Memory.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
00006 // Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
00007 // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
00008 // Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
00009 //
00010 // Eigen is free software; you can redistribute it and/or
00011 // modify it under the terms of the GNU Lesser General Public
00012 // License as published by the Free Software Foundation; either
00013 // version 3 of the License, or (at your option) any later version.
00014 //
00015 // Alternatively, you can redistribute it and/or
00016 // modify it under the terms of the GNU General Public License as
00017 // published by the Free Software Foundation; either version 2 of
00018 // the License, or (at your option) any later version.
00019 //
00020 // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
00021 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
00022 // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
00023 // GNU General Public License for more details.
00024 //
00025 // You should have received a copy of the GNU Lesser General Public
00026 // License and a copy of the GNU General Public License along with
00027 // Eigen. If not, see <http://www.gnu.org/licenses/>.
00028 
00029 
00030 /*****************************************************************************
00031 *** Platform checks for aligned malloc functions                           ***
00032 *****************************************************************************/
00033 
00034 #ifndef EIGEN_MEMORY_H
00035 #define EIGEN_MEMORY_H
00036 
00037 // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
00038 //   http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
00039 // This is true at least since glibc 2.8.
00040 // This leaves the question how to detect 64-bit. According to this document,
00041 //   http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
00042 // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
00043 // quite safe, at least within the context of glibc, to equate 64-bit with LP64.
00044 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
00045  && defined(__LP64__)
00046   #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
00047 #else
00048   #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
00049 #endif
00050 
00051 // FreeBSD 6 seems to have 16-byte aligned malloc
00052 //   See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
00053 // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
00054 //   See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
00055 #if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
00056   #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
00057 #else
00058   #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
00059 #endif
00060 
00061 #if defined(__APPLE__) \
00062  || defined(_WIN64) \
00063  || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
00064  || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
00065   #define EIGEN_MALLOC_ALREADY_ALIGNED 1
00066 #else
00067   #define EIGEN_MALLOC_ALREADY_ALIGNED 0
00068 #endif
00069 
00070 #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) \
00071  && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
00072   #define EIGEN_HAS_POSIX_MEMALIGN 1
00073 #else
00074   #define EIGEN_HAS_POSIX_MEMALIGN 0
00075 #endif
00076 
00077 #ifdef EIGEN_VECTORIZE_SSE
00078   #define EIGEN_HAS_MM_MALLOC 1
00079 #else
00080   #define EIGEN_HAS_MM_MALLOC 0
00081 #endif
00082 
00083 namespace Eigen {
00084 
00085 namespace internal {
00086 
00087 inline void throw_std_bad_alloc()
00088 {
00089   #ifdef EIGEN_EXCEPTIONS
00090     throw std::bad_alloc();
00091   #else
00092     std::size_t huge = -1;
00093     new int[huge];
00094   #endif
00095 }
00096 
00097 /*****************************************************************************
00098 *** Implementation of handmade aligned functions                           ***
00099 *****************************************************************************/
00100 
00101 /* ----- Hand made implementations of aligned malloc/free and realloc ----- */
00102 
00106 inline void* handmade_aligned_malloc(size_t size)
00107 {
00108   void *original = std::malloc(size+16);
00109   if (original == 0) return 0;
00110   void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
00111   *(reinterpret_cast<void**>(aligned) - 1) = original;
00112   return aligned;
00113 }
00114 
00116 inline void handmade_aligned_free(void *ptr)
00117 {
00118   if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
00119 }
00120 
00126 inline void* handmade_aligned_realloc(void* ptr, size_t size, size_t = 0)
00127 {
00128   if (ptr == 0) return handmade_aligned_malloc(size);
00129   void *original = *(reinterpret_cast<void**>(ptr) - 1);
00130   original = std::realloc(original,size+16);
00131   if (original == 0) return 0;
00132   void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
00133   *(reinterpret_cast<void**>(aligned) - 1) = original;
00134   return aligned;
00135 }
00136 
00137 /*****************************************************************************
00138 *** Implementation of generic aligned realloc (when no realloc can be used)***
00139 *****************************************************************************/
00140 
00141 void* aligned_malloc(size_t size);
00142 void  aligned_free(void *ptr);
00143 
00149 inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
00150 {
00151   if (ptr==0)
00152     return aligned_malloc(size);
00153 
00154   if (size==0)
00155   {
00156     aligned_free(ptr);
00157     return 0;
00158   }
00159 
00160   void* newptr = aligned_malloc(size);
00161   if (newptr == 0)
00162   {
00163     #ifdef EIGEN_HAS_ERRNO
00164     errno = ENOMEM; // according to the standard
00165     #endif
00166     return 0;
00167   }
00168 
00169   if (ptr != 0)
00170   {
00171     std::memcpy(newptr, ptr, (std::min)(size,old_size));
00172     aligned_free(ptr);
00173   }
00174 
00175   return newptr;
00176 }
00177 
00178 /*****************************************************************************
00179 *** Implementation of portable aligned versions of malloc/free/realloc     ***
00180 *****************************************************************************/
00181 
00182 #ifdef EIGEN_NO_MALLOC
00183 inline void check_that_malloc_is_allowed()
00184 {
00185   eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
00186 }
00187 #elif defined EIGEN_RUNTIME_NO_MALLOC
00188 inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
00189 {
00190   static bool value = true;
00191   if (update == 1)
00192     value = new_value;
00193   return value;
00194 }
00195 inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
00196 inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
00197 inline void check_that_malloc_is_allowed()
00198 {
00199   eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
00200 }
00201 #else 
00202 inline void check_that_malloc_is_allowed()
00203 {}
00204 #endif
00205 
00209 inline void* aligned_malloc(size_t size)
00210 {
00211   check_that_malloc_is_allowed();
00212 
00213   void *result;
00214   #if !EIGEN_ALIGN
00215     result = std::malloc(size);
00216   #elif EIGEN_MALLOC_ALREADY_ALIGNED
00217     result = std::malloc(size);
00218   #elif EIGEN_HAS_POSIX_MEMALIGN
00219     if(posix_memalign(&result, 16, size)) result = 0;
00220   #elif EIGEN_HAS_MM_MALLOC
00221     result = _mm_malloc(size, 16);
00222   #elif (defined _MSC_VER)
00223     result = _aligned_malloc(size, 16);
00224   #else
00225     result = handmade_aligned_malloc(size);
00226   #endif
00227 
00228   if(!result && size)
00229     throw_std_bad_alloc();
00230 
00231   return result;
00232 }
00233 
00235 inline void aligned_free(void *ptr)
00236 {
00237   #if !EIGEN_ALIGN
00238     std::free(ptr);
00239   #elif EIGEN_MALLOC_ALREADY_ALIGNED
00240     std::free(ptr);
00241   #elif EIGEN_HAS_POSIX_MEMALIGN
00242     std::free(ptr);
00243   #elif EIGEN_HAS_MM_MALLOC
00244     _mm_free(ptr);
00245   #elif defined(_MSC_VER)
00246     _aligned_free(ptr);
00247   #else
00248     handmade_aligned_free(ptr);
00249   #endif
00250 }
00251 
00257 inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
00258 {
00259   EIGEN_UNUSED_VARIABLE(old_size);
00260 
00261   void *result;
00262 #if !EIGEN_ALIGN
00263   result = std::realloc(ptr,new_size);
00264 #elif EIGEN_MALLOC_ALREADY_ALIGNED
00265   result = std::realloc(ptr,new_size);
00266 #elif EIGEN_HAS_POSIX_MEMALIGN
00267   result = generic_aligned_realloc(ptr,new_size,old_size);
00268 #elif EIGEN_HAS_MM_MALLOC
00269   // The defined(_mm_free) is just here to verify that this MSVC version
00270   // implements _mm_malloc/_mm_free based on the corresponding _aligned_
00271   // functions. This may not always be the case and we just try to be safe.
00272   #if defined(_MSC_VER) && defined(_mm_free)
00273     result = _aligned_realloc(ptr,new_size,16);
00274   #else
00275     result = generic_aligned_realloc(ptr,new_size,old_size);
00276   #endif
00277 #elif defined(_MSC_VER)
00278   result = _aligned_realloc(ptr,new_size,16);
00279 #else
00280   result = handmade_aligned_realloc(ptr,new_size,old_size);
00281 #endif
00282 
00283   if (!result && new_size)
00284     throw_std_bad_alloc();
00285 
00286   return result;
00287 }
00288 
00289 /*****************************************************************************
00290 *** Implementation of conditionally aligned functions                      ***
00291 *****************************************************************************/
00292 
00296 template<bool Align> inline void* conditional_aligned_malloc(size_t size)
00297 {
00298   return aligned_malloc(size);
00299 }
00300 
00301 template<> inline void* conditional_aligned_malloc<false>(size_t size)
00302 {
00303   check_that_malloc_is_allowed();
00304 
00305   void *result = std::malloc(size);
00306   if(!result && size)
00307     throw_std_bad_alloc();
00308   return result;
00309 }
00310 
00312 template<bool Align> inline void conditional_aligned_free(void *ptr)
00313 {
00314   aligned_free(ptr);
00315 }
00316 
00317 template<> inline void conditional_aligned_free<false>(void *ptr)
00318 {
00319   std::free(ptr);
00320 }
00321 
00322 template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
00323 {
00324   return aligned_realloc(ptr, new_size, old_size);
00325 }
00326 
00327 template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
00328 {
00329   return std::realloc(ptr, new_size);
00330 }
00331 
00332 /*****************************************************************************
00333 *** Construction/destruction of array elements                             ***
00334 *****************************************************************************/
00335 
00339 template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
00340 {
00341   for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
00342   return ptr;
00343 }
00344 
00348 template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
00349 {
00350   // always destruct an array starting from the end.
00351   if(ptr)
00352     while(size) ptr[--size].~T();
00353 }
00354 
00355 /*****************************************************************************
00356 *** Implementation of aligned new/delete-like functions                    ***
00357 *****************************************************************************/
00358 
00359 template<typename T>
00360 EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size)
00361 {
00362   if(size > size_t(-1) / sizeof(T))
00363     throw_std_bad_alloc();
00364 }
00365 
00370 template<typename T> inline T* aligned_new(size_t size)
00371 {
00372   check_size_for_overflow<T>(size);
00373   T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
00374   return construct_elements_of_array(result, size);
00375 }
00376 
00377 template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
00378 {
00379   check_size_for_overflow<T>(size);
00380   T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
00381   return construct_elements_of_array(result, size);
00382 }
00383 
00387 template<typename T> inline void aligned_delete(T *ptr, size_t size)
00388 {
00389   destruct_elements_of_array<T>(ptr, size);
00390   aligned_free(ptr);
00391 }
00392 
00396 template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size)
00397 {
00398   destruct_elements_of_array<T>(ptr, size);
00399   conditional_aligned_free<Align>(ptr);
00400 }
00401 
00402 template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
00403 {
00404   check_size_for_overflow<T>(new_size);
00405   check_size_for_overflow<T>(old_size);
00406   if(new_size < old_size)
00407     destruct_elements_of_array(pts+new_size, old_size-new_size);
00408   T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
00409   if(new_size > old_size)
00410     construct_elements_of_array(result+old_size, new_size-old_size);
00411   return result;
00412 }
00413 
00414 
00415 template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
00416 {
00417   check_size_for_overflow<T>(size);
00418   T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
00419   if(NumTraits<T>::RequireInitialization)
00420     construct_elements_of_array(result, size);
00421   return result;
00422 }
00423 
00424 template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size)
00425 {
00426   check_size_for_overflow<T>(new_size);
00427   check_size_for_overflow<T>(old_size);
00428   if(NumTraits<T>::RequireInitialization && (new_size < old_size))
00429     destruct_elements_of_array(pts+new_size, old_size-new_size);
00430   T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
00431   if(NumTraits<T>::RequireInitialization && (new_size > old_size))
00432     construct_elements_of_array(result+old_size, new_size-old_size);
00433   return result;
00434 }
00435 
00436 template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size)
00437 {
00438   if(NumTraits<T>::RequireInitialization)
00439     destruct_elements_of_array<T>(ptr, size);
00440   conditional_aligned_free<Align>(ptr);
00441 }
00442 
00443 /****************************************************************************/
00444 
00461 template<typename Scalar, typename Index>
00462 static inline Index first_aligned(const Scalar* array, Index size)
00463 {
00464   typedef typename packet_traits<Scalar>::type Packet;
00465   enum { PacketSize = packet_traits<Scalar>::size,
00466          PacketAlignedMask = PacketSize-1
00467   };
00468 
00469   if(PacketSize==1)
00470   {
00471     // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements
00472     // of the array have the same alignment.
00473     return 0;
00474   }
00475   else if(size_t(array) & (sizeof(Scalar)-1))
00476   {
00477     // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar.
00478     // Consequently, no element of the array is well aligned.
00479     return size;
00480   }
00481   else
00482   {
00483     return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
00484                            & PacketAlignedMask, size);
00485   }
00486 }
00487 
00488 
00489 // std::copy is much slower than memcpy, so let's introduce a smart_copy which
00490 // use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
00491 template<typename T, bool UseMemcpy> struct smart_copy_helper;
00492 
00493 template<typename T> void smart_copy(const T* start, const T* end, T* target)
00494 {
00495   smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
00496 }
00497 
00498 template<typename T> struct smart_copy_helper<T,true> {
00499   static inline void run(const T* start, const T* end, T* target)
00500   { memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); }
00501 };
00502 
00503 template<typename T> struct smart_copy_helper<T,false> {
00504   static inline void run(const T* start, const T* end, T* target)
00505   { std::copy(start, end, target); }
00506 };
00507 
00508 
00509 /*****************************************************************************
00510 *** Implementation of runtime stack allocation (falling back to malloc)    ***
00511 *****************************************************************************/
00512 
00513 // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
00514 // to the appropriate stack allocation function
00515 #ifndef EIGEN_ALLOCA
00516   #if (defined __linux__)
00517     #define EIGEN_ALLOCA alloca
00518   #elif defined(_MSC_VER)
00519     #define EIGEN_ALLOCA _alloca
00520   #endif
00521 #endif
00522 
00523 // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
00524 // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
00525 template<typename T> class aligned_stack_memory_handler
00526 {
00527   public:
00528     /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
00529      * Note that \a ptr can be 0 regardless of the other parameters.
00530      * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
00531      * In this case, the buffer elements will also be destructed when this handler will be destructed.
00532      * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
00533      **/
00534     aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc)
00535       : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
00536     {
00537       if(NumTraits<T>::RequireInitialization && m_ptr)
00538         Eigen::internal::construct_elements_of_array(m_ptr, size);
00539     }
00540     ~aligned_stack_memory_handler()
00541     {
00542       if(NumTraits<T>::RequireInitialization && m_ptr)
00543         Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
00544       if(m_deallocate)
00545         Eigen::internal::aligned_free(m_ptr);
00546     }
00547   protected:
00548     T* m_ptr;
00549     size_t m_size;
00550     bool m_deallocate;
00551 };
00552 
00553 } // end namespace internal
00554 
00570 #ifdef EIGEN_ALLOCA
00571 
00572   #ifdef __arm__
00573     #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16)
00574   #else
00575     #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
00576   #endif
00577 
00578   #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
00579     Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
00580     TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
00581                : reinterpret_cast<TYPE*>( \
00582                       (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
00583                     : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) );  \
00584     Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
00585 
00586 #else
00587 
00588   #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
00589     Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
00590     TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE));    \
00591     Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
00592     
00593 #endif
00594 
00595 
00596 /*****************************************************************************
00597 *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF]                ***
00598 *****************************************************************************/
00599 
00600 #if EIGEN_ALIGN
00601   #ifdef EIGEN_EXCEPTIONS
00602     #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
00603       void* operator new(size_t size, const std::nothrow_t&) throw() { \
00604         try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
00605         catch (...) { return 0; } \
00606         return 0; \
00607       }
00608   #else
00609     #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
00610       void* operator new(size_t size, const std::nothrow_t&) throw() { \
00611         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
00612       }
00613   #endif
00614 
00615   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
00616       void *operator new(size_t size) { \
00617         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
00618       } \
00619       void *operator new[](size_t size) { \
00620         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
00621       } \
00622       void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
00623       void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
00624       /* in-place new and delete. since (at least afaik) there is no actual   */ \
00625       /* memory allocated we can safely let the default implementation handle */ \
00626       /* this particular case. */ \
00627       static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
00628       void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
00629       /* nothrow-new (returns zero instead of std::bad_alloc) */ \
00630       EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
00631       void operator delete(void *ptr, const std::nothrow_t&) throw() { \
00632         Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
00633       } \
00634       typedef void eigen_aligned_operator_new_marker_type;
00635 #else
00636   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
00637 #endif
00638 
00639 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
00640 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
00641   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0)))
00642 
00643 /****************************************************************************/
00644 
00661 template<class T>
00662 class aligned_allocator
00663 {
00664 public:
00665     typedef size_t    size_type;
00666     typedef std::ptrdiff_t difference_type;
00667     typedef T*        pointer;
00668     typedef const T*  const_pointer;
00669     typedef T&        reference;
00670     typedef const T&  const_reference;
00671     typedef T         value_type;
00672 
00673     template<class U>
00674     struct rebind
00675     {
00676         typedef aligned_allocator<U> other;
00677     };
00678 
00679     pointer address( reference value ) const
00680     {
00681         return &value;
00682     }
00683 
00684     const_pointer address( const_reference value ) const
00685     {
00686         return &value;
00687     }
00688 
00689     aligned_allocator()
00690     {
00691     }
00692 
00693     aligned_allocator( const aligned_allocator& )
00694     {
00695     }
00696 
00697     template<class U>
00698     aligned_allocator( const aligned_allocator<U>& )
00699     {
00700     }
00701 
00702     ~aligned_allocator()
00703     {
00704     }
00705 
00706     size_type max_size() const
00707     {
00708         return (std::numeric_limits<size_type>::max)();
00709     }
00710 
00711     pointer allocate( size_type num, const void* hint = 0 )
00712     {
00713         EIGEN_UNUSED_VARIABLE(hint);
00714         internal::check_size_for_overflow<T>(num);
00715         return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) );
00716     }
00717 
00718     void construct( pointer p, const T& value )
00719     {
00720         ::new( p ) T( value );
00721     }
00722 
00723     // Support for c++11
00724 #if (__cplusplus >= 201103L)
00725     template<typename... Args>
00726     void  construct(pointer p, Args&&... args)
00727     {
00728       ::new(p) T(std::forward<Args>(args)...);
00729     }
00730 #endif
00731 
00732     void destroy( pointer p )
00733     {
00734         p->~T();
00735     }
00736 
00737     void deallocate( pointer p, size_type /*num*/ )
00738     {
00739         internal::aligned_free( p );
00740     }
00741 
00742     bool operator!=(const aligned_allocator<T>& ) const
00743     { return false; }
00744 
00745     bool operator==(const aligned_allocator<T>& ) const
00746     { return true; }
00747 };
00748 
00749 //---------- Cache sizes ----------
00750 
00751 #if !defined(EIGEN_NO_CPUID)
00752 #  if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
00753 #    if defined(__PIC__) && defined(__i386__)
00754        // Case for x86 with PIC
00755 #      define EIGEN_CPUID(abcd,func,id) \
00756          __asm__ __volatile__ ("xchgl %%ebx, %%esi;cpuid; xchgl %%ebx,%%esi": "=a" (abcd[0]), "=S" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
00757 #    else
00758        // Case for x86_64 or x86 w/o PIC
00759 #      define EIGEN_CPUID(abcd,func,id) \
00760          __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id) );
00761 #    endif
00762 #  elif defined(_MSC_VER)
00763 #    if (_MSC_VER > 1500)
00764 #      define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
00765 #    endif
00766 #  endif
00767 #endif
00768 
00769 namespace internal {
00770 
00771 #ifdef EIGEN_CPUID
00772 
00773 inline bool cpuid_is_vendor(int abcd[4], const char* vendor)
00774 {
00775   return abcd[1]==(reinterpret_cast<const int*>(vendor))[0] && abcd[3]==(reinterpret_cast<const int*>(vendor))[1] && abcd[2]==(reinterpret_cast<const int*>(vendor))[2];
00776 }
00777 
00778 inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
00779 {
00780   int abcd[4];
00781   l1 = l2 = l3 = 0;
00782   int cache_id = 0;
00783   int cache_type = 0;
00784   do {
00785     abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
00786     EIGEN_CPUID(abcd,0x4,cache_id);
00787     cache_type  = (abcd[0] & 0x0F) >> 0;
00788     if(cache_type==1||cache_type==3) // data or unified cache
00789     {
00790       int cache_level = (abcd[0] & 0xE0) >> 5;  // A[7:5]
00791       int ways        = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
00792       int partitions  = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
00793       int line_size   = (abcd[1] & 0x00000FFF) >>  0; // B[11:0]
00794       int sets        = (abcd[2]);                    // C[31:0]
00795 
00796       int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
00797 
00798       switch(cache_level)
00799       {
00800         case 1: l1 = cache_size; break;
00801         case 2: l2 = cache_size; break;
00802         case 3: l3 = cache_size; break;
00803         default: break;
00804       }
00805     }
00806     cache_id++;
00807   } while(cache_type>0 && cache_id<16);
00808 }
00809 
00810 inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
00811 {
00812   int abcd[4];
00813   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
00814   l1 = l2 = l3 = 0;
00815   EIGEN_CPUID(abcd,0x00000002,0);
00816   unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
00817   bool check_for_p2_core2 = false;
00818   for(int i=0; i<14; ++i)
00819   {
00820     switch(bytes[i])
00821     {
00822       case 0x0A: l1 = 8; break;   // 0Ah   data L1 cache, 8 KB, 2 ways, 32 byte lines
00823       case 0x0C: l1 = 16; break;  // 0Ch   data L1 cache, 16 KB, 4 ways, 32 byte lines
00824       case 0x0E: l1 = 24; break;  // 0Eh   data L1 cache, 24 KB, 6 ways, 64 byte lines
00825       case 0x10: l1 = 16; break;  // 10h   data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
00826       case 0x15: l1 = 16; break;  // 15h   code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
00827       case 0x2C: l1 = 32; break;  // 2Ch   data L1 cache, 32 KB, 8 ways, 64 byte lines
00828       case 0x30: l1 = 32; break;  // 30h   code L1 cache, 32 KB, 8 ways, 64 byte lines
00829       case 0x60: l1 = 16; break;  // 60h   data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
00830       case 0x66: l1 = 8; break;   // 66h   data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
00831       case 0x67: l1 = 16; break;  // 67h   data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
00832       case 0x68: l1 = 32; break;  // 68h   data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
00833       case 0x1A: l2 = 96; break;   // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
00834       case 0x22: l3 = 512; break;   // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
00835       case 0x23: l3 = 1024; break;   // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
00836       case 0x25: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
00837       case 0x29: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
00838       case 0x39: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
00839       case 0x3A: l2 = 192; break;   // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
00840       case 0x3B: l2 = 128; break;   // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
00841       case 0x3C: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
00842       case 0x3D: l2 = 384; break;   // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
00843       case 0x3E: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
00844       case 0x40: l2 = 0; break;   // no integrated L2 cache (P6 core) or L3 cache (P4 core)
00845       case 0x41: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
00846       case 0x42: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
00847       case 0x43: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
00848       case 0x44: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
00849       case 0x45: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
00850       case 0x46: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
00851       case 0x47: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
00852       case 0x48: l2 = 3072; break;   // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
00853       case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
00854       case 0x4A: l3 = 6144; break;   // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
00855       case 0x4B: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
00856       case 0x4C: l3 = 12288; break;   // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
00857       case 0x4D: l3 = 16384; break;   // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
00858       case 0x4E: l2 = 6144; break;   // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
00859       case 0x78: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
00860       case 0x79: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
00861       case 0x7A: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
00862       case 0x7B: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
00863       case 0x7C: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
00864       case 0x7D: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
00865       case 0x7E: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
00866       case 0x7F: l2 = 512; break;   // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
00867       case 0x80: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
00868       case 0x81: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
00869       case 0x82: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
00870       case 0x83: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
00871       case 0x84: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
00872       case 0x85: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
00873       case 0x86: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
00874       case 0x87: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
00875       case 0x88: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
00876       case 0x89: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
00877       case 0x8A: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
00878       case 0x8D: l3 = 3072; break;   // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
00879 
00880       default: break;
00881     }
00882   }
00883   if(check_for_p2_core2 && l2 == l3)
00884     l3 = 0;
00885   l1 *= 1024;
00886   l2 *= 1024;
00887   l3 *= 1024;
00888 }
00889 
00890 inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
00891 {
00892   if(max_std_funcs>=4)
00893     queryCacheSizes_intel_direct(l1,l2,l3);
00894   else
00895     queryCacheSizes_intel_codes(l1,l2,l3);
00896 }
00897 
00898 inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
00899 {
00900   int abcd[4];
00901   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
00902   EIGEN_CPUID(abcd,0x80000005,0);
00903   l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
00904   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
00905   EIGEN_CPUID(abcd,0x80000006,0);
00906   l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
00907   l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
00908 }
00909 #endif
00910 
00913 inline void queryCacheSizes(int& l1, int& l2, int& l3)
00914 {
00915   #ifdef EIGEN_CPUID
00916   int abcd[4];
00917 
00918   // identify the CPU vendor
00919   EIGEN_CPUID(abcd,0x0,0);
00920   int max_std_funcs = abcd[1];
00921   if(cpuid_is_vendor(abcd,"GenuineIntel"))
00922     queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
00923   else if(cpuid_is_vendor(abcd,"AuthenticAMD") || cpuid_is_vendor(abcd,"AMDisbetter!"))
00924     queryCacheSizes_amd(l1,l2,l3);
00925   else
00926     // by default let's use Intel's API
00927     queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
00928 
00929   // here is the list of other vendors:
00930 //   ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
00931 //   ||cpuid_is_vendor(abcd,"CyrixInstead")
00932 //   ||cpuid_is_vendor(abcd,"CentaurHauls")
00933 //   ||cpuid_is_vendor(abcd,"GenuineTMx86")
00934 //   ||cpuid_is_vendor(abcd,"TransmetaCPU")
00935 //   ||cpuid_is_vendor(abcd,"RiseRiseRise")
00936 //   ||cpuid_is_vendor(abcd,"Geode by NSC")
00937 //   ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
00938 //   ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
00939 //   ||cpuid_is_vendor(abcd,"NexGenDriven")
00940   #else
00941   l1 = l2 = l3 = -1;
00942   #endif
00943 }
00944 
00947 inline int queryL1CacheSize()
00948 {
00949   int l1(-1), l2, l3;
00950   queryCacheSizes(l1,l2,l3);
00951   return l1;
00952 }
00953 
00956 inline int queryTopLevelCacheSize()
00957 {
00958   int l1, l2(-1), l3(-1);
00959   queryCacheSizes(l1,l2,l3);
00960   return (std::max)(l2,l3);
00961 }
00962 
00963 } // end namespace internal
00964 
00965 } // end namespace Eigen
00966 
00967 #endif // EIGEN_MEMORY_H