Public Types | Public Member Functions | Protected Member Functions | Protected Attributes | Friends
SparseMatrixBase< Derived > Class Template Reference

Base class of any sparse matrices or sparse expressions. More...

#include <SparseMatrixBase.h>

+ Inheritance diagram for SparseMatrixBase< Derived >:

List of all members.

Public Types

enum  {
  RowsAtCompileTime,
  ColsAtCompileTime,
  SizeAtCompileTime,
  MaxRowsAtCompileTime,
  MaxColsAtCompileTime,
  MaxSizeAtCompileTime,
  IsVectorAtCompileTime,
  Flags,
  CoeffReadCost,
  IsRowMajor
}
typedef internal::conditional
< NumTraits< Scalar >
::IsComplex, CwiseUnaryOp
< internal::scalar_conjugate_op
< Scalar >, Eigen::Transpose
< const Derived > >, Transpose
< const Derived > >::type 
AdjointReturnType
typedef EigenBase< Derived > Base
typedef internal::traits
< Derived >::Index 
Index
typedef
internal::add_const_on_value_type_if_arithmetic
< typename
internal::packet_traits
< Scalar >::type >::type 
PacketReturnType
typedef
internal::packet_traits
< Scalar >::type 
PacketScalar
typedef SparseMatrix< Scalar,
Flags &RowMajorBit?RowMajor:ColMajor > 
PlainObject
typedef internal::traits
< Derived >::Scalar 
Scalar
typedef SparseMatrixBase StorageBaseType
typedef internal::traits
< Derived >::StorageKind 
StorageKind

Public Member Functions

template<typename Dest >
void addTo (Dest &dst) const
const AdjointReturnType adjoint () const
template<typename Dest >
void applyThisOnTheLeft (Dest &dst) const
template<typename Dest >
void applyThisOnTheRight (Dest &dst) const
template<typename CustomBinaryOp , typename OtherDerived >
const CwiseBinaryOp
< CustomBinaryOp, const
Derived, const OtherDerived > 
binaryExpr (const Eigen::SparseMatrixBase< OtherDerived > &other, const CustomBinaryOp &func=CustomBinaryOp()) const
template<typename NewType >
internal::cast_return_type
< Derived, const CwiseUnaryOp
< internal::scalar_cast_op
< typename internal::traits
< Derived >::Scalar, NewType >
, const Derived > >::type 
cast () const
SparseInnerVectorSet< Derived, 1 > col (Index j)
const SparseInnerVectorSet
< Derived, 1 > 
col (Index j) const
Index cols () const
ConjugateReturnType conjugate () const
Derived & const_cast_derived () const
const Derived & const_derived () const
const CwiseUnaryOp
< internal::scalar_abs_op
< Scalar >, const Derived > 
cwiseAbs () const
const CwiseUnaryOp
< internal::scalar_abs2_op
< Scalar >, const Derived > 
cwiseAbs2 () const
template<typename OtherDerived >
const CwiseBinaryOp
< std::equal_to< Scalar >
, const Derived, const
OtherDerived > 
cwiseEqual (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseUnaryOp
< std::binder1st
< std::equal_to< Scalar >
>, const Derived > 
cwiseEqual (const Scalar &s) const
const CwiseUnaryOp
< internal::scalar_inverse_op
< Scalar >, const Derived > 
cwiseInverse () const
template<typename OtherDerived >
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const Derived,
const OtherDerived > 
cwiseMax (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const Derived,
const ConstantReturnType > 
cwiseMax (const Scalar &other) const
template<typename OtherDerived >
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const Derived,
const OtherDerived > 
cwiseMin (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const Derived,
const ConstantReturnType > 
cwiseMin (const Scalar &other) const
template<typename OtherDerived >
const CwiseBinaryOp
< std::not_equal_to< Scalar >
, const Derived, const
OtherDerived > 
cwiseNotEqual (const Eigen::SparseMatrixBase< OtherDerived > &other) const
template<typename OtherDerived >
const
EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE 
cwiseProduct (const MatrixBase< OtherDerived > &other) const
template<typename OtherDerived >
const CwiseBinaryOp
< internal::scalar_quotient_op
< Scalar >, const Derived,
const OtherDerived > 
cwiseQuotient (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_sqrt_op
< Scalar >, const Derived > 
cwiseSqrt () const
Derived & derived ()
const Derived & derived () const
template<typename OtherDerived >
Scalar dot (const MatrixBase< OtherDerived > &other) const
template<typename OtherDerived >
Scalar dot (const SparseMatrixBase< OtherDerived > &other) const
template<typename OtherDerived >
const EIGEN_CWISE_PRODUCT_RETURN_TYPE (Derived, OtherDerived) cwiseProduct(const Eigen
const internal::eval< Derived >
::type 
eval () const
template<typename Dest >
void evalTo (Dest &dst) const
template<typename DenseDerived >
void evalTo (MatrixBase< DenseDerived > &dst) const
const ImagReturnType imag () const
NonConstImagReturnType imag ()
Index innerSize () const
SparseInnerVectorSet< Derived, 1 > innerVector (Index outer)
const SparseInnerVectorSet
< Derived, 1 > 
innerVector (Index outer) const
SparseInnerVectorSet< Derived,
Dynamic
innerVectors (Index outerStart, Index outerSize)
const SparseInnerVectorSet
< Derived, Dynamic
innerVectors (Index outerStart, Index outerSize) const
template<typename OtherDerived >
bool isApprox (const SparseMatrixBase< OtherDerived > &other, RealScalar prec=NumTraits< Scalar >::dummy_precision()) const
template<typename OtherDerived >
bool isApprox (const MatrixBase< OtherDerived > &other, RealScalar prec=NumTraits< Scalar >::dummy_precision()) const
bool isRValue () const
bool isVector () const
Derived & markAsRValue ()
SparseInnerVectorSet< Derived,
Dynamic
middleCols (Index start, Index size)
const SparseInnerVectorSet
< Derived, Dynamic
middleCols (Index start, Index size) const
SparseInnerVectorSet< Derived,
Dynamic
middleRows (Index start, Index size)
const SparseInnerVectorSet
< Derived, Dynamic
middleRows (Index start, Index size) const
Index nonZeros () const
RealScalar norm () const
const ScalarMultipleReturnType operator* (const Scalar &scalar) const
const ScalarMultipleReturnType operator* (const RealScalar &scalar) const
const CwiseUnaryOp
< internal::scalar_multiple2_op
< Scalar, std::complex< Scalar >
>, const Derived > 
operator* (const std::complex< Scalar > &scalar) const
template<typename OtherDerived >
const
SparseSparseProductReturnType
< Derived, OtherDerived >
::Type 
operator* (const SparseMatrixBase< OtherDerived > &other) const
template<typename OtherDerived >
const SparseDiagonalProduct
< Derived, OtherDerived > 
operator* (const DiagonalBase< OtherDerived > &other) const
template<typename OtherDerived >
const
SparseDenseProductReturnType
< Derived, OtherDerived >
::Type 
operator* (const MatrixBase< OtherDerived > &other) const
Derived & operator*= (const Scalar &other)
template<typename OtherDerived >
Derived & operator*= (const SparseMatrixBase< OtherDerived > &other)
template<typename OtherDerived >
Derived & operator+= (const SparseMatrixBase< OtherDerived > &other)
const CwiseUnaryOp
< internal::scalar_opposite_op
< typename internal::traits
< Derived >::Scalar >, const
Derived > 
operator- () const
template<typename OtherDerived >
Derived & operator-= (const SparseMatrixBase< OtherDerived > &other)
const CwiseUnaryOp
< internal::scalar_quotient1_op
< typename internal::traits
< Derived >::Scalar >, const
Derived > 
operator/ (const Scalar &scalar) const
Derived & operator/= (const Scalar &other)
template<typename OtherDerived >
Derived & operator= (const EigenBase< OtherDerived > &other)
template<typename OtherDerived >
Derived & operator= (const ReturnByValue< OtherDerived > &other)
template<typename OtherDerived >
Derived & operator= (const SparseMatrixBase< OtherDerived > &other)
Derived & operator= (const Derived &other)
template<typename Lhs , typename Rhs >
Derived & operator= (const SparseSparseProduct< Lhs, Rhs > &product)
Index outerSize () const
RealReturnType real () const
NonConstRealReturnType real ()
SparseInnerVectorSet< Derived, 1 > row (Index i)
const SparseInnerVectorSet
< Derived, 1 > 
row (Index i) const
Index rows () const
template<unsigned int UpLo>
const SparseSelfAdjointView
< Derived, UpLo > 
selfadjointView () const
template<unsigned int UpLo>
SparseSelfAdjointView< Derived,
UpLo > 
selfadjointView ()
Index size () const
 SparseMatrixBase ()
RealScalar squaredNorm () const
SparseInnerVectorSet< Derived,
Dynamic
subcols (Index start, Index size)
const SparseInnerVectorSet
< Derived, Dynamic
subcols (Index start, Index size) const
SparseInnerVectorSet< Derived,
Dynamic
subrows (Index start, Index size)
const SparseInnerVectorSet
< Derived, Dynamic
subrows (Index start, Index size) const
template<typename Dest >
void subTo (Dest &dst) const
Scalar sum () const
Matrix< Scalar,
RowsAtCompileTime,
ColsAtCompileTime
toDense () const
Transpose< Derived > transpose ()
const Transpose< const Derived > transpose () const
template<int Mode>
const SparseTriangularView
< Derived, Mode > 
triangularView () const
SparseSymmetricPermutationProduct
< Derived, Upper|Lower
twistedBy (const PermutationMatrix< Dynamic, Dynamic, Index > &perm) const
template<typename CustomUnaryOp >
const CwiseUnaryOp
< CustomUnaryOp, const Derived > 
unaryExpr (const CustomUnaryOp &func=CustomUnaryOp()) const
 Apply a unary operator coefficient-wise.
template<typename CustomViewOp >
const CwiseUnaryView
< CustomViewOp, const Derived > 
unaryViewExpr (const CustomViewOp &func=CustomViewOp()) const

Protected Member Functions

template<typename OtherDerived >
Derived & assign (const OtherDerived &other)
template<typename OtherDerived >
void assignGeneric (const OtherDerived &other)

Protected Attributes

bool m_isRValue

Friends

const ScalarMultipleReturnType operator* (const Scalar &scalar, const StorageBaseType &matrix)
const CwiseUnaryOp
< internal::scalar_multiple2_op
< Scalar, std::complex< Scalar >
>, const Derived > 
operator* (const std::complex< Scalar > &scalar, const StorageBaseType &matrix)
template<typename OtherDerived >
const SparseDiagonalProduct
< OtherDerived, Derived > 
operator* (const DiagonalBase< OtherDerived > &lhs, const SparseMatrixBase &rhs)
template<typename OtherDerived >
const
DenseSparseProductReturnType
< OtherDerived, Derived >
::Type 
operator* (const MatrixBase< OtherDerived > &lhs, const Derived &rhs)
std::ostream & operator<< (std::ostream &s, const SparseMatrixBase &m)

Detailed Description

template<typename Derived>
class Eigen::SparseMatrixBase< Derived >

Base class of any sparse matrices or sparse expressions.

Template Parameters:
DerivedThis class can be extended with the help of the plugin mechanism described on the page Customizing/Extending Eigen by defining the preprocessor symbol EIGEN_SPARSEMATRIXBASE_PLUGIN.

Member Typedef Documentation

typedef internal::conditional<NumTraits<Scalar>::IsComplex, CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen::Transpose<const Derived> >, Transpose<const Derived> >::type AdjointReturnType
typedef EigenBase<Derived> Base
typedef internal::traits<Derived>::Index Index

Reimplemented from EigenBase< Derived >.

typedef internal::add_const_on_value_type_if_arithmetic< typename internal::packet_traits<Scalar>::type >::type PacketReturnType
typedef internal::packet_traits<Scalar>::type PacketScalar
typedef internal::traits<Derived>::Scalar Scalar
typedef internal::traits<Derived>::StorageKind StorageKind

Reimplemented from EigenBase< Derived >.


Member Enumeration Documentation

anonymous enum
Enumerator:
RowsAtCompileTime 

The number of rows at compile-time. This is just a copy of the value provided by the Derived type. If a value is not known at compile-time, it is set to the Dynamic constant.

See also:
MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime
ColsAtCompileTime 

The number of columns at compile-time. This is just a copy of the value provided by the Derived type. If a value is not known at compile-time, it is set to the Dynamic constant.

See also:
MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime
SizeAtCompileTime 

This is equal to the number of coefficients, i.e. the number of rows times the number of columns, or to Dynamic if this is not known at compile-time.

See also:
RowsAtCompileTime, ColsAtCompileTime
MaxRowsAtCompileTime 
MaxColsAtCompileTime 
MaxSizeAtCompileTime 
IsVectorAtCompileTime 

This is set to true if either the number of rows or the number of columns is known at compile-time to be equal to 1. Indeed, in that case, we are dealing with a column-vector (if there is only one column) or with a row-vector (if there is only one row).

Flags 

This stores expression Flags flags which may or may not be inherited by new expressions constructed from this one. See the list of flags.

CoeffReadCost 

This is a rough measure of how expensive it is to read one coefficient from this expression.

IsRowMajor 

Constructor & Destructor Documentation

SparseMatrixBase ( ) [inline]

Member Function Documentation

void addTo ( Dest &  dst) const [inline, inherited]
const AdjointReturnType adjoint ( ) const [inline]
void applyThisOnTheLeft ( Dest &  dst) const [inline, inherited]
void applyThisOnTheRight ( Dest &  dst) const [inline, inherited]
Derived& assign ( const OtherDerived &  other) [inline, protected]
void assignGeneric ( const OtherDerived &  other) [inline, protected]
const CwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived> binaryExpr ( const Eigen::SparseMatrixBase< OtherDerived > &  other,
const CustomBinaryOp &  func = CustomBinaryOp() 
) const [inline]
Returns:
an expression of the difference of *this and other
Note:
If you want to substract a given scalar from all coefficients, see Cwise::operator-().
See also:
class CwiseBinaryOp, operator-=()
Returns:
an expression of the sum of *this and other
Note:
If you want to add a given scalar to all coefficients, see Cwise::operator+().
See also:
class CwiseBinaryOp, operator+=()
Returns:
an expression of a custom coefficient-wise operator func of *this and other

The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)

Here is an example illustrating the use of custom functors:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define a custom template binary functor
template<typename Scalar> struct MakeComplexOp {
  EIGEN_EMPTY_STRUCT_CTOR(MakeComplexOp)
  typedef complex<Scalar> result_type;
  complex<Scalar> operator()(const Scalar& a, const Scalar& b) const { return complex<Scalar>(a,b); }
};

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random(), m2 = Matrix4d::Random();
  cout << m1.binaryExpr(m2, MakeComplexOp<double>()) << endl;
  return 0;
}

Output:

   (0.68,0.271)  (0.823,-0.967) (-0.444,-0.687)   (-0.27,0.998)
 (-0.211,0.435) (-0.605,-0.514)  (0.108,-0.198) (0.0268,-0.563)
 (0.566,-0.717)  (-0.33,-0.726) (-0.0452,-0.74)  (0.904,0.0259)
  (0.597,0.214)   (0.536,0.608)  (0.258,-0.782)   (0.832,0.678)
See also:
class CwiseBinaryOp, operator+(), operator-(), cwiseProduct()
internal::cast_return_type<Derived,const CwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<Derived>::Scalar, NewType>, const Derived> >::type cast ( ) const [inline]
Returns:
an expression of *this with the Scalar type casted to NewScalar.

The template parameter NewScalar is the type we are casting the scalars to.

See also:
class CwiseUnaryOp
SparseInnerVectorSet< Derived, 1 > col ( Index  i)
Returns:
the i-th column of the matrix *this. For column-major matrix only.

References EIGEN_STATIC_ASSERT.

const SparseInnerVectorSet< Derived, 1 > col ( Index  i) const
Returns:
the i-th column of the matrix *this. For column-major matrix only. (read-only version)

References EIGEN_STATIC_ASSERT.

Index cols ( void  ) const [inline]
ConjugateReturnType conjugate ( ) const [inline]
Returns:
an expression of the complex conjugate of *this.
See also:
adjoint()
Derived& const_cast_derived ( ) const [inline, inherited]
const Derived& const_derived ( ) const [inline, inherited]
const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived> cwiseAbs ( ) const [inline]
Returns:
an expression of the coefficient-wise absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,   
     -5, 1, 0;
cout << m.cwiseAbs() << endl;

Output:

2 4 6
5 1 0
See also:
cwiseAbs2()
const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Derived> cwiseAbs2 ( ) const [inline]
Returns:
an expression of the coefficient-wise squared absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,   
     -5, 1, 0;
cout << m.cwiseAbs2() << endl;

Output:

 4 16 36
25  1  0
See also:
cwiseAbs()
const CwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived> cwiseEqual ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const [inline]
Returns:
an expression of the coefficient-wise == operator of *this and other
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
     1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are equal: " << count << endl;

Output:

Comparing m with identity matrix:
1 1
0 1
Number of coefficients that are equal: 3
See also:
cwiseNotEqual(), isApprox(), isMuchSmallerThan()
const CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >, const Derived> cwiseEqual ( const Scalar s) const [inline]
Returns:
an expression of the coefficient-wise == operator of *this and a scalar s
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().
See also:
cwiseEqual(const MatrixBase<OtherDerived> &) const
const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived> cwiseInverse ( ) const [inline]
Returns:
an expression of the coefficient-wise inverse of *this.

Example:

MatrixXd m(2,3);
m << 2, 0.5, 1,   
     3, 0.25, 1;
cout << m.cwiseInverse() << endl;

Output:

0.5 2 1
0.333 4 1
See also:
cwiseProduct()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived> cwiseMax ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const [inline]
Returns:
an expression of the coefficient-wise max of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMax(w) << endl;

Output:

4
3
4
See also:
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const ConstantReturnType> cwiseMax ( const Scalar other) const [inline]
Returns:
an expression of the coefficient-wise max of *this and scalar other
See also:
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived> cwiseMin ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const [inline]
Returns:
an expression of the coefficient-wise min of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMin(w) << endl;

Output:

2
2
3
See also:
class CwiseBinaryOp, max()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const ConstantReturnType> cwiseMin ( const Scalar other) const [inline]
Returns:
an expression of the coefficient-wise min of *this and scalar other
See also:
class CwiseBinaryOp, min()
const CwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived> cwiseNotEqual ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const [inline]
Returns:
an expression of the coefficient-wise != operator of *this and other
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
     1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseNotEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseNotEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are not equal: " << count << endl;

Output:

Comparing m with identity matrix:
0 0
1 0
Number of coefficients that are not equal: 1
See also:
cwiseEqual(), isApprox(), isMuchSmallerThan()
const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE cwiseProduct ( const MatrixBase< OtherDerived > &  other) const [inline]
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived> cwiseQuotient ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const [inline]
Returns:
an expression of the coefficient-wise quotient of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseQuotient(w) << endl;

Output:

0.5
1.5
1.33
See also:
class CwiseBinaryOp, cwiseProduct(), cwiseInverse()
const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived> cwiseSqrt ( ) const [inline]
Returns:
an expression of the coefficient-wise square root of *this.

Example:

Vector3d v(1,2,4);
cout << v.cwiseSqrt() << endl;

Output:

1
1.41
2
See also:
cwisePow(), cwiseSquare()
Derived& derived ( ) [inline, inherited]
Returns:
a reference to the derived object

Referenced by MatrixBase< Derived >::applyOnTheLeft(), MatrixBase< Derived >::applyOnTheRight(), EigenBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::applyThisOnTheLeft(), EigenBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::applyThisOnTheRight(), PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::applyTranspositionOnTheLeft(), PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::applyTranspositionOnTheRight(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::assign(), SparseVector< _Scalar, _Options, _Index >::assign(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::assignGeneric(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::binaryExpr(), TriangularBase< SelfAdjointView< MatrixType, UpLo > >::coeff(), TriangularBase< SelfAdjointView< MatrixType, UpLo > >::coeffRef(), EigenBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::cols(), TriangularBase< SelfAdjointView< MatrixType, UpLo > >::cols(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::cols(), TriangularBase< SelfAdjointView< MatrixType, UpLo > >::copyCoeff(), SparseMatrixBase< Derived >::dot(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::eval(), EigenBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::evalTo(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::evalTo(), PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::indices(), TriangularBase< SelfAdjointView< MatrixType, UpLo > >::innerStride(), PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::inverse(), TriangularView< _MatrixType, _Mode >::lazyAssign(), SluMatrix::Map(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::markAsRValue(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::nonZeros(), RotationBase< Derived, 3 >::operator*(), Translation< _Scalar, _Dim >::operator*(), PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::operator*(), SparseMatrixBase< Derived >::operator*(), Transform< _Scalar, _Dim, _Mode, _Options >::operator*(), Eigen::operator*(), MatrixBase< Derived >::operator*=(), DenseBase< Derived >::operator+=(), SparseMatrixBase< Derived >::operator+=(), DenseBase< Derived >::operator-=(), SparseMatrixBase< Derived >::operator-=(), PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::operator=(), MatrixBase< Derived >::operator=(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::operator=(), TriangularView< _MatrixType, _Mode >::operator=(), DenseBase< Derived >::operator=(), Transform< _Scalar, _Dim, _Mode, _Options >::operator=(), Map< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, IndexType >, _PacketAccess >::operator=(), PlainObjectBase< Matrix< int, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::operator=(), SparseMatrix< Scalar, RowMajor >::operator=(), TriangularBase< SelfAdjointView< MatrixType, UpLo > >::outerStride(), PlainObjectBase< Matrix< int, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::PlainObjectBase(), PlainObjectBase< Matrix< int, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::resizeLike(), EigenBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::rows(), TriangularBase< SelfAdjointView< MatrixType, UpLo > >::rows(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::rows(), SimplicialCholeskyBase< SimplicialLDLT< _MatrixType, _UpLo > >::solve(), PardisoImpl< PardisoLU< MatrixType > >::solve(), IterativeSolverBase< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > >::solve(), CholmodBase< _MatrixType, _UpLo, CholmodSimplicialLLT< _MatrixType, _UpLo > >::solve(), PastixBase< PastixLU< _MatrixType > >::solve(), SparseTriangularView< MatrixType, Mode >::solveInPlace(), SparseMatrix< Scalar, RowMajor >::SparseMatrix(), SparseVector< _Scalar, _Options, _Index >::SparseVector(), TriangularView< _MatrixType, _Mode >::swap(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::toDense(), PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::toDenseMatrix(), Transform< _Scalar, _Dim, _Mode, _Options >::Transform(), PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::transpose(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::transpose(), and SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::twistedBy().

const Derived& derived ( ) const [inline, inherited]
Returns:
a const reference to the derived object
internal::traits< Derived >::Scalar dot ( const MatrixBase< OtherDerived > &  other) const
internal::traits< Derived >::Scalar dot ( const SparseMatrixBase< OtherDerived > &  other) const
const EIGEN_CWISE_PRODUCT_RETURN_TYPE ( Derived  ,
OtherDerived   
) const [inline]
Returns:
an expression of the Schur product (coefficient wise product) of *this and other

Example:

Matrix3i a = Matrix3i::Random(), b = Matrix3i::Random();
Matrix3i c = a.cwiseProduct(b);
cout << "a:\n" << a << "\nb:\n" << b << "\nc:\n" << c << endl;

Output:

a:
 7  6 -3
-2  9  6
 6 -6 -5
b:
 1 -3  9
 0  0  3
 3  9  5
c:
  7 -18 -27
  0   0  18
 18 -54 -25
See also:
class CwiseBinaryOp, cwiseAbs2
const internal::eval<Derived>::type eval ( ) const [inline]
Returns:
the matrix or vector obtained by evaluating this expression.

Notice that in the case of a plain matrix or vector (not an expression) this function just returns a const reference, in order to avoid a useless copy.

void evalTo ( Dest &  dst) const [inline, inherited]
void evalTo ( MatrixBase< DenseDerived > &  dst) const [inline]
const ImagReturnType imag ( ) const [inline]
Returns:
an read-only expression of the imaginary part of *this.
See also:
real()
NonConstImagReturnType imag ( ) [inline]
Returns:
a non const expression of the imaginary part of *this.
See also:
real()
Index innerSize ( ) const [inline]
SparseInnerVectorSet< Derived, 1 > innerVector ( Index  outer)
Returns:
the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major).
const SparseInnerVectorSet< Derived, 1 > innerVector ( Index  outer) const
Returns:
the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major). Read-only.
SparseInnerVectorSet< Derived, Dynamic > innerVectors ( Index  outerStart,
Index  outerSize 
)
Returns:
the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major).
const SparseInnerVectorSet< Derived, Dynamic > innerVectors ( Index  outerStart,
Index  outerSize 
) const
Returns:
the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major). Read-only.
bool isApprox ( const SparseMatrixBase< OtherDerived > &  other,
RealScalar  prec = NumTraits<Scalar>::dummy_precision() 
) const [inline]
bool isApprox ( const MatrixBase< OtherDerived > &  other,
RealScalar  prec = NumTraits<Scalar>::dummy_precision() 
) const [inline]
bool isRValue ( ) const [inline]
bool isVector ( ) const [inline]
Returns:
true if either the number of rows or the number of columns is equal to 1. In other words, this function returns
 rows()==1 || cols()==1 
See also:
rows(), cols(), IsVectorAtCompileTime.
Derived& markAsRValue ( ) [inline]
SparseInnerVectorSet< Derived, Dynamic > middleCols ( Index  start,
Index  size 
)
Returns:
the i-th column of the matrix *this. For column-major matrix only.

References EIGEN_STATIC_ASSERT.

const SparseInnerVectorSet< Derived, Dynamic > middleCols ( Index  start,
Index  size 
) const
Returns:
the i-th column of the matrix *this. For column-major matrix only. (read-only version)

References EIGEN_STATIC_ASSERT.

SparseInnerVectorSet< Derived, Dynamic > middleRows ( Index  start,
Index  size 
)
Returns:
the i-th row of the matrix *this. For row-major matrix only.

References EIGEN_STATIC_ASSERT.

const SparseInnerVectorSet< Derived, Dynamic > middleRows ( Index  start,
Index  size 
) const
Returns:
the i-th row of the matrix *this. For row-major matrix only. (read-only version)

References EIGEN_STATIC_ASSERT.

Index nonZeros ( ) const [inline]
NumTraits< typename internal::traits< Derived >::Scalar >::Real norm ( ) const [inline]

References sqrt().

const ScalarMultipleReturnType operator* ( const Scalar scalar) const [inline]
Returns:
an expression of *this scaled by the scalar factor scalar
const ScalarMultipleReturnType operator* ( const RealScalar &  scalar) const
const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Derived> operator* ( const std::complex< Scalar > &  scalar) const [inline]

Overloaded for efficient real matrix times complex scalar value

const SparseSparseProductReturnType< Derived, OtherDerived >::Type operator* ( const SparseMatrixBase< OtherDerived > &  other) const [inline]
Returns:
an expression of the product of two sparse matrices. By default a conservative product preserving the symbolic non zeros is performed. The automatic pruning of the small values can be achieved by calling the pruned() function in which case a totally different product algorithm is employed:
 C = (A*B).pruned();             // supress numerical zeros (exact)
 C = (A*B).pruned(ref);
 C = (A*B).pruned(ref,epsilon);
where ref is a meaningful non zero reference value.

References EigenBase< Derived >::derived().

const SparseDiagonalProduct< Derived, OtherDerived > operator* ( const DiagonalBase< OtherDerived > &  other) const
const SparseDenseProductReturnType< Derived, OtherDerived >::Type operator* ( const MatrixBase< OtherDerived > &  other) const [inline]

sparse * dense (returns a dense object unless it is an outer product)

Derived & operator*= ( const Scalar other) [inline]
Derived& operator*= ( const SparseMatrixBase< OtherDerived > &  other)
Derived & operator+= ( const SparseMatrixBase< OtherDerived > &  other) [inline]
const CwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<Derived>::Scalar>, const Derived> operator- ( ) const [inline]
Returns:
an expression of the opposite of *this
Derived & operator-= ( const SparseMatrixBase< OtherDerived > &  other) [inline]
const CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>, const Derived> operator/ ( const Scalar scalar) const [inline]
Returns:
an expression of *this divided by the scalar value scalar
Derived & operator/= ( const Scalar other) [inline]
Derived& operator= ( const EigenBase< OtherDerived > &  other) [inline]
Derived& operator= ( const ReturnByValue< OtherDerived > &  other) [inline]
Derived& operator= ( const SparseMatrixBase< OtherDerived > &  other) [inline]
Derived& operator= ( const Derived &  other) [inline]
Derived & operator= ( const SparseSparseProduct< Lhs, Rhs > &  product) [inline]
Index outerSize ( ) const [inline]
RealReturnType real ( ) const [inline]
Returns:
a read-only expression of the real part of *this.
See also:
imag()
NonConstRealReturnType real ( ) [inline]
Returns:
a non const expression of the real part of *this.
See also:
imag()
SparseInnerVectorSet< Derived, 1 > row ( Index  i)
Returns:
the i-th row of the matrix *this. For row-major matrix only.

References EIGEN_STATIC_ASSERT.

const SparseInnerVectorSet< Derived, 1 > row ( Index  i) const
Returns:
the i-th row of the matrix *this. For row-major matrix only. (read-only version)

References EIGEN_STATIC_ASSERT.

Index rows ( void  ) const [inline]
Returns:
the number of rows.
See also:
cols()

Reimplemented from EigenBase< Derived >.

Reimplemented in SparseInnerVectorSet< SparseMatrix< _Scalar, _Options, _Index >, Size >, SparseSparseProduct< LhsNested, RhsNested >, SparseMatrix< _Scalar, _Options, _Index >, SparseMatrix< Scalar >, SparseMatrix< Scalar, ColMajor, Index >, SparseMatrix< Scalar, ColMajor >, SparseMatrix< Scalar, ColMajor, int >, SparseMatrix< Scalar, RowMajor, Index >, SparseMatrix< Scalar, RowMajor >, SparseDenseOuterProduct< Lhs, Rhs, Tr >, SparseInnerVectorSet< MatrixType, Size >, SparseDiagonalProduct< Lhs, Rhs >, SparseVector< _Scalar, _Options, _Index >, MappedSparseMatrix< _Scalar, _Flags, _Index >, SparseView< MatrixType >, and SparseTriangularView< MatrixType, Mode >.

Referenced by SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::assign(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::assignGeneric(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::innerSize(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::isVector(), SluMatrix::Map(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::outerSize(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::size(), SimplicialCholeskyBase< SimplicialLDLT< _MatrixType, _UpLo > >::solve(), PardisoImpl< PardisoLU< MatrixType > >::solve(), IterativeSolverBase< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > >::solve(), CholmodBase< _MatrixType, _UpLo, CholmodSimplicialLLT< _MatrixType, _UpLo > >::solve(), PastixBase< PastixLU< _MatrixType > >::solve(), and SparseTriangularView< MatrixType, Mode >::solveInPlace().

const SparseSelfAdjointView< Derived, UpLo > selfadjointView ( ) const [inline]
SparseSelfAdjointView< Derived, UpLo > selfadjointView ( ) [inline]
Index size ( ) const [inline]
Returns:
the number of coefficients, which is rows()*cols().
See also:
rows(), cols().

Reimplemented from EigenBase< Derived >.

Referenced by SparseMatrixBase< Derived >::dot(), and SparseVector< _Scalar, _Options, _Index >::operator=().

NumTraits< typename internal::traits< Derived >::Scalar >::Real squaredNorm ( ) const [inline]

References real().

SparseInnerVectorSet<Derived,Dynamic> subcols ( Index  start,
Index  size 
)
const SparseInnerVectorSet<Derived,Dynamic> subcols ( Index  start,
Index  size 
) const
SparseInnerVectorSet<Derived,Dynamic> subrows ( Index  start,
Index  size 
)
const SparseInnerVectorSet<Derived,Dynamic> subrows ( Index  start,
Index  size 
) const
void subTo ( Dest &  dst) const [inline, inherited]
internal::traits< Derived >::Scalar sum ( ) const
Transpose<Derived> transpose ( ) [inline]
const Transpose<const Derived> transpose ( ) const [inline]
const SparseTriangularView< Derived, Mode > triangularView ( ) const [inline]
const CwiseUnaryOp<CustomUnaryOp, const Derived> unaryExpr ( const CustomUnaryOp &  func = CustomUnaryOp()) const [inline]

Apply a unary operator coefficient-wise.

Parameters:
[in]funcFunctor implementing the unary operator
Template Parameters:
CustomUnaryOpType of func
Returns:
An expression of a custom coefficient-wise unary operator func of *this

The function ptr_fun() from the C++ standard library can be used to make functors out of normal functions.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define function to be applied coefficient-wise
double ramp(double x)
{
  if (x > 0)
    return x;
  else 
    return 0;
}

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random();
  cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(ptr_fun(ramp)) << endl;
  return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
  0.68  0.823      0      0
     0      0  0.108 0.0268
 0.566      0      0  0.904
 0.597  0.536  0.258  0.832

Genuine functors allow for more possibilities, for instance it may contain a state.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
  CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
  const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
  Scalar m_inf, m_sup;
};

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random();
  cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
  return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See also:
class CwiseUnaryOp, class CwiseBinaryOp
const CwiseUnaryView<CustomViewOp, const Derived> unaryViewExpr ( const CustomViewOp &  func = CustomViewOp()) const [inline]
Returns:
an expression of a custom coefficient-wise unary operator func of *this

The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;

// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
  CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
  const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
  Scalar m_inf, m_sup;
};

int main(int, char**)
{
  Matrix4d m1 = Matrix4d::Random();
  cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
  return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See also:
class CwiseUnaryOp, class CwiseBinaryOp

Friends And Related Function Documentation

const ScalarMultipleReturnType operator* ( const Scalar scalar,
const StorageBaseType matrix 
) [friend]
const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Derived> operator* ( const std::complex< Scalar > &  scalar,
const StorageBaseType matrix 
) [friend]
const SparseDiagonalProduct<OtherDerived,Derived> operator* ( const DiagonalBase< OtherDerived > &  lhs,
const SparseMatrixBase< Derived > &  rhs 
) [friend]
const DenseSparseProductReturnType<OtherDerived,Derived>::Type operator* ( const MatrixBase< OtherDerived > &  lhs,
const Derived &  rhs 
) [friend]

dense * sparse (return a dense object unless it is an outer product)

std::ostream& operator<< ( std::ostream &  s,
const SparseMatrixBase< Derived > &  m 
) [friend]

Member Data Documentation

bool m_isRValue [protected]

The documentation for this class was generated from the following files: