [inline, inherited]
Returns:
an expression of the coefficient-wise min of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMin(w) << endl;

Output:

2
2
3
See also:
class CwiseBinaryOp, max()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const ArrayWrapper< ExpressionType > , const ConstantReturnType> cwiseMin ( const Scalar other) const [inline, inherited]
Returns:
an expression of the coefficient-wise min of *this and scalar other
See also:
class CwiseBinaryOp, min()
const CwiseBinaryOp<std::not_equal_to<Scalar>, const ArrayWrapper< ExpressionType > , const OtherDerived> cwiseNotEqual ( const Eigen::ArrayBase< OtherDerived > &  other) const [inline, inherited]
Returns:
an expression of the coefficient-wise != operator of *this and other
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
     1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseNotEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseNotEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are not equal: " << count << endl;

Output:

Comparing m with identity matrix:
0 0
1 0
Number of coefficients that are not equal: 1
See also:
cwiseEqual(), isApprox(), isMuchSmallerThan()
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const ArrayWrapper< ExpressionType > , const OtherDerived> cwiseQuotient ( const Eigen::ArrayBase< OtherDerived > &  other) const [inline, inherited]
Returns:
an expression of the coefficient-wise quotient of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseQuotient(w) << endl;

Output:

0.5
1.5
1.33
See also:
class CwiseBinaryOp, cwiseProduct(), cwiseInverse()
const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const ArrayWrapper< ExpressionType > > cwiseSqrt ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise square root of *this.

Example:

Vector3d v(1,2,4);
cout << v.cwiseSqrt() << endl;

Output:

1
1.41
2
See also:
cwisePow(), cwiseSquare()
const Scalar* data ( ) const [inline]
const EIGEN_CWISE_PRODUCT_RETURN_TYPE ( ArrayWrapper< ExpressionType >  ,
OtherDerived   
) const [inline, inherited]
Returns:
an expression of the coefficient wise product of *this and other
See also:
MatrixBase::cwiseProduct
const EIGEN_CWISE_PRODUCT_RETURN_TYPE ( ArrayWrapper< ExpressionType >  ,
OtherDerived   
) const [inline, inherited]
Returns:
an expression of the Schur product (coefficient wise product) of *this and other

Example:

Matrix3i a = Matrix3i::Random(), b = Matrix3i::Random();
Matrix3i c = a.cwiseProduct(b);
cout << "a:\n" << a << "\nb:\n" << b << "\nc:\n" << c << endl;

Output:

a:
 7  6 -3
-2  9  6
 6 -6 -5
b:
 1 -3  9
 0  0  3
 3  9  5
c:
  7 -18 -27
  0   0  18
 18 -54 -25
See also:
class CwiseBinaryOp, cwiseAbs2
EvalReturnType eval ( ) const [inline, inherited]
Returns:
the matrix or vector obtained by evaluating this expression.

Notice that in the case of a plain matrix or vector (not an expression) this function just returns a const reference, in order to avoid a useless copy.

void evalTo ( Dest &  dst) const [inline]
const CwiseUnaryOp<internal::scalar_exp_op<Scalar>, const ArrayWrapper< ExpressionType > > exp ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise exponential of *this.

Example:

Array3d v(1,2,3);
cout << v.exp() << endl;

Output:

2.72
7.39
20.1
See also:
pow(), log(), sin(), cos()
void fill ( const Scalar value) [inherited]

Alias for setConstant(): sets all coefficients in this expression to value.

See also:
setConstant(), Constant(), class CwiseNullaryOp
const Flagged<ArrayWrapper< ExpressionType > , Added, Removed> flagged ( ) const [inherited]
Returns:
an expression of *this with added and removed flags

This is mostly for internal use.

See also:
class Flagged
const ForceAlignedAccess<ArrayWrapper< ExpressionType > > forceAlignedAccess ( ) const [inline, inherited]
ForceAlignedAccess<ArrayWrapper< ExpressionType > > forceAlignedAccess ( ) [inline, inherited]
const internal::conditional<Enable,ForceAlignedAccess<ArrayWrapper< ExpressionType > >,ArrayWrapper< ExpressionType > &>::type forceAlignedAccessIf ( ) const [inline, inherited]
internal::conditional<Enable,ForceAlignedAccess<ArrayWrapper< ExpressionType > >,ArrayWrapper< ExpressionType > &>::type forceAlignedAccessIf ( ) [inline, inherited]
const WithFormat<ArrayWrapper< ExpressionType > > format ( const IOFormat fmt) const [inline, inherited]
Returns:
a WithFormat proxy object allowing to print a matrix the with given format fmt.

See class IOFormat for some examples.

See also:
class IOFormat, class WithFormat
SegmentReturnType head ( Index  size) [inherited]
Returns:
a dynamic-size expression of the first coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Parameters:
sizethe number of coefficients in the block

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.head(2):" << endl << v.head(2) << endl;
v.head(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.head(2):
 7 -2
Now the vector v is:
0 0 6 6
Note:
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size vector, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also:
class Block, block(Index,Index)
DenseBase::ConstSegmentReturnType head ( Index  size) const [inherited]

This is the const version of head(Index).

FixedSegmentReturnType<Size>::Type head ( ) [inherited]
Returns:
a fixed-size expression of the first coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

The template parameter Size is the number of coefficients in the block

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.head(2):" << endl << v.head<2>() << endl;
v.head<2>().setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.head(2):
 7 -2
Now the vector v is:
0 0 6 6
See also:
class Block
ConstFixedSegmentReturnType<Size>::Type head ( ) const [inherited]

This is the const version of head<int>().

const ImagReturnType imag ( ) const [inline, inherited]
Returns:
an read-only expression of the imaginary part of *this.
See also:
real()
NonConstImagReturnType imag ( ) [inline, inherited]
Returns:
a non const expression of the imaginary part of *this.
See also:
real()
Index innerSize ( ) const [inline, inherited]
Returns:
the inner size.
Note:
For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension with respect to the storage order, i.e., the number of rows for a column-major matrix, and the number of columns for a row-major matrix.
Index innerStride ( ) const [inline]
const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const ArrayWrapper< ExpressionType > > inverse ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise inverse of *this.

Example:

Array3d v(2,3,4);
cout << v.inverse() << endl;

Output:

0.5
0.333
0.25
See also:
operator/(), operator*()
bool isApprox ( const DenseBase< OtherDerived > &  other,
RealScalar  prec = NumTraits<Scalar>::dummy_precision() 
) const [inherited]
Returns:
true if *this is approximately equal to other, within the precision determined by prec.
Note:
The fuzzy compares are done multiplicatively. Two vectors $ v $ and $ w $ are considered to be approximately equal within precision $ p $ if

\[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \]

For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm L2 norm).
Because of the multiplicativeness of this comparison, one can't use this function to check whether *this is approximately equal to the zero matrix or vector. Indeed, isApprox(zero) returns false unless *this itself is exactly the zero matrix or vector. If you want to test whether *this is zero, use internal::isMuchSmallerThan(const RealScalar&, RealScalar) instead.
See also:
internal::isMuchSmallerThan(const RealScalar&, RealScalar) const
bool isApproxToConstant ( const Scalar value,
RealScalar  prec = NumTraits<Scalar>::dummy_precision() 
) const [inherited]
Returns:
true if all coefficients in this matrix are approximately equal to value, to within precision prec
bool isConstant ( const Scalar value,
RealScalar  prec = NumTraits<Scalar>::dummy_precision() 
) const [inherited]

This is just an alias for isApproxToConstant().

Returns:
true if all coefficients in this matrix are approximately equal to value, to within precision prec
bool isMuchSmallerThan ( const RealScalar other,
RealScalar  prec = NumTraits<Scalar>::dummy_precision() 
) const [inherited]
bool isMuchSmallerThan ( const DenseBase< OtherDerived > &  other,
RealScalar  prec = NumTraits<Scalar>::dummy_precision() 
) const [inherited]
Returns:
true if the norm of *this is much smaller than the norm of other, within the precision determined by prec.
Note:
The fuzzy compares are done multiplicatively. A vector $ v $ is considered to be much smaller than a vector $ w $ within precision $ p $ if

\[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \]

For matrices, the comparison is done using the Hilbert-Schmidt norm.
See also:
isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
bool isOnes ( RealScalar  prec = NumTraits<Scalar>::dummy_precision()) const [inherited]
Returns:
true if *this is approximately equal to the matrix where all coefficients are equal to 1, within the precision given by prec.

Example:

Matrix3d m = Matrix3d::Ones();
m(0,2) += 1e-4;
cout << "Here's the matrix m:" << endl << m << endl;
cout << "m.isOnes() returns: " << m.isOnes() << endl;
cout << "m.isOnes(1e-3) returns: " << m.isOnes(1e-3) << endl;

Output:

Here's the matrix m:
1 1 1
1 1 1
1 1 1
m.isOnes() returns: 0
m.isOnes(1e-3) returns: 1
See also:
class CwiseNullaryOp, Ones()
bool isZero ( RealScalar  prec = NumTraits<Scalar>::dummy_precision()) const [inherited]
Returns:
true if *this is approximately equal to the zero matrix, within the precision given by prec.

Example:

Matrix3d m = Matrix3d::Zero();
m(0,2) = 1e-4;
cout << "Here's the matrix m:" << endl << m << endl;
cout << "m.isZero() returns: " << m.isZero() << endl;
cout << "m.isZero(1e-3) returns: " << m.isZero(1e-3) << endl;

Output:

Here's the matrix m:
     0      0 0.0001
     0      0      0
     0      0      0
m.isZero() returns: 0
m.isZero(1e-3) returns: 1
See also:
class CwiseNullaryOp, Zero()
ColsBlockXpr leftCols ( Index  n) [inline, inherited]
Returns:
a block consisting of the left columns of *this.
Parameters:
nthe number of columns in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.leftCols(2):" << endl;
cout << a.leftCols(2) << endl;
a.leftCols(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.leftCols(2):
 7  9
-2 -6
 6 -3
 6  6
Now the array a is:
 0  0 -5 -3
 0  0  1  0
 0  0  0  9
 0  0  3  9
See also:
class Block, block(Index,Index,Index,Index)
ConstColsBlockXpr leftCols ( Index  n) const [inline, inherited]

This is the const version of leftCols(Index).

NColsBlockXpr<N>::Type leftCols ( ) [inline, inherited]
Returns:
a block consisting of the left columns of *this.
Template Parameters:
Nthe number of columns in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.leftCols<2>():" << endl;
cout << a.leftCols<2>() << endl;
a.leftCols<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.leftCols<2>():
 7  9
-2 -6
 6 -3
 6  6
Now the array a is:
 0  0 -5 -3
 0  0  1  0
 0  0  0  9
 0  0  3  9
See also:
class Block, block(Index,Index,Index,Index)
ConstNColsBlockXpr<N>::Type leftCols ( ) const [inline, inherited]

This is the const version of leftCols<int>().

static const SequentialLinSpacedReturnType LinSpaced ( Sequential_t  ,
Index  size,
const Scalar low,
const Scalar high 
) [static, inherited]

Sets a linearly space vector.

The function generates 'size' equally spaced values in the closed interval [low,high]. This particular version of LinSpaced() uses sequential access, i.e. vector access is assumed to be a(0), a(1), ..., a(size). This assumption allows for better vectorization and yields faster code than the random access version.

When size is set to 1, a vector of length 1 containing 'high' is returned.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Example:

cout << VectorXi::LinSpaced(Sequential,4,7,10).transpose() << endl;
cout << VectorXd::LinSpaced(Sequential,5,0.0,1.0).transpose() << endl;

Output:

 7  8  9 10
   0 0.25  0.5 0.75    1
See also:
setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Index,Scalar,Scalar), CwiseNullaryOp
static const RandomAccessLinSpacedReturnType LinSpaced ( Index  size,
const Scalar low,
const Scalar high 
) [static, inherited]

Sets a linearly space vector.

The function generates 'size' equally spaced values in the closed interval [low,high]. When size is set to 1, a vector of length 1 containing 'high' is returned.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Example:

cout << VectorXi::LinSpaced(4,7,10).transpose() << endl;
cout << VectorXd::LinSpaced(5,0.0,1.0).transpose() << endl;

Output:

 7  8  9 10
   0 0.25  0.5 0.75    1
See also:
setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Sequential_t,Index,const Scalar&,const Scalar&,Index), CwiseNullaryOp
static const SequentialLinSpacedReturnType LinSpaced ( Sequential_t  ,
const Scalar low,
const Scalar high 
) [static, inherited]
Special version for fixed size types which does not require the size parameter.

static const RandomAccessLinSpacedReturnType LinSpaced ( const Scalar low,
const Scalar high 
) [static, inherited]
Special version for fixed size types which does not require the size parameter.

const CwiseUnaryOp<internal::scalar_log_op<Scalar>, const ArrayWrapper< ExpressionType > > log ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise logarithm of *this.

Example:

Array3d v(1,2,3);
cout << v.log() << endl;

Output:

0
0.693
1.1
See also:
exp()
RealScalar lpNorm ( ) const [inherited]
MatrixWrapper<ArrayWrapper< ExpressionType > > matrix ( ) [inline, inherited]
Returns:
an Matrix expression of this array
See also:
MatrixBase::array()
const MatrixWrapper<const ArrayWrapper< ExpressionType > > matrix ( ) const [inline, inherited]
internal::traits<ArrayWrapper< ExpressionType > >::Scalar maxCoeff ( ) const [inherited]
Returns:
the maximum of all coefficients of *this
internal::traits<ArrayWrapper< ExpressionType > >::Scalar maxCoeff ( IndexType *  row,
IndexType *  col 
) const [inherited]
Returns:
the maximum of all coefficients of *this and puts in *row and *col its location.
See also:
DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::maxCoeff()
internal::traits<ArrayWrapper< ExpressionType > >::Scalar maxCoeff ( IndexType *  index) const [inherited]
Returns:
the maximum of all coefficients of *this and puts in *index its location.
See also:
DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::maxCoeff()
Scalar mean ( ) const [inherited]
Returns:
the mean of all coefficients of *this
See also:
trace(), prod(), sum()
ColsBlockXpr middleCols ( Index  startCol,
Index  numCols 
) [inline, inherited]
Returns:
a block consisting of a range of columns of *this.
Parameters:
startColthe index of the first column in the block
numColsthe number of columns in the block

Example:

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

int main(void)
{
    int const N = 5;
    MatrixXi A(N,N);
    A.setRandom();
    cout << "A =\n" << A << '\n' << endl;
    cout << "A(1..3,:) =\n" << A.middleCols(1,3) << endl;
    return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(1..3,:) =
-6  0  9
-3  3  3
 6 -3  5
-5  0 -8
 1  9  2
See also:
class Block, block(Index,Index,Index,Index)
ConstColsBlockXpr middleCols ( Index  startCol,
Index  numCols 
) const [inline, inherited]

This is the const version of middleCols(Index,Index).

NColsBlockXpr<N>::Type middleCols ( Index  startCol) [inline, inherited]
Returns:
a block consisting of a range of columns of *this.
Template Parameters:
Nthe number of columns in the block
Parameters:
startColthe index of the first column in the block

Example:

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

int main(void)
{
    int const N = 5;
    MatrixXi A(N,N);
    A.setRandom();
    cout << "A =\n" << A << '\n' << endl;
    cout << "A(:,1..3) =\n" << A.middleCols<3>(1) << endl;
    return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(:,1..3) =
-6  0  9
-3  3  3
 6 -3  5
-5  0 -8
 1  9  2
See also:
class Block, block(Index,Index,Index,Index)
ConstNColsBlockXpr<N>::Type middleCols ( Index  startCol) const [inline, inherited]

This is the const version of middleCols<int>().

RowsBlockXpr middleRows ( Index  startRow,
Index  numRows 
) [inline, inherited]
Returns:
a block consisting of a range of rows of *this.
Parameters:
startRowthe index of the first row in the block
numRowsthe number of rows in the block

Example:

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

int main(void)
{
    int const N = 5;
    MatrixXi A(N,N);
    A.setRandom();
    cout << "A =\n" << A << '\n' << endl;
    cout << "A(2..3,:) =\n" << A.middleRows(2,2) << endl;
    return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(2..3,:) =
 6  6 -3  5 -8
 6 -5  0 -8  6
See also:
class Block, block(Index,Index,Index,Index)
ConstRowsBlockXpr middleRows ( Index  startRow,
Index  numRows 
) const [inline, inherited]

This is the const version of middleRows(Index,Index).

NRowsBlockXpr<N>::Type middleRows ( Index  startRow) [inline, inherited]
Returns:
a block consisting of a range of rows of *this.
Template Parameters:
Nthe number of rows in the block
Parameters:
startRowthe index of the first row in the block

Example:

#include <Eigen/Core>
#include <iostream>

using namespace Eigen;
using namespace std;

int main(void)
{
    int const N = 5;
    MatrixXi A(N,N);
    A.setRandom();
    cout << "A =\n" << A << '\n' << endl;
    cout << "A(1..3,:) =\n" << A.middleRows<3>(1) << endl;
    return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(1..3,:) =
-2 -3  3  3 -5
 6  6 -3  5 -8
 6 -5  0 -8  6
See also:
class Block, block(Index,Index,Index,Index)
ConstNRowsBlockXpr<N>::Type middleRows ( Index  startRow) const [inline, inherited]

This is the const version of middleRows<int>().

internal::traits<ArrayWrapper< ExpressionType > >::Scalar minCoeff ( ) const [inherited]
Returns:
the minimum of all coefficients of *this
internal::traits<ArrayWrapper< ExpressionType > >::Scalar minCoeff ( IndexType *  row,
IndexType *  col 
) const [inherited]
Returns:
the minimum of all coefficients of *this and puts in *row and *col its location.
See also:
DenseBase::minCoeff(Index*), DenseBase::maxCoeff(Index*,Index*), DenseBase::visitor(), DenseBase::minCoeff()
internal::traits<ArrayWrapper< ExpressionType > >::Scalar minCoeff ( IndexType *  index) const [inherited]
Returns:
the minimum of all coefficients of *this and puts in *index its location.
See also:
DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::minCoeff()
const NestByValue<ArrayWrapper< ExpressionType > > nestByValue ( ) const [inline, inherited]
Returns:
an expression of the temporary version of *this.
const internal::remove_all<NestedExpressionType>::type& nestedExpression ( ) const [inline]
Index nonZeros ( ) const [inline, inherited]
Returns:
the number of nonzero coefficients which is in practice the number of stored coefficients.
static const CwiseNullaryOp<CustomNullaryOp, ArrayWrapper< ExpressionType > > NullaryExpr ( Index  rows,
Index  cols,
const CustomNullaryOp &  func 
) [static, inherited]
Returns:
an expression of a matrix defined by a custom functor func

The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.

This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Zero() should be used instead.

The template parameter CustomNullaryOp is the type of the functor.

See also:
class CwiseNullaryOp
static const CwiseNullaryOp<CustomNullaryOp, ArrayWrapper< ExpressionType > > NullaryExpr ( Index  size,
const CustomNullaryOp &  func 
) [static, inherited]
Returns:
an expression of a matrix defined by a custom functor func

The parameter size is the size of the returned vector. Must be compatible with this MatrixBase type.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

This variant is meant to be used for dynamic-size vector types. For fixed-size types, it is redundant to pass size as argument, so Zero() should be used instead.

The template parameter CustomNullaryOp is the type of the functor.

See also:
class CwiseNullaryOp
static const CwiseNullaryOp<CustomNullaryOp, ArrayWrapper< ExpressionType > > NullaryExpr ( const CustomNullaryOp &  func) [static, inherited]
Returns:
an expression of a matrix defined by a custom functor func

This variant is only for fixed-size DenseBase types. For dynamic-size types, you need to use the variants taking size arguments.

The template parameter CustomNullaryOp is the type of the functor.

See also:
class CwiseNullaryOp
static const ConstantReturnType Ones ( Index  rows,
Index  cols 
) [static, inherited]
Returns:
an expression of a matrix where all coefficients equal one.

The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.

This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Ones() should be used instead.

Example:

cout << MatrixXi::Ones(2,3) << endl;

Output:

1 1 1
1 1 1
See also:
Ones(), Ones(Index), isOnes(), class Ones
static const ConstantReturnType Ones ( Index  size) [static, inherited]
Returns:
an expression of a vector where all coefficients equal one.

The parameter size is the size of the returned vector. Must be compatible with this MatrixBase type.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

This variant is meant to be used for dynamic-size vector types. For fixed-size types, it is redundant to pass size as argument, so Ones() should be used instead.

Example:

cout << 6 * RowVectorXi::Ones(4) << endl;
cout << VectorXf::Ones(2) << endl;

Output:

6 6 6 6
1
1
See also:
Ones(), Ones(Index,Index), isOnes(), class Ones
static const ConstantReturnType Ones ( ) [static, inherited]
Returns:
an expression of a fixed-size matrix or vector where all coefficients equal one.

This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variants taking size arguments.

Example:

cout << Matrix2d::Ones() << endl;
cout << 6 * RowVector4i::Ones() << endl;

Output:

1 1
1 1
6 6 6 6
See also:
Ones(Index), Ones(Index,Index), isOnes(), class Ones
const CwiseBinaryOp<internal::scalar_boolean_and_op, const ArrayWrapper< ExpressionType > , const OtherDerived> operator&& ( const Eigen::ArrayBase< OtherDerived > &  other) const [inline, inherited]
Returns:
an expression of the coefficient-wise && operator of *this and other
Warning:
this operator is for expression of bool only.

Example:

Array3d v(-1,2,1), w(-3,2,3);
cout << ((v<w) && (v<0)) << endl;

Output:

0
0
0
See also:
operator||(), select()
const ScalarMultipleReturnType operator* ( const Scalar scalar) const [inline, inherited]
Returns:
an expression of *this scaled by the scalar factor scalar
const ScalarMultipleReturnType operator* ( const RealScalar scalar) const [inherited]
const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const ArrayWrapper< ExpressionType > > operator* ( const std::complex< Scalar > &  scalar) const [inline, inherited]

Overloaded for efficient real matrix times complex scalar value

ArrayWrapper< ExpressionType > & operator*= ( const ArrayBase< OtherDerived > &  other) [inherited]

replaces *this by *this * other coefficient wise.

Returns:
a reference to *this
ArrayWrapper< ExpressionType > & operator*= ( const Scalar other) [inline, inherited]
const CwiseUnaryOp<internal::scalar_add_op<Scalar>, const ArrayWrapper< ExpressionType > > operator+ ( const Scalar scalar) const [inline, inherited]
Returns:
an expression of the coefficient-wise < operator of *this and other

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v<w) << endl;

Output:

1
0
0
See also:
all(), any(), operator>(), operator<=()
Returns:
an expression of the coefficient-wise <= operator of *this and other

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v<=w) << endl;

Output:

1
1
0
See also:
all(), any(), operator>=(), operator<()
Returns:
an expression of the coefficient-wise > operator of *this and other

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v>w) << endl;

Output:

0
0
1
See also:
all(), any(), operator>=(), operator<()
Returns:
an expression of the coefficient-wise >= operator of *this and other

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v>=w) << endl;

Output:

0
1
1
See also:
all(), any(), operator>(), operator<=()
Returns:
an expression of the coefficient-wise == operator of *this and other
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v==w) << endl;

Output:

0
1
0
See also:
all(), any(), isApprox(), isMuchSmallerThan()
Returns:
an expression of the coefficient-wise != operator of *this and other
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v!=w) << endl;

Output:

1
0
1
See also:
all(), any(), isApprox(), isMuchSmallerThan()
Returns:
an expression of *this with each coeff incremented by the constant scalar

Example:

Array3d v(1,2,3);
cout << v+5 << endl;

Output:

6
7
8
See also:
operator+=(), operator-()
ArrayWrapper< ExpressionType > & operator+= ( const Scalar scalar) [inline, inherited]
ArrayWrapper< ExpressionType > & operator+= ( const ArrayBase< OtherDerived > &  other) [inherited]

replaces *this by *this + other.

Returns:
a reference to *this
ArrayWrapper< ExpressionType > & operator+= ( const MatrixBase< OtherDerived > &  ) [inline, protected, inherited]

References EIGEN_STATIC_ASSERT.

ArrayWrapper< ExpressionType > & operator+= ( const EigenBase< OtherDerived > &  other) [inherited]
const CwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<ArrayWrapper< ExpressionType > >::Scalar>, const ArrayWrapper< ExpressionType > > operator- ( ) const [inline, inherited]
Returns:
an expression of the opposite of *this
const CwiseUnaryOp<internal::scalar_add_op<Scalar>, const ArrayWrapper< ExpressionType > > operator- ( const Scalar scalar) const [inline, inherited]
Returns:
an expression of *this with each coeff decremented by the constant scalar

Example:

Array3d v(1,2,3);
cout << v-5 << endl;

Output:

-4
-3
-2
See also:
operator+(), operator-=()
ArrayWrapper< ExpressionType > & operator-= ( const Scalar scalar) [inline, inherited]
ArrayWrapper< ExpressionType > & operator-= ( const ArrayBase< OtherDerived > &  other) [inherited]

replaces *this by *this - other.

Returns:
a reference to *this
ArrayWrapper< ExpressionType > & operator-= ( const MatrixBase< OtherDerived > &  ) [inline, protected, inherited]
ArrayWrapper< ExpressionType > & operator-= ( const EigenBase< OtherDerived > &  other) [inherited]
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const ArrayWrapper< ExpressionType > , const OtherDerived> operator/ ( const Eigen::ArrayBase< OtherDerived > &  other) const [inline, inherited]
Returns:
an expression of the coefficient wise quotient of *this and other
See also:
MatrixBase::cwiseQuotient
const CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<ArrayWrapper< ExpressionType > >::Scalar>, const ArrayWrapper< ExpressionType > > operator/ ( const Scalar scalar) const [inline, inherited]
Returns:
an expression of *this divided by the scalar value scalar
ArrayWrapper< ExpressionType > & operator/= ( const ArrayBase< OtherDerived > &  other) [inherited]

replaces *this by *this / other coefficient wise.

Returns:
a reference to *this
ArrayWrapper< ExpressionType > & operator/= ( const Scalar other) [inline, inherited]
CommaInitializer<ArrayWrapper< ExpressionType > > operator<< ( const Scalar s) [inherited]

Convenient operator to set the coefficients of a matrix.

The coefficients must be provided in a row major order and exactly match the size of the matrix. Otherwise an assertion is raised.

Example:

Matrix3i m1;
m1 << 1, 2, 3,
      4, 5, 6,
      7, 8, 9;
cout << m1 << endl << endl;
Matrix3i m2 = Matrix3i::Identity();
m2.block(0,0, 2,2) << 10, 11, 12, 13;
cout << m2 << endl << endl;
Vector2i v1;
v1 << 14, 15;
m2 << v1.transpose(), 16,
      v1, m1.block(1,1,2,2);
cout << m2 << endl;

Output:

1 2 3
4 5 6
7 8 9

10 11  0
12 13  0
 0  0  1

14 15 16
14  5  6
15  8  9
See also:
CommaInitializer::finished(), class CommaInitializer
CommaInitializer<ArrayWrapper< ExpressionType > > operator<< ( const DenseBase< OtherDerived > &  other) [inherited]
See also:
operator<<(const Scalar&)
const CwiseBinaryOp<internal::scalar_boolean_or_op, const ArrayWrapper< ExpressionType > , const OtherDerived> operator|| ( const Eigen::ArrayBase< OtherDerived > &  other) const [inline, inherited]
Returns:
an expression of the coefficient-wise || operator of *this and other
Warning:
this operator is for expression of bool only.

Example:

Array3d v(-1,2,1), w(-3,2,3);
cout << ((v<w) || (v<0)) << endl;

Output:

1
0
1
See also:
operator&&(), select()
Index outerSize ( ) const [inline, inherited]
Returns:
true if either the number of rows or the number of columns is equal to 1. In other words, this function returns
 rows()==1 || cols()==1 
See also:
rows(), cols(), IsVectorAtCompileTime.
Returns:
the outer size.
Note:
For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension with respect to the storage order, i.e., the number of columns for a column-major matrix, and the number of rows for a row-major matrix.
Index outerStride ( ) const [inline]
const PacketScalar packet ( Index  row,
Index  col 
) const [inline]
const PacketScalar packet ( Index  index) const [inline]
const CwiseUnaryOp<internal::scalar_pow_op<Scalar>, const ArrayWrapper< ExpressionType > > pow ( const Scalar exponent) const [inline, inherited]
Returns:
an expression of the coefficient-wise power of *this to the given exponent.

Example:

Array3d v(8,27,64);
cout << v.pow(0.333333) << endl;

Output:

2
3
4
See also:
exp(), log()
Scalar prod ( ) const [inherited]
Returns:
the product of all coefficients of *this

Example:

Matrix3d m = Matrix3d::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the product of all the coefficients:" << endl << m.prod() << endl;

Output:

Here is the matrix m:
  0.68  0.597  -0.33
-0.211  0.823  0.536
 0.566 -0.605 -0.444
Here is the product of all the coefficients:
0.0019
See also:
sum(), mean(), trace()
static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,ArrayWrapper< ExpressionType > > Random ( Index  rows,
Index  cols 
) [static, inherited]
Returns:
a random matrix expression

The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.

This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Random() should be used instead.

Example:

cout << MatrixXi::Random(2,3) << endl;

Output:

 7  6  9
-2  6 -6

This expression has the "evaluate before nesting" flag so that it will be evaluated into a temporary matrix whenever it is nested in a larger expression. This prevents unexpected behavior with expressions involving random matrices.

See also:
MatrixBase::setRandom(), MatrixBase::Random(Index), MatrixBase::Random()
static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,ArrayWrapper< ExpressionType > > Random ( Index  size) [static, inherited]
Returns:
a random vector expression

The parameter size is the size of the returned vector. Must be compatible with this MatrixBase type.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

This variant is meant to be used for dynamic-size vector types. For fixed-size types, it is redundant to pass size as argument, so Random() should be used instead.

Example:

cout << VectorXi::Random(2) << endl;

Output:

7
-2

This expression has the "evaluate before nesting" flag so that it will be evaluated into a temporary vector whenever it is nested in a larger expression. This prevents unexpected behavior with expressions involving random matrices.

See also:
MatrixBase::setRandom(), MatrixBase::Random(Index,Index), MatrixBase::Random()
static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,ArrayWrapper< ExpressionType > > Random ( ) [static, inherited]
Returns:
a fixed-size random matrix or vector expression

This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variants taking size arguments.

Example:

cout << 100 * Matrix2i::Random() << endl;

Output:

700 600
-200 600

This expression has the "evaluate before nesting" flag so that it will be evaluated into a temporary matrix whenever it is nested in a larger expression. This prevents unexpected behavior with expressions involving random matrices.

See also:
MatrixBase::setRandom(), MatrixBase::Random(Index,Index), MatrixBase::Random(Index)
RealReturnType real ( ) const [inline, inherited]
Returns:
a read-only expression of the real part of *this.
See also:
imag()
NonConstRealReturnType real ( ) [inline, inherited]
Returns:
a non const expression of the real part of *this.
See also:
imag()

References EIGEN_STATIC_ASSERT.

const Replicate<ArrayWrapper< ExpressionType > ,RowFactor,ColFactor> replicate ( ) const [inherited]
Returns:
an expression of the replication of *this

Example:

MatrixXi m = MatrixXi::Random(2,3);
cout << "Here is the matrix m:" << endl << m << endl;
cout << "m.replicate<3,2>() = ..." << endl;
cout << m.replicate<3,2>() << endl;

Output:

Here is the matrix m:
 7  6  9
-2  6 -6
m.replicate<3,2>() = ...
 7  6  9  7  6  9
-2  6 -6 -2  6 -6
 7  6  9  7  6  9
-2  6 -6 -2  6 -6
 7  6  9  7  6  9
-2  6 -6 -2  6 -6
See also:
VectorwiseOp::replicate(), DenseBase::replicate(Index,Index), class Replicate
const Replicate<ArrayWrapper< ExpressionType > ,Dynamic,Dynamic> replicate ( Index  rowFacor,
Index  colFactor 
) const [inherited]
Returns:
an expression of the replication of *this

Example:

Vector3i v = Vector3i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "v.replicate(2,5) = ..." << endl;
cout << v.replicate(2,5) << endl;

Output:

Here is the vector v:
7
-2
6
v.replicate(2,5) = ...
 7  7  7  7  7
-2 -2 -2 -2 -2
 6  6  6  6  6
 7  7  7  7  7
-2 -2 -2 -2 -2
 6  6  6  6  6
See also:
VectorwiseOp::replicate(), DenseBase::replicate<int,int>(), class Replicate
void resize ( Index  size) [inline, inherited]

Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does nothing else.

void resize ( Index  rows,
Index  cols 
) [inline, inherited]

Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does nothing else.

ReverseReturnType reverse ( ) [inherited]
Returns:
an expression of the reverse of *this.

Example:

MatrixXi m = MatrixXi::Random(3,4);
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the reverse of m:" << endl << m.reverse() << endl;
cout << "Here is the coefficient (1,0) in the reverse of m:" << endl
     << m.reverse()(1,0) << endl;
cout << "Let us overwrite this coefficient with the value 4." << endl;
m.reverse()(1,0) = 4;
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  6 -3  1
-2  9  6  0
 6 -6 -5  3
Here is the reverse of m:
 3 -5 -6  6
 0  6  9 -2
 1 -3  6  7
Here is the coefficient (1,0) in the reverse of m:
0
Let us overwrite this coefficient with the value 4.
Now the matrix m is:
 7  6 -3  1
-2  9  6  4
 6 -6 -5  3
ConstReverseReturnType reverse ( ) const [inherited]

This is the const version of reverse().

void reverseInPlace ( ) [inherited]

This is the "in place" version of reverse: it reverses *this.

In most cases it is probably better to simply use the reversed expression of a matrix. However, when reversing the matrix data itself is really needed, then this "in-place" version is probably the right choice because it provides the following additional features:

  • less error prone: doing the same operation with .reverse() requires special care:
     m = m.reverse().eval(); 
    
  • this API allows to avoid creating a temporary (the current implementation creates a temporary, but that could be avoided using swap)
  • it allows future optimizations (cache friendliness, etc.)
See also:
reverse()
ColsBlockXpr rightCols ( Index  n) [inline, inherited]
Returns:
a block consisting of the right columns of *this.
Parameters:
nthe number of columns in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.rightCols(2):" << endl;
cout << a.rightCols(2) << endl;
a.rightCols(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.rightCols(2):
-5 -3
 1  0
 0  9
 3  9
Now the array a is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  0
 6  6  0  0
See also:
class Block, block(Index,Index,Index,Index)
ConstColsBlockXpr rightCols ( Index  n) const [inline, inherited]

This is the const version of rightCols(Index).

NColsBlockXpr<N>::Type rightCols ( ) [inline, inherited]
Returns:
a block consisting of the right columns of *this.
Template Parameters:
Nthe number of columns in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.rightCols<2>():" << endl;
cout << a.rightCols<2>() << endl;
a.rightCols<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.rightCols<2>():
-5 -3
 1  0
 0  9
 3  9
Now the array a is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  0
 6  6  0  0
See also:
class Block, block(Index,Index,Index,Index)
ConstNColsBlockXpr<N>::Type rightCols ( ) const [inline, inherited]

This is the const version of rightCols<int>().

RowXpr row ( Index  i) [inline, inherited]
Returns:
an expression of the i-th row of *this. Note that the numbering starts at 0.

Example:

Matrix3d m = Matrix3d::Identity();
m.row(1) = Vector3d(4,5,6);
cout << m << endl;

Output:

1 0 0
4 5 6
0 0 1
See also:
col(), class Block

Referenced by ArrayWrapper< ExpressionType >::packet(), and ArrayWrapper< ExpressionType >::writePacket().

ConstRowXpr row ( Index  i) const [inline, inherited]

This is the const version of row().

Index rows ( ) const [inline]
ConstRowwiseReturnType rowwise ( ) const [inherited]
Returns:
a VectorwiseOp wrapper of *this providing additional partial reduction operations

Example:

Matrix3d m = Matrix3d::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the sum of each row:" << endl << m.rowwise().sum() << endl;
cout << "Here is the maximum absolute value of each row:"
     << endl << m.cwiseAbs().rowwise().maxCoeff() << endl;

Output:

Here is the matrix m:
  0.68  0.597  -0.33
-0.211  0.823  0.536
 0.566 -0.605 -0.444
Here is the sum of each row:
0.948
1.15
-0.483
Here is the maximum absolute value of each row:
0.68
0.823
0.605
See also:
colwise(), class VectorwiseOp, Tutorial page 7 - Reductions, visitors and broadcasting
RowwiseReturnType rowwise ( ) [inherited]
Returns:
a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
See also:
colwise(), class VectorwiseOp, Tutorial page 7 - Reductions, visitors and broadcasting
SegmentReturnType segment ( Index  start,
Index  size 
) [inherited]
Returns:
a dynamic-size expression of a segment (i.e. a vector block) in *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Parameters:
startthe first coefficient in the segment
sizethe number of coefficients in the segment

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.segment(1, 2):" << endl << v.segment(1, 2) << endl;
v.segment(1, 2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.segment(1, 2):
-2 6
Now the vector v is:
7 0 0 6
Note:
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size vector, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also:
class Block, segment(Index)
DenseBase::ConstSegmentReturnType segment ( Index  start,
Index  size 
) const [inherited]

This is the const version of segment(Index,Index).

FixedSegmentReturnType<Size>::Type segment ( Index  start) [inherited]
Returns:
a fixed-size expression of a segment (i.e. a vector block) in *this

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

The template parameter Size is the number of coefficients in the block

Parameters:
startthe index of the first element of the sub-vector

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.segment<2>(1):" << endl << v.segment<2>(1) << endl;
v.segment<2>(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.segment<2>(1):
-2 6
Now the vector v is:
 7 -2  0  0
See also:
class Block
ConstFixedSegmentReturnType<Size>::Type segment ( Index  start) const [inherited]

This is the const version of segment<int>(Index).

const Select<ArrayWrapper< ExpressionType > ,ThenDerived,ElseDerived> select ( const DenseBase< ThenDerived > &  thenMatrix,
const DenseBase< ElseDerived > &  elseMatrix 
) const [inherited]
Returns:
a matrix where each coefficient (i,j) is equal to thenMatrix(i,j) if *this(i,j), and elseMatrix(i,j) otherwise.

Example:

MatrixXi m(3, 3);
m << 1, 2, 3,
     4, 5, 6,
     7, 8, 9;
m = (m.array() >= 5).select(-m, m);
cout << m << endl;

Output:

 1  2  3
 4 -5 -6
-7 -8 -9
See also:
class Select
const Select<ArrayWrapper< ExpressionType > ,ThenDerived, typename ThenDerived::ConstantReturnType> select ( const DenseBase< ThenDerived > &  thenMatrix,
typename ThenDerived::Scalar  elseScalar 
) const [inline, inherited]

Version of DenseBase::select(const DenseBase&, const DenseBase&) with the else expression being a scalar value.

See also:
DenseBase::select(const DenseBase<ThenDerived>&, const DenseBase<ElseDerived>&) const, class Select
const Select<ArrayWrapper< ExpressionType > , typename ElseDerived::ConstantReturnType, ElseDerived > select ( typename ElseDerived::Scalar  thenScalar,
const DenseBase< ElseDerived > &  elseMatrix 
) const [inline, inherited]

Version of DenseBase::select(const DenseBase&, const DenseBase&) with the then expression being a scalar value.

See also:
DenseBase::select(const DenseBase<ThenDerived>&, const DenseBase<ElseDerived>&) const, class Select
ArrayWrapper< ExpressionType > & setConstant ( const Scalar value) [inherited]

Sets all coefficients in this expression to value.

See also:
fill(), setConstant(Index,const Scalar&), setConstant(Index,Index,const Scalar&), setZero(), setOnes(), Constant(), class CwiseNullaryOp, setZero(), setOnes()
ArrayWrapper< ExpressionType > & setLinSpaced ( Index  size,
const Scalar low,
const Scalar high 
) [inherited]

Sets a linearly space vector.

The function generates 'size' equally spaced values in the closed interval [low,high]. When size is set to 1, a vector of length 1 containing 'high' is returned.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Example:

VectorXf v;
v.setLinSpaced(5,0.5f,1.5f).transpose();
cout << v << endl;

Output:

0.5
0.75
1
1.25
1.5
See also:
CwiseNullaryOp
ArrayWrapper< ExpressionType > & setLinSpaced ( const Scalar low,
const Scalar high 
) [inherited]

Sets a linearly space vector.

The function fill *this with equally spaced values in the closed interval [low,high]. When size is set to 1, a vector of length 1 containing 'high' is returned.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

See also:
setLinSpaced(Index, const Scalar&, const Scalar&), CwiseNullaryOp
ArrayWrapper< ExpressionType > & setOnes ( ) [inherited]

Sets all coefficients in this expression to one.

Example:

Matrix4i m = Matrix4i::Random();
m.row(1).setOnes();
cout << m << endl;

Output:

 7  9 -5 -3
 1  1  1  1
 6 -3  0  9
 6  6  3  9
See also:
class CwiseNullaryOp, Ones()
ArrayWrapper< ExpressionType > & setRandom ( ) [inherited]

Sets all coefficients in this expression to random values.

Example:

Matrix4i m = Matrix4i::Zero();
m.col(1).setRandom();
cout << m << endl;

Output:

 0  7  0  0
 0 -2  0  0
 0  6  0  0
 0  6  0  0
See also:
class CwiseNullaryOp, setRandom(Index), setRandom(Index,Index)
ArrayWrapper< ExpressionType > & setZero ( ) [inherited]

Sets all coefficients in this expression to zero.

Example:

Matrix4i m = Matrix4i::Random();
m.row(1).setZero();
cout << m << endl;

Output:

 7  9 -5 -3
 0  0  0  0
 6 -3  0  9
 6  6  3  9
See also:
class CwiseNullaryOp, Zero()
const CwiseUnaryOp<internal::scalar_sin_op<Scalar>, const ArrayWrapper< ExpressionType > > sin ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise sine of *this.

Example:

Array3d v(M_PI, M_PI/2, M_PI/3);
cout << v.sin() << endl;

Output:

1.22e-16
1
0.866
See also:
cos(), asin()
const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const ArrayWrapper< ExpressionType > > sqrt ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise square root of *this.

Example:

Array3d v(1,2,4);
cout << v.sqrt() << endl;

Output:

1
1.41
2
See also:
pow(), square()
const CwiseUnaryOp<internal::scalar_square_op<Scalar>, const ArrayWrapper< ExpressionType > > square ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise square of *this.

Example:

Array3d v(2,3,4);
cout << v.square() << endl;

Output:

4
9
16
See also:
operator/(), operator*(), abs2()
Scalar sum ( ) const [inherited]
Returns:
the sum of all coefficients of *this
See also:
trace(), prod(), mean()
void swap ( const DenseBase< OtherDerived > &  other,
int  = OtherDerived::ThisConstantIsPrivateInPlainObjectBase 
) [inline, inherited]

swaps *this with the expression other.

void swap ( PlainObjectBase< OtherDerived > &  other) [inline, inherited]

swaps *this with the matrix or array other.

SegmentReturnType tail ( Index  size) [inherited]
Returns:
a dynamic-size expression of the last coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Parameters:
sizethe number of coefficients in the block

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.tail(2):" << endl << v.tail(2) << endl;
v.tail(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.tail(2):
6 6
Now the vector v is:
 7 -2  0  0
Note:
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size vector, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also:
class Block, block(Index,Index)
DenseBase::ConstSegmentReturnType tail ( Index  size) const [inherited]

This is the const version of tail(Index).

FixedSegmentReturnType<Size>::Type tail ( ) [inherited]
Returns:
a fixed-size expression of the last coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

The template parameter Size is the number of coefficients in the block

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.tail(2):" << endl << v.tail<2>() << endl;
v.tail<2>().setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.tail(2):
6 6
Now the vector v is:
 7 -2  0  0
See also:
class Block
ConstFixedSegmentReturnType<Size>::Type tail ( ) const [inherited]

This is the const version of tail<int>.

const CwiseUnaryOp<internal::scalar_tan_op<Scalar>, ArrayWrapper< ExpressionType > > tan ( ) const [inline, inherited]
Returns:
an expression of the coefficient-wise tan of *this.

Example:

Array3d v(M_PI, M_PI/2, M_PI/3);
cout << v.tan() << endl;

Output:

-1.22e-16
1.63e+16
1.73
See also:
cos(), sin()
Block<ArrayWrapper< ExpressionType > > topLeftCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
a dynamic-size expression of a top-left corner of *this.
Parameters:
cRowsthe number of rows in the corner
cColsthe number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner(2, 2):" << endl;
cout << m.topLeftCorner(2, 2) << endl;
m.topLeftCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner(2, 2):
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block(Index,Index,Index,Index)
const Block<const ArrayWrapper< ExpressionType > > topLeftCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of topLeftCorner(Index, Index).

Block<ArrayWrapper< ExpressionType > , CRows, CCols> topLeftCorner ( ) [inline, inherited]
Returns:
an expression of a fixed-size top-left corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner<2,2>():" << endl;
cout << m.topLeftCorner<2,2>() << endl;
m.topLeftCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner<2,2>():
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block(Index,Index,Index,Index)
const Block<const ArrayWrapper< ExpressionType > , CRows, CCols> topLeftCorner ( ) const [inline, inherited]

This is the const version of topLeftCorner<int, int>().

Block<ArrayWrapper< ExpressionType > > topRightCorner ( Index  cRows,
Index  cCols 
) [inline, inherited]
Returns:
a dynamic-size expression of a top-right corner of *this.
Parameters:
cRowsthe number of rows in the corner
cColsthe number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner(2, 2):" << endl;
cout << m.topRightCorner(2, 2) << endl;
m.topRightCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner(2, 2):
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block(Index,Index,Index,Index)
const Block<const ArrayWrapper< ExpressionType > > topRightCorner ( Index  cRows,
Index  cCols 
) const [inline, inherited]

This is the const version of topRightCorner(Index, Index).

Block<ArrayWrapper< ExpressionType > , CRows, CCols> topRightCorner ( ) [inline, inherited]
Returns:
an expression of a fixed-size top-right corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner<2,2>():" << endl;
cout << m.topRightCorner<2,2>() << endl;
m.topRightCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner<2,2>():
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block(Index,Index,Index,Index)
const Block<const ArrayWrapper< ExpressionType > , CRows, CCols> topRightCorner ( ) const [inline, inherited]

This is the const version of topRightCorner<int, int>().

RowsBlockXpr topRows ( Index  n) [inline, inherited]
Returns:
a block consisting of the top rows of *this.
Parameters:
nthe number of rows in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.topRows(2):" << endl;
cout << a.topRows(2) << endl;
a.topRows(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.topRows(2):
 7  9 -5 -3
-2 -6  1  0
Now the array a is:
 0  0  0  0
 0  0  0  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block(Index,Index,Index,Index)
ConstRowsBlockXpr topRows ( Index  n) const [inline, inherited]

This is the const version of topRows(Index).

NRowsBlockXpr<N>::Type topRows ( ) [inline, inherited]
Returns:
a block consisting of the top rows of *this.
Template Parameters:
Nthe number of rows in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.topRows<2>():" << endl;
cout << a.topRows<2>() << endl;
a.topRows<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.topRows<2>():
 7  9 -5 -3
-2 -6  1  0
Now the array a is:
 0  0  0  0
 0  0  0  0
 6 -3  0  9
 6  6  3  9
See also:
class Block, block(Index,Index,Index,Index)
ConstNRowsBlockXpr<N>::Type topRows ( ) const [inline, inherited]

This is the const version of topRows<int>().

Scalar trace ( ) const [inherited]
Eigen::Transpose<ArrayWrapper< ExpressionType > > transpose ( ) [inherited]
Returns:
an expression of the transpose of *this.

Example:

Matrix2i m = Matrix2i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the transpose of m:" << endl << m.transpose() << endl;
cout << "Here is the coefficient (1,0) in the transpose of m:" << endl
     << m.transpose()(1,0) << endl;
cout << "Let us overwrite this coefficient with the value 0." << endl;
m.transpose()(1,0) = 0;
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
7 6
-2 6
Here is the transpose of m:
 7 -2
 6  6
Here is the coefficient (1,0) in the transpose of m:
6
Let us overwrite this coefficient with the value 0.
Now the matrix m is:
7 0
-2 6
Warning:
If you want to replace a matrix by its own transpose, do NOT do this:
 m = m.transpose(); // bug!!! caused by aliasing effect
Instead, use the transposeInPlace() method:
 m.transposeInPlace();
which gives Eigen good opportunities for optimization, or alternatively you can also do:
 m = m.transpose().eval();
See also:
transposeInPlace(), adjoint()
ConstTransposeReturnType transpose ( ) const [inherited]

This is the const version of transpose().

Make sure you read the warning for transpose() !

See also:
transposeInPlace(), adjoint()
void transposeInPlace ( ) [inherited]

This is the "in place" version of transpose(): it replaces *this by its own transpose. Thus, doing

 m.transposeInPlace();

has the same effect on m as doing

 m = m.transpose().eval();

and is faster and also safer because in the latter line of code, forgetting the eval() results in a bug caused by aliasing.

Notice however that this method is only useful if you want to replace a matrix by its own transpose. If you just need the transpose of a matrix, use transpose().

Note:
if the matrix is not square, then *this must be a resizable matrix.
See also:
transpose(), adjoint(), adjointInPlace()
const CwiseUnaryOp<CustomUnaryOp, const ArrayWrapper< ExpressionType > > unaryExpr ( const CustomUnaryOp &  func = CustomUnaryOp()) const [inline, inherited]

Apply a unary operator coefficient-wise.

Parameters:
[in]funcFunctor implementing the unary operator
Template Parameters:
CustomUnaryOpType of func
Returns:
An expression of a custom coefficient-wise unary operator func of *this

The function ptr_fun() from the C++ standard library can be used to make functors out of normal functions.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define function to be applied coefficient-wise
double ramp(double x)
{
  if (x > 0)
    return x;
  else 
    return 0;
}

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random();
  cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(ptr_fun(ramp)) << endl;
  return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
  0.68  0.823      0      0
     0      0  0.108 0.0268
 0.566      0      0  0.904
 0.597  0.536  0.258  0.832

Genuine functors allow for more possibilities, for instance it may contain a state.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
  CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
  const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
  Scalar m_inf, m_sup;
};

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random();
  cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
  return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See also:
class CwiseUnaryOp, class CwiseBinaryOp
const CwiseUnaryView<CustomViewOp, const ArrayWrapper< ExpressionType > > unaryViewExpr ( const CustomViewOp &  func = CustomViewOp()) const [inline, inherited]
Returns:
an expression of a custom coefficient-wise unary operator func of *this

The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
  CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
  const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
  Scalar m_inf, m_sup;
};

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random();
  cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
  return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See also:
class CwiseUnaryOp, class CwiseBinaryOp
CoeffReturnType value ( ) const [inline, inherited]
Returns:
the unique coefficient of a 1x1 expression
void visit ( Visitor &  func) const [inherited]

Applies the visitor visitor to the whole coefficients of the matrix or vector.

The template parameter Visitor is the type of the visitor and provides the following interface:

 struct MyVisitor {
   // called for the first coefficient
   void init(const Scalar& value, Index i, Index j);
   // called for all other coefficients
   void operator() (const Scalar& value, Index i, Index j);
 };
Note:
compared to one or two for loops, visitors offer automatic unrolling for small fixed size matrix.
See also:
minCoeff(Index*,Index*), maxCoeff(Index*,Index*), DenseBase::redux()
void writePacket ( Index  row,
Index  col,
const PacketScalar x 
) [inline]
void writePacket ( Index  index,
const PacketScalar x 
) [inline]
static const ConstantReturnType Zero ( Index  rows,
Index  cols 
) [static, inherited]
Returns:
an expression of a zero matrix.

The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.

This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Zero() should be used instead.

Example:

cout << MatrixXi::Zero(2,3) << endl;

Output:

0 0 0
0 0 0
See also:
Zero(), Zero(Index)
static const ConstantReturnType Zero ( Index  size) [static, inherited]
Returns:
an expression of a zero vector.

The parameter size is the size of the returned vector. Must be compatible with this MatrixBase type.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

This variant is meant to be used for dynamic-size vector types. For fixed-size types, it is redundant to pass size as argument, so Zero() should be used instead.

Example:

cout << RowVectorXi::Zero(4) << endl;
cout << VectorXf::Zero(2) << endl;

Output:

0 0 0 0
0
0
See also:
Zero(), Zero(Index,Index)
static const ConstantReturnType Zero ( ) [static, inherited]
Returns:
an expression of a fixed-size zero matrix or vector.

This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variants taking size arguments.

Example:

cout << Matrix2d::Zero() << endl;
cout << RowVector4i::Zero() << endl;

Output:

0 0
0 0
0 0 0 0
See also:
Zero(Index), Zero(Index,Index)

Friends And Related Function Documentation

const ScalarMultipleReturnType operator* ( const Scalar scalar,
const StorageBaseType &  matrix 
) [friend, inherited]
const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const ArrayWrapper< ExpressionType > > operator* ( const std::complex< Scalar > &  scalar,
const StorageBaseType &  matrix 
) [friend, inherited]
const CwiseUnaryOp<internal::scalar_add_op<Scalar>, const ArrayWrapper< ExpressionType > > operator+ ( const Scalar scalar,
const Eigen::ArrayBase< ArrayWrapper< ExpressionType > > &  other 
) [friend, inherited]
const CwiseUnaryOp<internal::scalar_add_op<Scalar>, const CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const ArrayWrapper< ExpressionType > > > operator- ( const Scalar scalar,
const Eigen::ArrayBase< ArrayWrapper< ExpressionType > > &  other 
) [friend, inherited]

Member Data Documentation


The documentation for this class was generated from the following file: