Public Member Functions | Friends
SparseSelfAdjointView< MatrixType, UpLo > Class Template Reference

Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. More...

+ Inheritance diagram for SparseSelfAdjointView< MatrixType, UpLo >:

List of all members.

Public Member Functions

Index cols () const
template<typename OtherDerived >
SparseSelfAdjointTimeDenseProduct
< MatrixType, OtherDerived,
UpLo > 
operator* (const MatrixBase< OtherDerived > &rhs) const
template<typename DerivedU >
SparseSelfAdjointViewrankUpdate (const SparseMatrixBase< DerivedU > &u, Scalar alpha=Scalar(1))
Index rows () const
SparseSymmetricPermutationProduct
< _MatrixTypeNested, UpLo > 
twistedBy (const PermutationMatrix< Dynamic > &perm) const

Friends

template<typename OtherDerived >
DenseTimeSparseSelfAdjointProduct
< OtherDerived, MatrixType,
UpLo > 
operator* (const MatrixBase< OtherDerived > &lhs, const SparseSelfAdjointView &rhs)

Detailed Description

template<typename MatrixType, unsigned int UpLo>
class Eigen::SparseSelfAdjointView< MatrixType, UpLo >

Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.

Parameters:
MatrixTypethe type of the dense matrix storing the coefficients
UpLocan be either Lower or Upper

This class is an expression of a sefladjoint matrix from a triangular part of a matrix with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() and most of the time this is the only way that it is used.

See also:
SparseMatrixBase::selfadjointView()

Member Function Documentation

Index cols ( void  ) const [inline]
Returns:
the number of columns.
See also:
rows(), ColsAtCompileTime

Reimplemented from EigenBase< SparseSelfAdjointView< MatrixType, UpLo > >.

SparseSelfAdjointTimeDenseProduct<MatrixType,OtherDerived,UpLo> operator* ( const MatrixBase< OtherDerived > &  rhs) const [inline]

Efficient sparse self-adjoint matrix times dense vector/matrix product

SparseSelfAdjointView< MatrixType, UpLo > & rankUpdate ( const SparseMatrixBase< DerivedU > &  u,
Scalar  alpha = Scalar(1) 
)

Perform a symmetric rank K update of the selfadjoint matrix *this: $ this = this + \alpha ( u u^* ) $ where u is a vector or matrix.

Returns:
a reference to *this

Note that it is faster to set alpha=0 than initializing the matrix to zero and then keep the default value alpha=1.

To perform $ this = this + \alpha ( u^* u ) $ you can simply call this function with u.adjoint().

Index rows ( void  ) const [inline]
Returns:
the number of rows.
See also:
cols(), RowsAtCompileTime

Reimplemented from EigenBase< SparseSelfAdjointView< MatrixType, UpLo > >.

SparseSymmetricPermutationProduct<_MatrixTypeNested,UpLo> twistedBy ( const PermutationMatrix< Dynamic > &  perm) const [inline]
Returns:
an expression of P^-1 H P

Friends And Related Function Documentation

DenseTimeSparseSelfAdjointProduct<OtherDerived,MatrixType,UpLo> operator* ( const MatrixBase< OtherDerived > &  lhs,
const SparseSelfAdjointView< MatrixType, UpLo > &  rhs 
) [friend]

Efficient dense vector/matrix times sparse self-adjoint matrix product


The documentation for this class was generated from the following file: