[ VIGRA Homepage | Function Index | Class Index | Namespaces | File List | Main Page ]

Public Member Functions
LeastAngleRegressionOptions Class Reference

Pass options to leastAngleRegression(). More...

#include <vigra/regression.hxx>

List of all members.

Public Member Functions

LeastAngleRegressionOptionslars ()
LeastAngleRegressionOptionslasso ()
 LeastAngleRegressionOptions ()
LeastAngleRegressionOptionsleastSquaresSolutions (bool select=true)
LeastAngleRegressionOptionsmaxSolutionCount (unsigned int n)
LeastAngleRegressionOptionsnnlasso ()
LeastAngleRegressionOptionssetMode (std::string mode)

Detailed Description

Pass options to leastAngleRegression().

#include <vigra/regression.hxx> Namespaces: vigra and vigra::linalg


Constructor & Destructor Documentation

Initialize all options with default values.


Member Function Documentation

LeastAngleRegressionOptions& maxSolutionCount ( unsigned int  n)

Maximum number of solutions to be computed.

       If \a n is 0 (the default), the number of solutions is determined by the length
       of the solution array. Otherwise, the minimum of maxSolutionCount() and that
       length is taken.<br>
       Default: 0 (use length of solution array)
LeastAngleRegressionOptions& setMode ( std::string  mode)

Set the mode of the algorithm.

       Mode must be one of "lars", "lasso", "nnlasso". The function just calls
       the member function of the corresponding name to set the mode.

       Default: "lasso"

Use the plain LARS algorithm.

       Default: inactive

Use the LASSO modification of the LARS algorithm.

       This allows features to be removed from the active set under certain conditions.<br>
       Default: active

Use the non-negative LASSO modification of the LARS algorithm.

       This enforces all non-zero entries in the solution to be positive.<br>
       Default: inactive
LeastAngleRegressionOptions& leastSquaresSolutions ( bool  select = true)

Compute least squares solutions.

       Use least angle regression to determine active sets, but
       return least squares solutions for the features in each active set,
       instead of constrained solutions.<br>
       Default: <tt>true</tt>

The documentation for this class was generated from the following file:

© Ullrich Köthe (ullrich.koethe@iwr.uni-heidelberg.de)
Heidelberg Collaboratory for Image Processing, University of Heidelberg, Germany

html generated using doxygen and Python
vigra 1.7.1 (Thu Jun 14 2012)