Disk ARchive  2.4.5
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Defines
limitint.hpp
Go to the documentation of this file.
00001 /*********************************************************************/
00002 // dar - disk archive - a backup/restoration program
00003 // Copyright (C) 2002-2052 Denis Corbin
00004 //
00005 // This program is free software; you can redistribute it and/or
00006 // modify it under the terms of the GNU General Public License
00007 // as published by the Free Software Foundation; either version 2
00008 // of the License, or (at your option) any later version.
00009 //
00010 // This program is distributed in the hope that it will be useful,
00011 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00012 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00013 // GNU General Public License for more details.
00014 //
00015 // You should have received a copy of the GNU General Public License
00016 // along with this program; if not, write to the Free Software
00017 // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
00018 //
00019 // to contact the author : http://dar.linux.free.fr/email.html
00020 /*********************************************************************/
00021 // $Id$
00022 //
00023 /*********************************************************************/
00024 
00033 
00034 
00035 #ifndef LIMITINT_HPP
00036 #define LIMITINT_HPP
00037 
00038 #include "../my_config.h"
00039 
00040 extern "C"
00041 {
00042 #if HAVE_SYS_TYPES_H
00043 #include <sys/types.h>
00044 #endif
00045 
00046 #if HAVE_UNISTD_H
00047 #include <unistd.h>
00048 #endif
00049 
00050 #if HAVE_STRING_H
00051 #include <string.h>
00052 #endif
00053 
00054 #if HAVE_STRINGS_H
00055 #include <strings.h>
00056 #endif
00057 } // end extern "C"
00058 
00059 #include <typeinfo>
00060 #include "integers.hpp"
00061 #include "erreurs.hpp"
00062 #include "special_alloc.hpp"
00063 #include "int_tools.hpp"
00064 
00065 
00066 #define ZEROED_SIZE 50
00067 
00068 namespace libdar
00069 {
00070 
00073 
00074 
00075     class generic_file;
00076     class user_interaction;
00077 
00089 
00090     template<class B> class limitint
00091     {
00092     public :
00093 
00094 #if SIZEOF_OFF_T > SIZEOF_TIME_T
00095 #if SIZEOF_OFF_T > SIZEOF_SIZE_T
00096         limitint(off_t a = 0)
00097             { limitint_from(a); };
00098 #else
00099         limitint(size_t a = 0)
00100             { limitint_from(a); };
00101 #endif
00102 #else
00103 #if SIZEOF_TIME_T > SIZEOF_SIZE_T
00104         limitint(time_t a = 0)
00105             { limitint_from(a); };
00106 #else
00107         limitint(size_t a = 0)
00108             { limitint_from(a); };
00109 #endif
00110 #endif
00111 
00112             // read an limitint from a file
00113         limitint(user_interaction & dialog, S_I fd);
00114         limitint(generic_file & x);
00115 
00116         void dump(user_interaction & dialog, S_I fd) const; // write byte sequence to file
00117         void dump(generic_file &x) const; // write byte sequence to file
00118         void read(generic_file &f) { build_from_file(f); };
00119 
00120         limitint & operator += (const limitint & ref);
00121         limitint & operator -= (const limitint & ref);
00122         limitint & operator *= (const limitint & ref);
00123         template <class T> limitint power(const T & exponent) const;
00124         limitint & operator /= (const limitint & ref);
00125         limitint & operator %= (const limitint & ref);
00126         limitint & operator &= (const limitint & ref);
00127         limitint & operator |= (const limitint & ref);
00128         limitint & operator ^= (const limitint & ref);
00129         limitint & operator >>= (U_32 bit);
00130         limitint & operator >>= (limitint bit);
00131         limitint & operator <<= (U_32 bit);
00132         limitint & operator <<= (limitint bit);
00133         limitint operator ++(int a)
00134             { limitint ret = *this; ++(*this); return ret; };
00135         limitint operator --(int a)
00136             { limitint ret = *this; --(*this); return ret; };
00137         limitint & operator ++()
00138             { return *this += 1; };
00139         limitint & operator --()
00140             { return *this -= 1; };
00141 
00142         U_32 operator % (U_32 arg) const;
00143 
00144             // increment the argument up to a legal value for its storage type and decrement the object in consequence
00145             // note that the initial value of the argument is not ignored !
00146             // when the object is null the value of the argument stays the same as before
00147         template <class T>void unstack(T &v)
00148         { limitint_unstack_to(v); }
00149 
00150         limitint get_storage_size() const;
00151             // it returns number of byte of information necessary to store the integer
00152 
00153         unsigned char operator [] (const limitint & position) const;
00154             // return in big endian order the information bytes storing the integer
00155 
00156 
00157         bool operator < (const limitint &x) const { return field < x.field; };
00158         bool operator == (const limitint &x) const { return field == x.field; };
00159         bool operator > (const limitint &x) const { return field > x.field; };
00160         bool operator <= (const limitint &x) const { return field <= x.field; };
00161         bool operator != (const limitint &x) const { return field != x.field; };
00162         bool operator >= (const limitint &x) const { return field >= x.field; };
00163 
00164         static bool is_system_big_endian();
00165 
00166 #ifdef LIBDAR_SPECIAL_ALLOC
00167         USE_SPECIAL_ALLOC(limitint);
00168 #endif
00169 
00170         B debug_get_max() const { return max_value; };
00171         B debug_get_bytesize() const { return bytesize; };
00172 
00173     private :
00174         static const int TG = 4;
00175         static const U_32 sizeof_field = sizeof(B); // number of bytes
00176 
00177         enum endian { big_endian, little_endian, not_initialized };
00178         typedef unsigned char group[TG];
00179 
00180         B field;
00181 
00182         void build_from_file(generic_file & x);
00183         template <class T> void limitint_from(T a);
00184         template <class T> T max_val_of(T x);
00185         template <class T> void limitint_unstack_to(T &a);
00186 
00188             // static statments
00189             //
00190         static endian used_endian;
00191         static const U_I bytesize = sizeof(B);
00192         static const B max_value = ~B(0) > 0 ? ~B(0) : ~(B(1) << (bytesize*8 - 1));
00193         static U_8 zeroed_field[ZEROED_SIZE];
00194 
00195         static void setup_endian();
00196     };
00197 
00198     template <class B> U_8 limitint<B>::zeroed_field[ZEROED_SIZE];
00199 
00200     template <class B> limitint<B> operator + (const limitint<B> &, const limitint<B> &);
00201     template <class B> inline limitint<B> operator + (const limitint<B> & a, U_I b)
00202     { return a + limitint<B>(b); }
00203     template <class B> limitint<B> operator - (const limitint<B> &, const limitint<B> &);
00204     template <class B> inline limitint<B> operator - (const limitint<B> & a, U_I b)
00205     { return a - limitint<B>(b); }
00206     template <class B> limitint<B> operator * (const limitint<B> &, const limitint<B> &);
00207     template <class B> inline limitint<B> operator * (const limitint<B> & a, U_I b)
00208     { return a * limitint<B>(b); }
00209     template <class B> limitint<B> operator / (const limitint<B> &, const limitint<B> &);
00210     template <class B> limitint<B> operator / (const limitint<B> & a, U_I b)
00211     { return a / limitint<B>(b); }
00212     template <class B> limitint<B> operator % (const limitint<B> &, const limitint<B> &);
00213     template <class B> limitint<B> operator >> (const limitint<B> & a, U_32 bit);
00214     template <class B> limitint<B> operator >> (const limitint<B> & a, const limitint<B> & bit);
00215     template <class B> limitint<B> operator << (const limitint<B> & a, U_32 bit);
00216     template <class B> limitint<B> operator << (const limitint<B> & a, const limitint<B> & bit);
00217     template <class B> limitint<B> operator & (const limitint<B> & a, U_32  bit);
00218     template <class B> limitint<B> operator & (const limitint<B> & a, const limitint<B> & bit);
00219     template <class B> limitint<B> operator | (const limitint<B> & a, U_32  bit);
00220     template <class B> limitint<B> operator | (const limitint<B> & a, const limitint<B> & bit);
00221     template <class B> limitint<B> operator ^ (const limitint<B> & a, U_32  bit);
00222     template <class B> limitint<B> operator ^ (const limitint<B> & a, const limitint<B> & bit);
00223 
00224     template <class T> inline void euclide(T a, T b, T & q, T &r)
00225     {
00226 
00227         q = a/b; r = a%b;
00228     }
00229 
00230     template <class B> inline void euclide(limitint<B> a, U_I b, limitint<B> & q, limitint<B> &r)
00231     {
00232         euclide(a, limitint<B>(b), q, r);
00233     }
00234 
00235 #ifndef INFININT_BASE_TYPE
00236 #error INFININT_BASE_TYPE not defined cannot instantiate template
00237 #else
00238     typedef limitint<INFININT_BASE_TYPE> infinint;
00239 #endif
00240 } // end of namespace
00244 
00245 #include "generic_file.hpp"
00246 #include "fichier.hpp"
00247 #include "user_interaction.hpp"
00248 
00249 namespace libdar
00250 {
00251 
00252     template <class B> typename limitint<B>::endian limitint<B>::used_endian = not_initialized;
00253 
00254 
00255 
00256     template <class B> limitint<B>::limitint(user_interaction & dialog, S_I fd)
00257     {
00258         fichier f = fichier(dialog, dup(fd));
00259         build_from_file(f);
00260     }
00261 
00262     template <class B> limitint<B>::limitint(generic_file & x)
00263     {
00264         build_from_file(x);
00265     }
00266 
00267     template <class B> void limitint<B>::dump(user_interaction & dialog, S_I fd) const
00268     {
00269         fichier f = fichier(dialog, dup(fd));
00270         dump(f);
00271     }
00272 
00273     template <class B> void limitint<B>::build_from_file(generic_file & x)
00274     {
00275         unsigned char a;
00276         bool fin = false;
00277         limitint<B> skip = 0;
00278         char *ptr = (char *)&field;
00279         S_I lu;
00280         int_tools_bitfield bf;
00281 
00282         while(!fin)
00283         {
00284             lu = x.read((char *)&a, 1);
00285 
00286             if(lu <= 0)
00287                 throw Erange("limitint::build_from_file(generic_file)", gettext("Reached end of file before all data could be read"));
00288 
00289             if(a == 0)
00290                 ++skip;
00291             else // end of size field
00292             {
00293                     // computing the size to read
00294                 U_I pos = 0;
00295 
00296                 int_tools_expand_byte(a, bf);
00297                 for(S_I i = 0; i < 8; ++i)
00298                     pos += bf[i];
00299                 if(pos != 1)
00300                     throw Erange("limitint::build_from_file(generic_file)", gettext("Badly formed \"infinint\" or not supported format")); // more than 1 bit is set to 1
00301 
00302                 pos = 0;
00303                 while(bf[pos] == 0)
00304                     ++pos;
00305                 pos += 1; // bf starts at zero, but bit zero means 1 TG of length
00306 
00307                 skip *= 8;
00308                 skip += pos;
00309                 skip *= TG;
00310 
00311                 if(skip.field > bytesize)
00312                     throw Elimitint();
00313 
00314                 field = 0; // important to also clear "unread" bytes by this call
00315                 lu = x.read(ptr, skip.field);
00316 
00317                 if(used_endian == not_initialized)
00318                     setup_endian();
00319                 if(used_endian == little_endian)
00320                     int_tools_swap_bytes((unsigned char *)ptr, skip.field);
00321                 else
00322                     field >>= (bytesize - skip.field)*8;
00323                 fin = true;
00324             }
00325         }
00326     }
00327 
00328 
00329     template <class B> void limitint<B>::dump(generic_file & x) const
00330     {
00331         B width = bytesize;
00332         B pos;
00333         unsigned char last_width;
00334         B justification;
00335         S_I direction = +1;
00336         unsigned char *ptr, *fin;
00337 
00338 
00339         if(used_endian == not_initialized)
00340             setup_endian();
00341 
00342         if(used_endian == little_endian)
00343         {
00344             direction = -1;
00345             ptr = (unsigned char *)(&field) + (bytesize - 1);
00346             fin = (unsigned char *)(&field) - 1;
00347         }
00348         else
00349         {
00350             direction = +1;
00351             ptr = (unsigned char *)(&field);
00352             fin = (unsigned char *)(&field) + bytesize;
00353         }
00354 
00355         while(ptr != fin && *ptr == 0)
00356         {
00357             ptr += direction;
00358             --width;
00359         }
00360         if(width == 0)
00361             width = 1; // minimum size of information is 1 byte
00362 
00363             // "width" is the informational field size in byte
00364             // TG is the width in TG, thus the number of bit that must have
00365             // the preamble
00366         euclide(width, (const B)(TG), width, justification);
00367         if(justification != 0)
00368                 // in case we need to add some bytes to have a width multiple of TG
00369             ++width;  // we need then one more group to have a width multiple of TG
00370 
00371         euclide(width, (const B)(8), width, pos);
00372         if(pos == 0)
00373         {
00374             width--; // division is exact, only last bit of the preambule is set
00375             last_width = 0x80 >> 7;
00376                 // as we add the last byte separately width gets shorter by 1 byte
00377         }
00378         else // division non exact, the last_width (last byte), make the rounding
00379         {
00380             U_16 pos_s = (U_16)(0xFFFF & pos);
00381             last_width = 0x80 >> (pos_s - 1);
00382         }
00383 
00384             // now we write the preamble except the last byte. All these are zeros.
00385 
00386         while(width != 0)
00387             if(width > ZEROED_SIZE)
00388             {
00389                 x.write((char *)zeroed_field, ZEROED_SIZE);
00390                 width -= ZEROED_SIZE;
00391             }
00392             else
00393             {
00394                 x.write((char *)zeroed_field, width);
00395                 width = 0;
00396             }
00397 
00398             // now we write the last byte of the preambule, which as only one bit set
00399 
00400         x.write((char *)&last_width, 1);
00401 
00402             // we need now to write some justification byte to have an informational field multiple of TG
00403 
00404         if(justification != 0)
00405         {
00406             justification = TG - justification;
00407             if(justification > ZEROED_SIZE)
00408                 throw SRC_BUG;
00409             else
00410                 x.write((char *)zeroed_field, justification);
00411         }
00412 
00413             // now we continue dumping the informational bytes:
00414         if(ptr == fin) // field is equal to zero
00415             x.write((char *)zeroed_field, 1);
00416         else // we have some bytes to write down
00417             while(ptr != fin)
00418             {
00419                 x.write((char *)ptr, 1);
00420                 ptr += direction;
00421             }
00422     }
00423 
00424     template<class B> limitint<B> & limitint<B>::operator += (const limitint & arg)
00425     {
00426         B res = field + arg.field;
00427         if(res < field || res < arg.field)
00428             throw Elimitint();
00429         else
00430             field = res;
00431 
00432         return *this;
00433     }
00434 
00435     template <class B> limitint<B> & limitint<B>::operator -= (const limitint & arg)
00436     {
00437         if(field < arg.field)
00438             throw Erange("limitint::operator", gettext("Subtracting an \"infinint\" greater than the first, \"infinint\" cannot be negative"));
00439 
00440             // now processing the operation
00441 
00442         field -= arg.field;
00443         return *this;
00444     }
00445 
00446 
00447     template <class B> limitint<B> & limitint<B>::operator *= (const limitint & arg)
00448     {
00449         static const B max_power = bytesize*8 - 1;
00450 
00451         B total = int_tools_higher_power_of_2(field) + int_tools_higher_power_of_2(arg.field) + 1; // for an explaination about "+2" see NOTES
00452         if(total > max_power) // this is a bit too much restrictive, but unless remaking bit by bit, the operation,
00453                 // I don't see how to simply (and fast) know the result has not overflowed.
00454                 // of course, it would be fast and easy to access the CPU flag register to check for overflow,
00455                 // but that would not be portable, and unfortunately I haven't found any standart C++ expression that
00456                 // could transparently access to it.
00457             throw Elimitint();
00458 
00459         total = field*arg.field;
00460         if(field != 0 && arg.field != 0)
00461             if(total < field || total < arg.field)
00462                 throw Elimitint();
00463         field = total;
00464         return *this;
00465     }
00466 
00467     template <class B> template<class T> limitint<B> limitint<B>::power(const T & exponent) const
00468     {
00469         limitint ret = 1;
00470         for(T count = 0; count < exponent; ++count)
00471             ret *= *this;
00472 
00473         return ret;
00474     }
00475 
00476     template <class B> limitint<B> & limitint<B>::operator /= (const limitint & arg)
00477     {
00478         if(arg == 0)
00479             throw Einfinint("limitint.cpp : operator /=", gettext("Division by zero"));
00480 
00481         field /= arg.field;
00482         return *this;
00483     }
00484 
00485     template <class B> limitint<B> & limitint<B>::operator %= (const limitint & arg)
00486     {
00487         if(arg == 0)
00488             throw Einfinint("limitint.cpp : operator %=", gettext("Division by zero"));
00489 
00490         field %= arg.field;
00491         return *this;
00492     }
00493 
00494     template <class B> limitint<B> & limitint<B>::operator >>= (U_32 bit)
00495     {
00496         if(bit >= sizeof_field*8)
00497             field = 0;
00498         else
00499             field >>= bit;
00500         return *this;
00501     }
00502 
00503     template <class B> limitint<B> & limitint<B>::operator >>= (limitint bit)
00504     {
00505         field >>= bit.field;
00506         return *this;
00507     }
00508 
00509     template <class B> limitint<B> & limitint<B>::operator <<= (U_32 bit)
00510     {
00511         if(bit + int_tools_higher_power_of_2(field) >= bytesize*8)
00512             throw Elimitint();
00513         field <<= bit;
00514         return *this;
00515     }
00516 
00517     template <class B> limitint<B> & limitint<B>::operator <<= (limitint bit)
00518     {
00519         if(bit.field + int_tools_higher_power_of_2(field) >= bytesize*8)
00520             throw Elimitint();
00521         field <<= bit.field;
00522         return *this;
00523     }
00524 
00525     template <class B> limitint<B> & limitint<B>::operator &= (const limitint & arg)
00526     {
00527         field &= arg.field;
00528         return *this;
00529     }
00530 
00531     template <class B> limitint<B> & limitint<B>::operator |= (const limitint & arg)
00532     {
00533         field |= arg.field;
00534         return *this;
00535     }
00536 
00537     template <class B> limitint<B> & limitint<B>::operator ^= (const limitint & arg)
00538     {
00539         field ^= arg.field;
00540         return *this;
00541     }
00542 
00543     template <class B> U_32 limitint<B>::operator % (U_32 arg) const
00544     {
00545         return U_32(field % arg);
00546     }
00547 
00548     template <class B> template <class T> void limitint<B>::limitint_from(T a)
00549     {
00550         if(sizeof(a) <= bytesize || a <= (T)(max_value))
00551             field = B(a);
00552         else
00553             throw Elimitint();
00554     }
00555 
00556     template <class B> template <class T> T limitint<B>::max_val_of(T x)
00557     {
00558         x = 0;
00559         x = ~x;
00560 
00561         if(x < 1) // T is a signed integer type, we are not comparing to zero to avoid compiler warning when the template is used against unsigned integers
00562         {
00563             x = 1;
00564             x = int_tools_rotate_right_one_bit(x);
00565             x = ~x;
00566         }
00567 
00568         return x;
00569     }
00570 
00571     template <class B> template <class T> void limitint<B>::limitint_unstack_to(T &a)
00572     {
00573 
00574             // T is supposed to be an unsigned "integer"
00575             // (ie.: sizeof returns the width of the storage bit field  and no sign bit is present)
00576             // Note : static here avoids the recalculation of max_T at each call
00577         static const T max_T = max_val_of(a);
00578         T step = max_T - a;
00579 
00580         if(field < (B)(step) && (T)(field) < step)
00581         {
00582             a += field;
00583             field = 0;
00584         }
00585         else
00586         {
00587             field -= step;
00588             a = max_T;
00589         }
00590     }
00591 
00592     template <class B> limitint<B> limitint<B>::get_storage_size() const
00593     {
00594         B tmp = field;
00595         B ret = 0;
00596 
00597         while(tmp != 0)
00598         {
00599             tmp >>= 8;
00600             ret++;
00601         }
00602 
00603         return limitint<B>(ret);
00604     }
00605 
00606     template <class B> unsigned char limitint<B>::operator [] (const limitint & position) const
00607     {
00608         B tmp = field;
00609         B index = position.field; // C++ has only class protection, not object protection
00610 
00611         while(index > 0)
00612         {
00613             tmp >>= 8;
00614             index--;
00615         }
00616 
00617         return (unsigned char)(tmp & 0xFF);
00618     }
00619 
00620     template <class B> void limitint<B>::setup_endian()
00621     {
00622         if(integers_system_is_big_endian())
00623             used_endian = big_endian;
00624         else
00625             used_endian = little_endian;
00626 
00627         bzero(zeroed_field, ZEROED_SIZE);
00628     }
00629 
00630 
00631     template <class B> bool limitint<B>::is_system_big_endian()
00632     {
00633         if(used_endian == not_initialized)
00634             setup_endian();
00635 
00636         switch(used_endian)
00637         {
00638         case big_endian:
00639             return true;
00640         case little_endian:
00641             return false;
00642         case not_initialized:
00643             throw SRC_BUG;
00644         default:
00645             throw SRC_BUG;
00646         }
00647     }
00648 
00649 
00653 
00654     template <class B> limitint<B> operator + (const limitint<B> & a, const limitint<B> & b)
00655     {
00656         limitint<B> ret = a;
00657         ret += b;
00658 
00659         return ret;
00660     }
00661 
00662     template <class B> limitint<B> operator - (const limitint<B> & a, const limitint<B> & b)
00663     {
00664         limitint<B> ret = a;
00665         ret -= b;
00666 
00667         return ret;
00668     }
00669 
00670     template <class B> limitint<B> operator * (const limitint<B> & a, const limitint<B> & b)
00671     {
00672         limitint<B> ret = a;
00673         ret *= b;
00674 
00675         return ret;
00676     }
00677 
00678     template <class B> limitint<B> operator / (const limitint<B> & a, const limitint<B> & b)
00679     {
00680         limitint<B> ret = a;
00681         ret /= b;
00682 
00683         return ret;
00684     }
00685 
00686     template <class B> limitint<B> operator % (const limitint<B> & a, const limitint<B> & b)
00687     {
00688         limitint<B> ret = a;
00689         ret %= b;
00690 
00691         return ret;
00692     }
00693 
00694     template <class B> limitint<B> operator >> (const limitint<B> & a, U_32 bit)
00695     {
00696         limitint<B> ret = a;
00697         ret >>= bit;
00698         return ret;
00699     }
00700 
00701     template <class B> limitint<B> operator >> (const limitint<B> & a, const limitint<B> & bit)
00702     {
00703         limitint<B> ret = a;
00704         ret >>= bit;
00705         return ret;
00706     }
00707 
00708     template <class B> limitint<B> operator << (const limitint<B> & a, U_32 bit)
00709     {
00710         limitint<B> ret = a;
00711         ret <<= bit;
00712         return ret;
00713     }
00714 
00715     template <class B> limitint<B> operator << (const limitint<B> & a, const limitint<B> & bit)
00716     {
00717         limitint<B> ret = a;
00718         ret <<= bit;
00719         return ret;
00720     }
00721 
00722     template <class B> limitint<B> operator & (const limitint<B> & a, U_32 bit)
00723     {
00724         limitint<B> ret = a;
00725         ret &= bit;
00726         return ret;
00727     }
00728 
00729     template <class B> limitint<B> operator & (const limitint<B> & a, const limitint<B> & bit)
00730     {
00731         limitint<B> ret = a;
00732         ret &= bit;
00733         return ret;
00734     }
00735 
00736     template <class B> limitint<B> operator | (const limitint<B> & a, U_32 bit)
00737     {
00738         limitint<B> ret = a;
00739         ret |= bit;
00740         return ret;
00741     }
00742 
00743     template <class B> limitint<B> operator | (const limitint<B> & a, const limitint<B> & bit)
00744     {
00745         limitint<B> ret = a;
00746         ret |= bit;
00747         return ret;
00748     }
00749 
00750     template <class B> limitint<B> operator ^ (const limitint<B> & a, U_32 bit)
00751     {
00752         limitint<B> ret = a;
00753         ret ^= bit;
00754         return ret;
00755     }
00756 
00757     template <class B> limitint<B> operator ^ (const limitint<B> & a, const limitint<B> & bit)
00758     {
00759         limitint<B> ret = a;
00760         ret ^= bit;
00761         return ret;
00762     }
00763 
00765 
00766 } // end of namespace
00767 
00768 #endif
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Defines