1 : // Deque implementation -*- C++ -*-
2 :
3 : // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 : // Free Software Foundation, Inc.
5 : //
6 : // This file is part of the GNU ISO C++ Library. This library is free
7 : // software; you can redistribute it and/or modify it under the
8 : // terms of the GNU General Public License as published by the
9 : // Free Software Foundation; either version 2, or (at your option)
10 : // any later version.
11 :
12 : // This library is distributed in the hope that it will be useful,
13 : // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 : // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 : // GNU General Public License for more details.
16 :
17 : // You should have received a copy of the GNU General Public License along
18 : // with this library; see the file COPYING. If not, write to the Free
19 : // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20 : // USA.
21 :
22 : // As a special exception, you may use this file as part of a free software
23 : // library without restriction. Specifically, if other files instantiate
24 : // templates or use macros or inline functions from this file, or you compile
25 : // this file and link it with other files to produce an executable, this
26 : // file does not by itself cause the resulting executable to be covered by
27 : // the GNU General Public License. This exception does not however
28 : // invalidate any other reasons why the executable file might be covered by
29 : // the GNU General Public License.
30 :
31 : /*
32 : *
33 : * Copyright (c) 1994
34 : * Hewlett-Packard Company
35 : *
36 : * Permission to use, copy, modify, distribute and sell this software
37 : * and its documentation for any purpose is hereby granted without fee,
38 : * provided that the above copyright notice appear in all copies and
39 : * that both that copyright notice and this permission notice appear
40 : * in supporting documentation. Hewlett-Packard Company makes no
41 : * representations about the suitability of this software for any
42 : * purpose. It is provided "as is" without express or implied warranty.
43 : *
44 : *
45 : * Copyright (c) 1997
46 : * Silicon Graphics Computer Systems, Inc.
47 : *
48 : * Permission to use, copy, modify, distribute and sell this software
49 : * and its documentation for any purpose is hereby granted without fee,
50 : * provided that the above copyright notice appear in all copies and
51 : * that both that copyright notice and this permission notice appear
52 : * in supporting documentation. Silicon Graphics makes no
53 : * representations about the suitability of this software for any
54 : * purpose. It is provided "as is" without express or implied warranty.
55 : */
56 :
57 : /** @file stl_deque.h
58 : * This is an internal header file, included by other library headers.
59 : * You should not attempt to use it directly.
60 : */
61 :
62 : #ifndef _STL_DEQUE_H
63 : #define _STL_DEQUE_H 1
64 :
65 : #include <bits/concept_check.h>
66 : #include <bits/stl_iterator_base_types.h>
67 : #include <bits/stl_iterator_base_funcs.h>
68 :
69 : _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
70 :
71 : /**
72 : * @brief This function controls the size of memory nodes.
73 : * @param size The size of an element.
74 : * @return The number (not byte size) of elements per node.
75 : *
76 : * This function started off as a compiler kludge from SGI, but seems to
77 : * be a useful wrapper around a repeated constant expression. The '512' is
78 : * tunable (and no other code needs to change), but no investigation has
79 : * been done since inheriting the SGI code.
80 : */
81 : inline size_t
82 7753 : __deque_buf_size(size_t __size)
83 7753 : { return __size < 512 ? size_t(512 / __size) : size_t(1); }
84 :
85 :
86 : /**
87 : * @brief A deque::iterator.
88 : *
89 : * Quite a bit of intelligence here. Much of the functionality of
90 : * deque is actually passed off to this class. A deque holds two
91 : * of these internally, marking its valid range. Access to
92 : * elements is done as offsets of either of those two, relying on
93 : * operator overloading in this class.
94 : *
95 : * All the functions are op overloads except for _M_set_node.
96 : */
97 : template<typename _Tp, typename _Ref, typename _Ptr>
98 : struct _Deque_iterator
99 : {
100 : typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
101 : typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
102 :
103 7595 : static size_t _S_buffer_size()
104 7595 : { return __deque_buf_size(sizeof(_Tp)); }
105 :
106 : typedef std::random_access_iterator_tag iterator_category;
107 : typedef _Tp value_type;
108 : typedef _Ptr pointer;
109 : typedef _Ref reference;
110 : typedef size_t size_type;
111 : typedef ptrdiff_t difference_type;
112 : typedef _Tp** _Map_pointer;
113 : typedef _Deque_iterator _Self;
114 :
115 : _Tp* _M_cur;
116 : _Tp* _M_first;
117 : _Tp* _M_last;
118 : _Map_pointer _M_node;
119 :
120 : _Deque_iterator(_Tp* __x, _Map_pointer __y)
121 : : _M_cur(__x), _M_first(*__y),
122 : _M_last(*__y + _S_buffer_size()), _M_node(__y) { }
123 :
124 68 : _Deque_iterator()
125 68 : : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) { }
126 :
127 45179 : _Deque_iterator(const iterator& __x)
128 : : _M_cur(__x._M_cur), _M_first(__x._M_first),
129 45179 : _M_last(__x._M_last), _M_node(__x._M_node) { }
130 :
131 : reference
132 24883 : operator*() const
133 24883 : { return *_M_cur; }
134 :
135 : pointer
136 : operator->() const
137 : { return _M_cur; }
138 :
139 : _Self&
140 24754 : operator++()
141 : {
142 24754 : ++_M_cur;
143 24754 : if (_M_cur == _M_last)
144 : {
145 29 : _M_set_node(_M_node + 1);
146 29 : _M_cur = _M_first;
147 : }
148 24754 : return *this;
149 : }
150 :
151 : _Self
152 : operator++(int)
153 : {
154 : _Self __tmp = *this;
155 : ++*this;
156 : return __tmp;
157 : }
158 :
159 : _Self&
160 39 : operator--()
161 : {
162 39 : if (_M_cur == _M_first)
163 : {
164 0 : _M_set_node(_M_node - 1);
165 0 : _M_cur = _M_last;
166 : }
167 39 : --_M_cur;
168 39 : return *this;
169 : }
170 :
171 : _Self
172 : operator--(int)
173 : {
174 : _Self __tmp = *this;
175 : --*this;
176 : return __tmp;
177 : }
178 :
179 : _Self&
180 180 : operator+=(difference_type __n)
181 : {
182 180 : const difference_type __offset = __n + (_M_cur - _M_first);
183 180 : if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
184 178 : _M_cur += __n;
185 : else
186 : {
187 : const difference_type __node_offset =
188 : __offset > 0 ? __offset / difference_type(_S_buffer_size())
189 : : -difference_type((-__offset - 1)
190 2 : / _S_buffer_size()) - 1;
191 2 : _M_set_node(_M_node + __node_offset);
192 2 : _M_cur = _M_first + (__offset - __node_offset
193 : * difference_type(_S_buffer_size()));
194 : }
195 180 : return *this;
196 : }
197 :
198 : _Self
199 180 : operator+(difference_type __n) const
200 : {
201 180 : _Self __tmp = *this;
202 180 : return __tmp += __n;
203 : }
204 :
205 : _Self&
206 0 : operator-=(difference_type __n)
207 0 : { return *this += -__n; }
208 :
209 : _Self
210 0 : operator-(difference_type __n) const
211 : {
212 0 : _Self __tmp = *this;
213 0 : return __tmp -= __n;
214 : }
215 :
216 : reference
217 : operator[](difference_type __n) const
218 : { return *(*this + __n); }
219 :
220 : /**
221 : * Prepares to traverse new_node. Sets everything except
222 : * _M_cur, which should therefore be set by the caller
223 : * immediately afterwards, based on _M_first and _M_last.
224 : */
225 : void
226 112 : _M_set_node(_Map_pointer __new_node)
227 : {
228 112 : _M_node = __new_node;
229 112 : _M_first = *__new_node;
230 112 : _M_last = _M_first + difference_type(_S_buffer_size());
231 112 : }
232 : };
233 :
234 : // Note: we also provide overloads whose operands are of the same type in
235 : // order to avoid ambiguous overload resolution when std::rel_ops operators
236 : // are in scope (for additional details, see libstdc++/3628)
237 : template<typename _Tp, typename _Ref, typename _Ptr>
238 : inline bool
239 : operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
240 19443 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
241 19443 : { return __x._M_cur == __y._M_cur; }
242 :
243 : template<typename _Tp, typename _RefL, typename _PtrL,
244 : typename _RefR, typename _PtrR>
245 : inline bool
246 : operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
247 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
248 : { return __x._M_cur == __y._M_cur; }
249 :
250 : template<typename _Tp, typename _Ref, typename _Ptr>
251 : inline bool
252 : operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
253 12091 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
254 12091 : { return !(__x == __y); }
255 :
256 : template<typename _Tp, typename _RefL, typename _PtrL,
257 : typename _RefR, typename _PtrR>
258 : inline bool
259 : operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
260 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
261 : { return !(__x == __y); }
262 :
263 : template<typename _Tp, typename _Ref, typename _Ptr>
264 : inline bool
265 : operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
266 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
267 : { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
268 : : (__x._M_node < __y._M_node); }
269 :
270 : template<typename _Tp, typename _RefL, typename _PtrL,
271 : typename _RefR, typename _PtrR>
272 : inline bool
273 : operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
274 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
275 : { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
276 : : (__x._M_node < __y._M_node); }
277 :
278 : template<typename _Tp, typename _Ref, typename _Ptr>
279 : inline bool
280 : operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
281 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
282 : { return __y < __x; }
283 :
284 : template<typename _Tp, typename _RefL, typename _PtrL,
285 : typename _RefR, typename _PtrR>
286 : inline bool
287 : operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
288 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
289 : { return __y < __x; }
290 :
291 : template<typename _Tp, typename _Ref, typename _Ptr>
292 : inline bool
293 : operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
294 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
295 : { return !(__y < __x); }
296 :
297 : template<typename _Tp, typename _RefL, typename _PtrL,
298 : typename _RefR, typename _PtrR>
299 : inline bool
300 : operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
301 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
302 : { return !(__y < __x); }
303 :
304 : template<typename _Tp, typename _Ref, typename _Ptr>
305 : inline bool
306 : operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
307 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
308 : { return !(__x < __y); }
309 :
310 : template<typename _Tp, typename _RefL, typename _PtrL,
311 : typename _RefR, typename _PtrR>
312 : inline bool
313 : operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
314 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
315 : { return !(__x < __y); }
316 :
317 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
318 : // According to the resolution of DR179 not only the various comparison
319 : // operators but also operator- must accept mixed iterator/const_iterator
320 : // parameters.
321 : template<typename _Tp, typename _Ref, typename _Ptr>
322 : inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
323 : operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
324 7299 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
325 : {
326 : return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
327 : (_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
328 : * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
329 7299 : + (__y._M_last - __y._M_cur);
330 : }
331 :
332 : template<typename _Tp, typename _RefL, typename _PtrL,
333 : typename _RefR, typename _PtrR>
334 : inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
335 : operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
336 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
337 : {
338 : return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
339 : (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
340 : * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
341 : + (__y._M_last - __y._M_cur);
342 : }
343 :
344 : template<typename _Tp, typename _Ref, typename _Ptr>
345 : inline _Deque_iterator<_Tp, _Ref, _Ptr>
346 : operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
347 : { return __x + __n; }
348 :
349 : template<typename _Tp>
350 : void
351 : fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>& __first,
352 : const _Deque_iterator<_Tp, _Tp&, _Tp*>& __last, const _Tp& __value);
353 :
354 : /**
355 : * Deque base class. This class provides the unified face for %deque's
356 : * allocation. This class's constructor and destructor allocate and
357 : * deallocate (but do not initialize) storage. This makes %exception
358 : * safety easier.
359 : *
360 : * Nothing in this class ever constructs or destroys an actual Tp element.
361 : * (Deque handles that itself.) Only/All memory management is performed
362 : * here.
363 : */
364 : template<typename _Tp, typename _Alloc>
365 : class _Deque_base
366 : {
367 : public:
368 : typedef _Alloc allocator_type;
369 :
370 : allocator_type
371 : get_allocator() const
372 : { return allocator_type(_M_get_Tp_allocator()); }
373 :
374 : typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
375 : typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
376 :
377 21 : _Deque_base()
378 21 : : _M_impl()
379 21 : { _M_initialize_map(0); }
380 :
381 13 : _Deque_base(const allocator_type& __a, size_t __num_elements)
382 13 : : _M_impl(__a)
383 13 : { _M_initialize_map(__num_elements); }
384 :
385 : _Deque_base(const allocator_type& __a)
386 : : _M_impl(__a)
387 : { }
388 :
389 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
390 : _Deque_base(_Deque_base&& __x)
391 : : _M_impl(__x._M_get_Tp_allocator())
392 : {
393 : _M_initialize_map(0);
394 : if (__x._M_impl._M_map)
395 : {
396 : std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
397 : std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
398 : std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
399 : std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
400 : }
401 : }
402 : #endif
403 :
404 : ~_Deque_base();
405 :
406 : protected:
407 : //This struct encapsulates the implementation of the std::deque
408 : //standard container and at the same time makes use of the EBO
409 : //for empty allocators.
410 : typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
411 :
412 : typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
413 :
414 : struct _Deque_impl
415 : : public _Tp_alloc_type
416 30 : {
417 : _Tp** _M_map;
418 : size_t _M_map_size;
419 : iterator _M_start;
420 : iterator _M_finish;
421 :
422 21 : _Deque_impl()
423 : : _Tp_alloc_type(), _M_map(0), _M_map_size(0),
424 21 : _M_start(), _M_finish()
425 21 : { }
426 :
427 13 : _Deque_impl(const _Tp_alloc_type& __a)
428 : : _Tp_alloc_type(__a), _M_map(0), _M_map_size(0),
429 13 : _M_start(), _M_finish()
430 13 : { }
431 : };
432 :
433 : _Tp_alloc_type&
434 1085 : _M_get_Tp_allocator()
435 1085 : { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
436 :
437 : const _Tp_alloc_type&
438 77 : _M_get_Tp_allocator() const
439 77 : { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
440 :
441 : _Map_alloc_type
442 64 : _M_get_map_allocator() const
443 64 : { return _Map_alloc_type(_M_get_Tp_allocator()); }
444 :
445 : _Tp*
446 47 : _M_allocate_node()
447 : {
448 47 : return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
449 : }
450 :
451 : void
452 43 : _M_deallocate_node(_Tp* __p)
453 : {
454 43 : _M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
455 43 : }
456 :
457 : _Tp**
458 34 : _M_allocate_map(size_t __n)
459 34 : { return _M_get_map_allocator().allocate(__n); }
460 :
461 : void
462 30 : _M_deallocate_map(_Tp** __p, size_t __n)
463 30 : { _M_get_map_allocator().deallocate(__p, __n); }
464 :
465 : protected:
466 : void _M_initialize_map(size_t);
467 : void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
468 : void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
469 : enum { _S_initial_map_size = 8 };
470 :
471 : _Deque_impl _M_impl;
472 : };
473 :
474 : template<typename _Tp, typename _Alloc>
475 : _Deque_base<_Tp, _Alloc>::
476 30 : ~_Deque_base()
477 : {
478 30 : if (this->_M_impl._M_map)
479 : {
480 30 : _M_destroy_nodes(this->_M_impl._M_start._M_node,
481 : this->_M_impl._M_finish._M_node + 1);
482 30 : _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
483 : }
484 30 : }
485 :
486 : /**
487 : * @brief Layout storage.
488 : * @param num_elements The count of T's for which to allocate space
489 : * at first.
490 : * @return Nothing.
491 : *
492 : * The initial underlying memory layout is a bit complicated...
493 : */
494 : template<typename _Tp, typename _Alloc>
495 : void
496 : _Deque_base<_Tp, _Alloc>::
497 34 : _M_initialize_map(size_t __num_elements)
498 : {
499 : const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
500 34 : + 1);
501 :
502 34 : this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
503 : size_t(__num_nodes + 2));
504 34 : this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
505 :
506 : // For "small" maps (needing less than _M_map_size nodes), allocation
507 : // starts in the middle elements and grows outwards. So nstart may be
508 : // the beginning of _M_map, but for small maps it may be as far in as
509 : // _M_map+3.
510 :
511 : _Tp** __nstart = (this->_M_impl._M_map
512 34 : + (this->_M_impl._M_map_size - __num_nodes) / 2);
513 34 : _Tp** __nfinish = __nstart + __num_nodes;
514 :
515 : try
516 34 : { _M_create_nodes(__nstart, __nfinish); }
517 0 : catch(...)
518 : {
519 0 : _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
520 0 : this->_M_impl._M_map = 0;
521 0 : this->_M_impl._M_map_size = 0;
522 0 : __throw_exception_again;
523 : }
524 :
525 34 : this->_M_impl._M_start._M_set_node(__nstart);
526 34 : this->_M_impl._M_finish._M_set_node(__nfinish - 1);
527 34 : this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
528 34 : this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
529 : + __num_elements
530 : % __deque_buf_size(sizeof(_Tp)));
531 34 : }
532 :
533 : template<typename _Tp, typename _Alloc>
534 : void
535 : _Deque_base<_Tp, _Alloc>::
536 34 : _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
537 : {
538 : _Tp** __cur;
539 : try
540 : {
541 68 : for (__cur = __nstart; __cur < __nfinish; ++__cur)
542 34 : *__cur = this->_M_allocate_node();
543 : }
544 0 : catch(...)
545 : {
546 0 : _M_destroy_nodes(__nstart, __cur);
547 0 : __throw_exception_again;
548 : }
549 34 : }
550 :
551 : template<typename _Tp, typename _Alloc>
552 : void
553 : _Deque_base<_Tp, _Alloc>::
554 1046 : _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
555 : {
556 1089 : for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
557 43 : _M_deallocate_node(*__n);
558 1046 : }
559 :
560 : /**
561 : * @brief A standard container using fixed-size memory allocation and
562 : * constant-time manipulation of elements at either end.
563 : *
564 : * @ingroup Containers
565 : * @ingroup Sequences
566 : *
567 : * Meets the requirements of a <a href="tables.html#65">container</a>, a
568 : * <a href="tables.html#66">reversible container</a>, and a
569 : * <a href="tables.html#67">sequence</a>, including the
570 : * <a href="tables.html#68">optional sequence requirements</a>.
571 : *
572 : * In previous HP/SGI versions of deque, there was an extra template
573 : * parameter so users could control the node size. This extension turned
574 : * out to violate the C++ standard (it can be detected using template
575 : * template parameters), and it was removed.
576 : *
577 : * Here's how a deque<Tp> manages memory. Each deque has 4 members:
578 : *
579 : * - Tp** _M_map
580 : * - size_t _M_map_size
581 : * - iterator _M_start, _M_finish
582 : *
583 : * map_size is at least 8. %map is an array of map_size
584 : * pointers-to-"nodes". (The name %map has nothing to do with the
585 : * std::map class, and "nodes" should not be confused with
586 : * std::list's usage of "node".)
587 : *
588 : * A "node" has no specific type name as such, but it is referred
589 : * to as "node" in this file. It is a simple array-of-Tp. If Tp
590 : * is very large, there will be one Tp element per node (i.e., an
591 : * "array" of one). For non-huge Tp's, node size is inversely
592 : * related to Tp size: the larger the Tp, the fewer Tp's will fit
593 : * in a node. The goal here is to keep the total size of a node
594 : * relatively small and constant over different Tp's, to improve
595 : * allocator efficiency.
596 : *
597 : * Not every pointer in the %map array will point to a node. If
598 : * the initial number of elements in the deque is small, the
599 : * /middle/ %map pointers will be valid, and the ones at the edges
600 : * will be unused. This same situation will arise as the %map
601 : * grows: available %map pointers, if any, will be on the ends. As
602 : * new nodes are created, only a subset of the %map's pointers need
603 : * to be copied "outward".
604 : *
605 : * Class invariants:
606 : * - For any nonsingular iterator i:
607 : * - i.node points to a member of the %map array. (Yes, you read that
608 : * correctly: i.node does not actually point to a node.) The member of
609 : * the %map array is what actually points to the node.
610 : * - i.first == *(i.node) (This points to the node (first Tp element).)
611 : * - i.last == i.first + node_size
612 : * - i.cur is a pointer in the range [i.first, i.last). NOTE:
613 : * the implication of this is that i.cur is always a dereferenceable
614 : * pointer, even if i is a past-the-end iterator.
615 : * - Start and Finish are always nonsingular iterators. NOTE: this
616 : * means that an empty deque must have one node, a deque with <N
617 : * elements (where N is the node buffer size) must have one node, a
618 : * deque with N through (2N-1) elements must have two nodes, etc.
619 : * - For every node other than start.node and finish.node, every
620 : * element in the node is an initialized object. If start.node ==
621 : * finish.node, then [start.cur, finish.cur) are initialized
622 : * objects, and the elements outside that range are uninitialized
623 : * storage. Otherwise, [start.cur, start.last) and [finish.first,
624 : * finish.cur) are initialized objects, and [start.first, start.cur)
625 : * and [finish.cur, finish.last) are uninitialized storage.
626 : * - [%map, %map + map_size) is a valid, non-empty range.
627 : * - [start.node, finish.node] is a valid range contained within
628 : * [%map, %map + map_size).
629 : * - A pointer in the range [%map, %map + map_size) points to an allocated
630 : * node if and only if the pointer is in the range
631 : * [start.node, finish.node].
632 : *
633 : * Here's the magic: nothing in deque is "aware" of the discontiguous
634 : * storage!
635 : *
636 : * The memory setup and layout occurs in the parent, _Base, and the iterator
637 : * class is entirely responsible for "leaping" from one node to the next.
638 : * All the implementation routines for deque itself work only through the
639 : * start and finish iterators. This keeps the routines simple and sane,
640 : * and we can use other standard algorithms as well.
641 : */
642 : template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
643 : class deque : protected _Deque_base<_Tp, _Alloc>
644 : {
645 : // concept requirements
646 : typedef typename _Alloc::value_type _Alloc_value_type;
647 : __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
648 : __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
649 :
650 : typedef _Deque_base<_Tp, _Alloc> _Base;
651 : typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
652 :
653 : public:
654 : typedef _Tp value_type;
655 : typedef typename _Tp_alloc_type::pointer pointer;
656 : typedef typename _Tp_alloc_type::const_pointer const_pointer;
657 : typedef typename _Tp_alloc_type::reference reference;
658 : typedef typename _Tp_alloc_type::const_reference const_reference;
659 : typedef typename _Base::iterator iterator;
660 : typedef typename _Base::const_iterator const_iterator;
661 : typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
662 : typedef std::reverse_iterator<iterator> reverse_iterator;
663 : typedef size_t size_type;
664 : typedef ptrdiff_t difference_type;
665 : typedef _Alloc allocator_type;
666 :
667 : protected:
668 : typedef pointer* _Map_pointer;
669 :
670 0 : static size_t _S_buffer_size()
671 0 : { return __deque_buf_size(sizeof(_Tp)); }
672 :
673 : // Functions controlling memory layout, and nothing else.
674 : using _Base::_M_initialize_map;
675 : using _Base::_M_create_nodes;
676 : using _Base::_M_destroy_nodes;
677 : using _Base::_M_allocate_node;
678 : using _Base::_M_deallocate_node;
679 : using _Base::_M_allocate_map;
680 : using _Base::_M_deallocate_map;
681 : using _Base::_M_get_Tp_allocator;
682 :
683 : /**
684 : * A total of four data members accumulated down the hierarchy.
685 : * May be accessed via _M_impl.*
686 : */
687 : using _Base::_M_impl;
688 :
689 : public:
690 : // [23.2.1.1] construct/copy/destroy
691 : // (assign() and get_allocator() are also listed in this section)
692 : /**
693 : * @brief Default constructor creates no elements.
694 : */
695 21 : deque()
696 21 : : _Base() { }
697 :
698 : /**
699 : * @brief Creates a %deque with no elements.
700 : * @param a An allocator object.
701 : */
702 : explicit
703 : deque(const allocator_type& __a)
704 : : _Base(__a, 0) { }
705 :
706 : /**
707 : * @brief Creates a %deque with copies of an exemplar element.
708 : * @param n The number of elements to initially create.
709 : * @param value An element to copy.
710 : * @param a An allocator.
711 : *
712 : * This constructor fills the %deque with @a n copies of @a value.
713 : */
714 : explicit
715 : deque(size_type __n, const value_type& __value = value_type(),
716 : const allocator_type& __a = allocator_type())
717 : : _Base(__a, __n)
718 : { _M_fill_initialize(__value); }
719 :
720 : /**
721 : * @brief %Deque copy constructor.
722 : * @param x A %deque of identical element and allocator types.
723 : *
724 : * The newly-created %deque uses a copy of the allocation object used
725 : * by @a x.
726 : */
727 13 : deque(const deque& __x)
728 13 : : _Base(__x._M_get_Tp_allocator(), __x.size())
729 13 : { std::__uninitialized_copy_a(__x.begin(), __x.end(),
730 : this->_M_impl._M_start,
731 13 : _M_get_Tp_allocator()); }
732 :
733 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
734 : /**
735 : * @brief %Deque move constructor.
736 : * @param x A %deque of identical element and allocator types.
737 : *
738 : * The newly-created %deque contains the exact contents of @a x.
739 : * The contents of @a x are a valid, but unspecified %deque.
740 : */
741 : deque(deque&& __x)
742 : : _Base(std::forward<_Base>(__x)) { }
743 : #endif
744 :
745 : /**
746 : * @brief Builds a %deque from a range.
747 : * @param first An input iterator.
748 : * @param last An input iterator.
749 : * @param a An allocator object.
750 : *
751 : * Create a %deque consisting of copies of the elements from [first,
752 : * last).
753 : *
754 : * If the iterators are forward, bidirectional, or random-access, then
755 : * this will call the elements' copy constructor N times (where N is
756 : * distance(first,last)) and do no memory reallocation. But if only
757 : * input iterators are used, then this will do at most 2N calls to the
758 : * copy constructor, and logN memory reallocations.
759 : */
760 : template<typename _InputIterator>
761 : deque(_InputIterator __first, _InputIterator __last,
762 : const allocator_type& __a = allocator_type())
763 : : _Base(__a)
764 : {
765 : // Check whether it's an integral type. If so, it's not an iterator.
766 : typedef typename std::__is_integer<_InputIterator>::__type _Integral;
767 : _M_initialize_dispatch(__first, __last, _Integral());
768 : }
769 :
770 : /**
771 : * The dtor only erases the elements, and note that if the elements
772 : * themselves are pointers, the pointed-to memory is not touched in any
773 : * way. Managing the pointer is the user's responsibility.
774 : */
775 30 : ~deque()
776 30 : { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }
777 :
778 : /**
779 : * @brief %Deque assignment operator.
780 : * @param x A %deque of identical element and allocator types.
781 : *
782 : * All the elements of @a x are copied, but unlike the copy constructor,
783 : * the allocator object is not copied.
784 : */
785 : deque&
786 : operator=(const deque& __x);
787 :
788 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
789 : /**
790 : * @brief %Deque move assignment operator.
791 : * @param x A %deque of identical element and allocator types.
792 : *
793 : * The contents of @a x are moved into this deque (without copying).
794 : * @a x is a valid, but unspecified %deque.
795 : */
796 : deque&
797 : operator=(deque&& __x)
798 : {
799 : // NB: DR 675.
800 : this->clear();
801 : this->swap(__x);
802 : return *this;
803 : }
804 : #endif
805 :
806 : /**
807 : * @brief Assigns a given value to a %deque.
808 : * @param n Number of elements to be assigned.
809 : * @param val Value to be assigned.
810 : *
811 : * This function fills a %deque with @a n copies of the given
812 : * value. Note that the assignment completely changes the
813 : * %deque and that the resulting %deque's size is the same as
814 : * the number of elements assigned. Old data may be lost.
815 : */
816 : void
817 : assign(size_type __n, const value_type& __val)
818 : { _M_fill_assign(__n, __val); }
819 :
820 : /**
821 : * @brief Assigns a range to a %deque.
822 : * @param first An input iterator.
823 : * @param last An input iterator.
824 : *
825 : * This function fills a %deque with copies of the elements in the
826 : * range [first,last).
827 : *
828 : * Note that the assignment completely changes the %deque and that the
829 : * resulting %deque's size is the same as the number of elements
830 : * assigned. Old data may be lost.
831 : */
832 : template<typename _InputIterator>
833 : void
834 : assign(_InputIterator __first, _InputIterator __last)
835 : {
836 : typedef typename std::__is_integer<_InputIterator>::__type _Integral;
837 : _M_assign_dispatch(__first, __last, _Integral());
838 : }
839 :
840 : /// Get a copy of the memory allocation object.
841 : allocator_type
842 : get_allocator() const
843 : { return _Base::get_allocator(); }
844 :
845 : // iterators
846 : /**
847 : * Returns a read/write iterator that points to the first element in the
848 : * %deque. Iteration is done in ordinary element order.
849 : */
850 : iterator
851 7800 : begin()
852 7800 : { return this->_M_impl._M_start; }
853 :
854 : /**
855 : * Returns a read-only (constant) iterator that points to the first
856 : * element in the %deque. Iteration is done in ordinary element order.
857 : */
858 : const_iterator
859 17 : begin() const
860 17 : { return this->_M_impl._M_start; }
861 :
862 : /**
863 : * Returns a read/write iterator that points one past the last
864 : * element in the %deque. Iteration is done in ordinary
865 : * element order.
866 : */
867 : iterator
868 10575 : end()
869 10575 : { return this->_M_impl._M_finish; }
870 :
871 : /**
872 : * Returns a read-only (constant) iterator that points one past
873 : * the last element in the %deque. Iteration is done in
874 : * ordinary element order.
875 : */
876 : const_iterator
877 17 : end() const
878 17 : { return this->_M_impl._M_finish; }
879 :
880 : /**
881 : * Returns a read/write reverse iterator that points to the
882 : * last element in the %deque. Iteration is done in reverse
883 : * element order.
884 : */
885 : reverse_iterator
886 : rbegin()
887 : { return reverse_iterator(this->_M_impl._M_finish); }
888 :
889 : /**
890 : * Returns a read-only (constant) reverse iterator that points
891 : * to the last element in the %deque. Iteration is done in
892 : * reverse element order.
893 : */
894 : const_reverse_iterator
895 : rbegin() const
896 : { return const_reverse_iterator(this->_M_impl._M_finish); }
897 :
898 : /**
899 : * Returns a read/write reverse iterator that points to one
900 : * before the first element in the %deque. Iteration is done
901 : * in reverse element order.
902 : */
903 : reverse_iterator
904 : rend()
905 : { return reverse_iterator(this->_M_impl._M_start); }
906 :
907 : /**
908 : * Returns a read-only (constant) reverse iterator that points
909 : * to one before the first element in the %deque. Iteration is
910 : * done in reverse element order.
911 : */
912 : const_reverse_iterator
913 : rend() const
914 : { return const_reverse_iterator(this->_M_impl._M_start); }
915 :
916 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
917 : /**
918 : * Returns a read-only (constant) iterator that points to the first
919 : * element in the %deque. Iteration is done in ordinary element order.
920 : */
921 : const_iterator
922 : cbegin() const
923 : { return this->_M_impl._M_start; }
924 :
925 : /**
926 : * Returns a read-only (constant) iterator that points one past
927 : * the last element in the %deque. Iteration is done in
928 : * ordinary element order.
929 : */
930 : const_iterator
931 : cend() const
932 : { return this->_M_impl._M_finish; }
933 :
934 : /**
935 : * Returns a read-only (constant) reverse iterator that points
936 : * to the last element in the %deque. Iteration is done in
937 : * reverse element order.
938 : */
939 : const_reverse_iterator
940 : crbegin() const
941 : { return const_reverse_iterator(this->_M_impl._M_finish); }
942 :
943 : /**
944 : * Returns a read-only (constant) reverse iterator that points
945 : * to one before the first element in the %deque. Iteration is
946 : * done in reverse element order.
947 : */
948 : const_reverse_iterator
949 : crend() const
950 : { return const_reverse_iterator(this->_M_impl._M_start); }
951 : #endif
952 :
953 : // [23.2.1.2] capacity
954 : /** Returns the number of elements in the %deque. */
955 : size_type
956 111 : size() const
957 111 : { return this->_M_impl._M_finish - this->_M_impl._M_start; }
958 :
959 : /** Returns the size() of the largest possible %deque. */
960 : size_type
961 0 : max_size() const
962 0 : { return _M_get_Tp_allocator().max_size(); }
963 :
964 : /**
965 : * @brief Resizes the %deque to the specified number of elements.
966 : * @param new_size Number of elements the %deque should contain.
967 : * @param x Data with which new elements should be populated.
968 : *
969 : * This function will %resize the %deque to the specified
970 : * number of elements. If the number is smaller than the
971 : * %deque's current size the %deque is truncated, otherwise the
972 : * %deque is extended and new elements are populated with given
973 : * data.
974 : */
975 : void
976 : resize(size_type __new_size, value_type __x = value_type())
977 : {
978 : const size_type __len = size();
979 : if (__new_size < __len)
980 : _M_erase_at_end(this->_M_impl._M_start + difference_type(__new_size));
981 : else
982 : insert(this->_M_impl._M_finish, __new_size - __len, __x);
983 : }
984 :
985 : /**
986 : * Returns true if the %deque is empty. (Thus begin() would
987 : * equal end().)
988 : */
989 : bool
990 32 : empty() const
991 32 : { return this->_M_impl._M_finish == this->_M_impl._M_start; }
992 :
993 : // element access
994 : /**
995 : * @brief Subscript access to the data contained in the %deque.
996 : * @param n The index of the element for which data should be
997 : * accessed.
998 : * @return Read/write reference to data.
999 : *
1000 : * This operator allows for easy, array-style, data access.
1001 : * Note that data access with this operator is unchecked and
1002 : * out_of_range lookups are not defined. (For checked lookups
1003 : * see at().)
1004 : */
1005 : reference
1006 : operator[](size_type __n)
1007 : { return this->_M_impl._M_start[difference_type(__n)]; }
1008 :
1009 : /**
1010 : * @brief Subscript access to the data contained in the %deque.
1011 : * @param n The index of the element for which data should be
1012 : * accessed.
1013 : * @return Read-only (constant) reference to data.
1014 : *
1015 : * This operator allows for easy, array-style, data access.
1016 : * Note that data access with this operator is unchecked and
1017 : * out_of_range lookups are not defined. (For checked lookups
1018 : * see at().)
1019 : */
1020 : const_reference
1021 : operator[](size_type __n) const
1022 : { return this->_M_impl._M_start[difference_type(__n)]; }
1023 :
1024 : protected:
1025 : /// Safety check used only from at().
1026 : void
1027 : _M_range_check(size_type __n) const
1028 : {
1029 : if (__n >= this->size())
1030 : __throw_out_of_range(__N("deque::_M_range_check"));
1031 : }
1032 :
1033 : public:
1034 : /**
1035 : * @brief Provides access to the data contained in the %deque.
1036 : * @param n The index of the element for which data should be
1037 : * accessed.
1038 : * @return Read/write reference to data.
1039 : * @throw std::out_of_range If @a n is an invalid index.
1040 : *
1041 : * This function provides for safer data access. The parameter
1042 : * is first checked that it is in the range of the deque. The
1043 : * function throws out_of_range if the check fails.
1044 : */
1045 : reference
1046 : at(size_type __n)
1047 : {
1048 : _M_range_check(__n);
1049 : return (*this)[__n];
1050 : }
1051 :
1052 : /**
1053 : * @brief Provides access to the data contained in the %deque.
1054 : * @param n The index of the element for which data should be
1055 : * accessed.
1056 : * @return Read-only (constant) reference to data.
1057 : * @throw std::out_of_range If @a n is an invalid index.
1058 : *
1059 : * This function provides for safer data access. The parameter is first
1060 : * checked that it is in the range of the deque. The function throws
1061 : * out_of_range if the check fails.
1062 : */
1063 : const_reference
1064 : at(size_type __n) const
1065 : {
1066 : _M_range_check(__n);
1067 : return (*this)[__n];
1068 : }
1069 :
1070 : /**
1071 : * Returns a read/write reference to the data at the first
1072 : * element of the %deque.
1073 : */
1074 : reference
1075 : front()
1076 : { return *begin(); }
1077 :
1078 : /**
1079 : * Returns a read-only (constant) reference to the data at the first
1080 : * element of the %deque.
1081 : */
1082 : const_reference
1083 : front() const
1084 : { return *begin(); }
1085 :
1086 : /**
1087 : * Returns a read/write reference to the data at the last element of the
1088 : * %deque.
1089 : */
1090 : reference
1091 39 : back()
1092 : {
1093 39 : iterator __tmp = end();
1094 39 : --__tmp;
1095 39 : return *__tmp;
1096 : }
1097 :
1098 : /**
1099 : * Returns a read-only (constant) reference to the data at the last
1100 : * element of the %deque.
1101 : */
1102 : const_reference
1103 : back() const
1104 : {
1105 : const_iterator __tmp = end();
1106 : --__tmp;
1107 : return *__tmp;
1108 : }
1109 :
1110 : // [23.2.1.2] modifiers
1111 : /**
1112 : * @brief Add data to the front of the %deque.
1113 : * @param x Data to be added.
1114 : *
1115 : * This is a typical stack operation. The function creates an
1116 : * element at the front of the %deque and assigns the given
1117 : * data to it. Due to the nature of a %deque this operation
1118 : * can be done in constant time.
1119 : */
1120 : #ifndef __GXX_EXPERIMENTAL_CXX0X__
1121 : void
1122 : push_front(const value_type& __x)
1123 : {
1124 : if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1125 : {
1126 : this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
1127 : --this->_M_impl._M_start._M_cur;
1128 : }
1129 : else
1130 : _M_push_front_aux(__x);
1131 : }
1132 : #else
1133 : template<typename... _Args>
1134 : void
1135 : push_front(_Args&&... __args)
1136 : {
1137 : if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1138 : {
1139 : this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1,
1140 : std::forward<_Args>(__args)...);
1141 : --this->_M_impl._M_start._M_cur;
1142 : }
1143 : else
1144 : _M_push_front_aux(std::forward<_Args>(__args)...);
1145 : }
1146 : #endif
1147 :
1148 : /**
1149 : * @brief Add data to the end of the %deque.
1150 : * @param x Data to be added.
1151 : *
1152 : * This is a typical stack operation. The function creates an
1153 : * element at the end of the %deque and assigns the given data
1154 : * to it. Due to the nature of a %deque this operation can be
1155 : * done in constant time.
1156 : */
1157 : #ifndef __GXX_EXPERIMENTAL_CXX0X__
1158 : void
1159 12012 : push_back(const value_type& __x)
1160 : {
1161 12012 : if (this->_M_impl._M_finish._M_cur
1162 : != this->_M_impl._M_finish._M_last - 1)
1163 : {
1164 11999 : this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
1165 11999 : ++this->_M_impl._M_finish._M_cur;
1166 : }
1167 : else
1168 13 : _M_push_back_aux(__x);
1169 12012 : }
1170 : #else
1171 : template<typename... _Args>
1172 : void
1173 : push_back(_Args&&... __args)
1174 : {
1175 : if (this->_M_impl._M_finish._M_cur
1176 : != this->_M_impl._M_finish._M_last - 1)
1177 : {
1178 : this->_M_impl.construct(this->_M_impl._M_finish._M_cur,
1179 : std::forward<_Args>(__args)...);
1180 : ++this->_M_impl._M_finish._M_cur;
1181 : }
1182 : else
1183 : _M_push_back_aux(std::forward<_Args>(__args)...);
1184 : }
1185 : #endif
1186 :
1187 : /**
1188 : * @brief Removes first element.
1189 : *
1190 : * This is a typical stack operation. It shrinks the %deque by one.
1191 : *
1192 : * Note that no data is returned, and if the first element's data is
1193 : * needed, it should be retrieved before pop_front() is called.
1194 : */
1195 : void
1196 : pop_front()
1197 : {
1198 : if (this->_M_impl._M_start._M_cur
1199 : != this->_M_impl._M_start._M_last - 1)
1200 : {
1201 : this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
1202 : ++this->_M_impl._M_start._M_cur;
1203 : }
1204 : else
1205 : _M_pop_front_aux();
1206 : }
1207 :
1208 : /**
1209 : * @brief Removes last element.
1210 : *
1211 : * This is a typical stack operation. It shrinks the %deque by one.
1212 : *
1213 : * Note that no data is returned, and if the last element's data is
1214 : * needed, it should be retrieved before pop_back() is called.
1215 : */
1216 : void
1217 24 : pop_back()
1218 : {
1219 24 : if (this->_M_impl._M_finish._M_cur
1220 : != this->_M_impl._M_finish._M_first)
1221 : {
1222 24 : --this->_M_impl._M_finish._M_cur;
1223 24 : this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
1224 : }
1225 : else
1226 0 : _M_pop_back_aux();
1227 24 : }
1228 :
1229 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
1230 : /**
1231 : * @brief Inserts an object in %deque before specified iterator.
1232 : * @param position An iterator into the %deque.
1233 : * @param args Arguments.
1234 : * @return An iterator that points to the inserted data.
1235 : *
1236 : * This function will insert an object of type T constructed
1237 : * with T(std::forward<Args>(args)...) before the specified location.
1238 : */
1239 : template<typename... _Args>
1240 : iterator
1241 : emplace(iterator __position, _Args&&... __args);
1242 : #endif
1243 :
1244 : /**
1245 : * @brief Inserts given value into %deque before specified iterator.
1246 : * @param position An iterator into the %deque.
1247 : * @param x Data to be inserted.
1248 : * @return An iterator that points to the inserted data.
1249 : *
1250 : * This function will insert a copy of the given value before the
1251 : * specified location.
1252 : */
1253 : iterator
1254 : insert(iterator __position, const value_type& __x);
1255 :
1256 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
1257 : /**
1258 : * @brief Inserts given rvalue into %deque before specified iterator.
1259 : * @param position An iterator into the %deque.
1260 : * @param x Data to be inserted.
1261 : * @return An iterator that points to the inserted data.
1262 : *
1263 : * This function will insert a copy of the given rvalue before the
1264 : * specified location.
1265 : */
1266 : iterator
1267 : insert(iterator __position, value_type&& __x)
1268 : { return emplace(__position, std::move(__x)); }
1269 : #endif
1270 :
1271 : /**
1272 : * @brief Inserts a number of copies of given data into the %deque.
1273 : * @param position An iterator into the %deque.
1274 : * @param n Number of elements to be inserted.
1275 : * @param x Data to be inserted.
1276 : *
1277 : * This function will insert a specified number of copies of the given
1278 : * data before the location specified by @a position.
1279 : */
1280 : void
1281 : insert(iterator __position, size_type __n, const value_type& __x)
1282 : { _M_fill_insert(__position, __n, __x); }
1283 :
1284 : /**
1285 : * @brief Inserts a range into the %deque.
1286 : * @param position An iterator into the %deque.
1287 : * @param first An input iterator.
1288 : * @param last An input iterator.
1289 : *
1290 : * This function will insert copies of the data in the range
1291 : * [first,last) into the %deque before the location specified
1292 : * by @a pos. This is known as "range insert."
1293 : */
1294 : template<typename _InputIterator>
1295 : void
1296 : insert(iterator __position, _InputIterator __first,
1297 0 : _InputIterator __last)
1298 : {
1299 : // Check whether it's an integral type. If so, it's not an iterator.
1300 : typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1301 0 : _M_insert_dispatch(__position, __first, __last, _Integral());
1302 0 : }
1303 :
1304 : /**
1305 : * @brief Remove element at given position.
1306 : * @param position Iterator pointing to element to be erased.
1307 : * @return An iterator pointing to the next element (or end()).
1308 : *
1309 : * This function will erase the element at the given position and thus
1310 : * shorten the %deque by one.
1311 : *
1312 : * The user is cautioned that
1313 : * this function only erases the element, and that if the element is
1314 : * itself a pointer, the pointed-to memory is not touched in any way.
1315 : * Managing the pointer is the user's responsibility.
1316 : */
1317 : iterator
1318 : erase(iterator __position);
1319 :
1320 : /**
1321 : * @brief Remove a range of elements.
1322 : * @param first Iterator pointing to the first element to be erased.
1323 : * @param last Iterator pointing to one past the last element to be
1324 : * erased.
1325 : * @return An iterator pointing to the element pointed to by @a last
1326 : * prior to erasing (or end()).
1327 : *
1328 : * This function will erase the elements in the range [first,last) and
1329 : * shorten the %deque accordingly.
1330 : *
1331 : * The user is cautioned that
1332 : * this function only erases the elements, and that if the elements
1333 : * themselves are pointers, the pointed-to memory is not touched in any
1334 : * way. Managing the pointer is the user's responsibility.
1335 : */
1336 : iterator
1337 : erase(iterator __first, iterator __last);
1338 :
1339 : /**
1340 : * @brief Swaps data with another %deque.
1341 : * @param x A %deque of the same element and allocator types.
1342 : *
1343 : * This exchanges the elements between two deques in constant time.
1344 : * (Four pointers, so it should be quite fast.)
1345 : * Note that the global std::swap() function is specialized such that
1346 : * std::swap(d1,d2) will feed to this function.
1347 : */
1348 : void
1349 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
1350 : swap(deque&& __x)
1351 : #else
1352 : swap(deque& __x)
1353 : #endif
1354 : {
1355 : std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1356 : std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1357 : std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
1358 : std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
1359 :
1360 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
1361 : // 431. Swapping containers with unequal allocators.
1362 : std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
1363 : __x._M_get_Tp_allocator());
1364 : }
1365 :
1366 : /**
1367 : * Erases all the elements. Note that this function only erases the
1368 : * elements, and that if the elements themselves are pointers, the
1369 : * pointed-to memory is not touched in any way. Managing the pointer is
1370 : * the user's responsibility.
1371 : */
1372 : void
1373 922 : clear()
1374 922 : { _M_erase_at_end(begin()); }
1375 :
1376 : protected:
1377 : // Internal constructor functions follow.
1378 :
1379 : // called by the range constructor to implement [23.1.1]/9
1380 :
1381 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
1382 : // 438. Ambiguity in the "do the right thing" clause
1383 : template<typename _Integer>
1384 : void
1385 : _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1386 : {
1387 : _M_initialize_map(static_cast<size_type>(__n));
1388 : _M_fill_initialize(__x);
1389 : }
1390 :
1391 : // called by the range constructor to implement [23.1.1]/9
1392 : template<typename _InputIterator>
1393 : void
1394 : _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1395 : __false_type)
1396 : {
1397 : typedef typename std::iterator_traits<_InputIterator>::
1398 : iterator_category _IterCategory;
1399 : _M_range_initialize(__first, __last, _IterCategory());
1400 : }
1401 :
1402 : // called by the second initialize_dispatch above
1403 : //@{
1404 : /**
1405 : * @brief Fills the deque with whatever is in [first,last).
1406 : * @param first An input iterator.
1407 : * @param last An input iterator.
1408 : * @return Nothing.
1409 : *
1410 : * If the iterators are actually forward iterators (or better), then the
1411 : * memory layout can be done all at once. Else we move forward using
1412 : * push_back on each value from the iterator.
1413 : */
1414 : template<typename _InputIterator>
1415 : void
1416 : _M_range_initialize(_InputIterator __first, _InputIterator __last,
1417 : std::input_iterator_tag);
1418 :
1419 : // called by the second initialize_dispatch above
1420 : template<typename _ForwardIterator>
1421 : void
1422 : _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1423 : std::forward_iterator_tag);
1424 : //@}
1425 :
1426 : /**
1427 : * @brief Fills the %deque with copies of value.
1428 : * @param value Initial value.
1429 : * @return Nothing.
1430 : * @pre _M_start and _M_finish have already been initialized,
1431 : * but none of the %deque's elements have yet been constructed.
1432 : *
1433 : * This function is called only when the user provides an explicit size
1434 : * (with or without an explicit exemplar value).
1435 : */
1436 : void
1437 : _M_fill_initialize(const value_type& __value);
1438 :
1439 : // Internal assign functions follow. The *_aux functions do the actual
1440 : // assignment work for the range versions.
1441 :
1442 : // called by the range assign to implement [23.1.1]/9
1443 :
1444 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
1445 : // 438. Ambiguity in the "do the right thing" clause
1446 : template<typename _Integer>
1447 : void
1448 : _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1449 : { _M_fill_assign(__n, __val); }
1450 :
1451 : // called by the range assign to implement [23.1.1]/9
1452 : template<typename _InputIterator>
1453 : void
1454 : _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1455 : __false_type)
1456 : {
1457 : typedef typename std::iterator_traits<_InputIterator>::
1458 : iterator_category _IterCategory;
1459 : _M_assign_aux(__first, __last, _IterCategory());
1460 : }
1461 :
1462 : // called by the second assign_dispatch above
1463 : template<typename _InputIterator>
1464 : void
1465 : _M_assign_aux(_InputIterator __first, _InputIterator __last,
1466 : std::input_iterator_tag);
1467 :
1468 : // called by the second assign_dispatch above
1469 : template<typename _ForwardIterator>
1470 : void
1471 : _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1472 : std::forward_iterator_tag)
1473 : {
1474 : const size_type __len = std::distance(__first, __last);
1475 : if (__len > size())
1476 : {
1477 : _ForwardIterator __mid = __first;
1478 : std::advance(__mid, size());
1479 : std::copy(__first, __mid, begin());
1480 : insert(end(), __mid, __last);
1481 : }
1482 : else
1483 : _M_erase_at_end(std::copy(__first, __last, begin()));
1484 : }
1485 :
1486 : // Called by assign(n,t), and the range assign when it turns out
1487 : // to be the same thing.
1488 : void
1489 : _M_fill_assign(size_type __n, const value_type& __val)
1490 : {
1491 : if (__n > size())
1492 : {
1493 : std::fill(begin(), end(), __val);
1494 : insert(end(), __n - size(), __val);
1495 : }
1496 : else
1497 : {
1498 : _M_erase_at_end(begin() + difference_type(__n));
1499 : std::fill(begin(), end(), __val);
1500 : }
1501 : }
1502 :
1503 : //@{
1504 : /// Helper functions for push_* and pop_*.
1505 : #ifndef __GXX_EXPERIMENTAL_CXX0X__
1506 : void _M_push_back_aux(const value_type&);
1507 :
1508 : void _M_push_front_aux(const value_type&);
1509 : #else
1510 : template<typename... _Args>
1511 : void _M_push_back_aux(_Args&&... __args);
1512 :
1513 : template<typename... _Args>
1514 : void _M_push_front_aux(_Args&&... __args);
1515 : #endif
1516 :
1517 : void _M_pop_back_aux();
1518 :
1519 : void _M_pop_front_aux();
1520 : //@}
1521 :
1522 : // Internal insert functions follow. The *_aux functions do the actual
1523 : // insertion work when all shortcuts fail.
1524 :
1525 : // called by the range insert to implement [23.1.1]/9
1526 :
1527 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
1528 : // 438. Ambiguity in the "do the right thing" clause
1529 : template<typename _Integer>
1530 : void
1531 : _M_insert_dispatch(iterator __pos,
1532 : _Integer __n, _Integer __x, __true_type)
1533 : { _M_fill_insert(__pos, __n, __x); }
1534 :
1535 : // called by the range insert to implement [23.1.1]/9
1536 : template<typename _InputIterator>
1537 : void
1538 : _M_insert_dispatch(iterator __pos,
1539 : _InputIterator __first, _InputIterator __last,
1540 0 : __false_type)
1541 : {
1542 : typedef typename std::iterator_traits<_InputIterator>::
1543 : iterator_category _IterCategory;
1544 0 : _M_range_insert_aux(__pos, __first, __last, _IterCategory());
1545 0 : }
1546 :
1547 : // called by the second insert_dispatch above
1548 : template<typename _InputIterator>
1549 : void
1550 : _M_range_insert_aux(iterator __pos, _InputIterator __first,
1551 : _InputIterator __last, std::input_iterator_tag);
1552 :
1553 : // called by the second insert_dispatch above
1554 : template<typename _ForwardIterator>
1555 : void
1556 : _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
1557 : _ForwardIterator __last, std::forward_iterator_tag);
1558 :
1559 : // Called by insert(p,n,x), and the range insert when it turns out to be
1560 : // the same thing. Can use fill functions in optimal situations,
1561 : // otherwise passes off to insert_aux(p,n,x).
1562 : void
1563 : _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1564 :
1565 : // called by insert(p,x)
1566 : #ifndef __GXX_EXPERIMENTAL_CXX0X__
1567 : iterator
1568 : _M_insert_aux(iterator __pos, const value_type& __x);
1569 : #else
1570 : template<typename... _Args>
1571 : iterator
1572 : _M_insert_aux(iterator __pos, _Args&&... __args);
1573 : #endif
1574 :
1575 : // called by insert(p,n,x) via fill_insert
1576 : void
1577 : _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
1578 :
1579 : // called by range_insert_aux for forward iterators
1580 : template<typename _ForwardIterator>
1581 : void
1582 : _M_insert_aux(iterator __pos,
1583 : _ForwardIterator __first, _ForwardIterator __last,
1584 : size_type __n);
1585 :
1586 :
1587 : // Internal erase functions follow.
1588 :
1589 : void
1590 : _M_destroy_data_aux(iterator __first, iterator __last);
1591 :
1592 : // Called by ~deque().
1593 : // NB: Doesn't deallocate the nodes.
1594 : template<typename _Alloc1>
1595 : void
1596 : _M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
1597 : { _M_destroy_data_aux(__first, __last); }
1598 :
1599 : void
1600 : _M_destroy_data(iterator __first, iterator __last,
1601 1046 : const std::allocator<_Tp>&)
1602 : {
1603 : if (!__has_trivial_destructor(value_type))
1604 26 : _M_destroy_data_aux(__first, __last);
1605 1046 : }
1606 :
1607 : // Called by erase(q1, q2).
1608 : void
1609 90 : _M_erase_at_begin(iterator __pos)
1610 : {
1611 90 : _M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
1612 90 : _M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
1613 90 : this->_M_impl._M_start = __pos;
1614 90 : }
1615 :
1616 : // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
1617 : // _M_fill_assign, operator=.
1618 : void
1619 926 : _M_erase_at_end(iterator __pos)
1620 : {
1621 926 : _M_destroy_data(__pos, end(), _M_get_Tp_allocator());
1622 926 : _M_destroy_nodes(__pos._M_node + 1,
1623 : this->_M_impl._M_finish._M_node + 1);
1624 926 : this->_M_impl._M_finish = __pos;
1625 926 : }
1626 :
1627 : //@{
1628 : /// Memory-handling helpers for the previous internal insert functions.
1629 : iterator
1630 0 : _M_reserve_elements_at_front(size_type __n)
1631 : {
1632 : const size_type __vacancies = this->_M_impl._M_start._M_cur
1633 0 : - this->_M_impl._M_start._M_first;
1634 0 : if (__n > __vacancies)
1635 0 : _M_new_elements_at_front(__n - __vacancies);
1636 0 : return this->_M_impl._M_start - difference_type(__n);
1637 : }
1638 :
1639 : iterator
1640 0 : _M_reserve_elements_at_back(size_type __n)
1641 : {
1642 : const size_type __vacancies = (this->_M_impl._M_finish._M_last
1643 0 : - this->_M_impl._M_finish._M_cur) - 1;
1644 0 : if (__n > __vacancies)
1645 0 : _M_new_elements_at_back(__n - __vacancies);
1646 0 : return this->_M_impl._M_finish + difference_type(__n);
1647 : }
1648 :
1649 : void
1650 : _M_new_elements_at_front(size_type __new_elements);
1651 :
1652 : void
1653 : _M_new_elements_at_back(size_type __new_elements);
1654 : //@}
1655 :
1656 :
1657 : //@{
1658 : /**
1659 : * @brief Memory-handling helpers for the major %map.
1660 : *
1661 : * Makes sure the _M_map has space for new nodes. Does not
1662 : * actually add the nodes. Can invalidate _M_map pointers.
1663 : * (And consequently, %deque iterators.)
1664 : */
1665 : void
1666 13 : _M_reserve_map_at_back(size_type __nodes_to_add = 1)
1667 : {
1668 13 : if (__nodes_to_add + 1 > this->_M_impl._M_map_size
1669 : - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
1670 0 : _M_reallocate_map(__nodes_to_add, false);
1671 13 : }
1672 :
1673 : void
1674 0 : _M_reserve_map_at_front(size_type __nodes_to_add = 1)
1675 : {
1676 0 : if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
1677 : - this->_M_impl._M_map))
1678 0 : _M_reallocate_map(__nodes_to_add, true);
1679 0 : }
1680 :
1681 : void
1682 : _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
1683 : //@}
1684 : };
1685 :
1686 :
1687 : /**
1688 : * @brief Deque equality comparison.
1689 : * @param x A %deque.
1690 : * @param y A %deque of the same type as @a x.
1691 : * @return True iff the size and elements of the deques are equal.
1692 : *
1693 : * This is an equivalence relation. It is linear in the size of the
1694 : * deques. Deques are considered equivalent if their sizes are equal,
1695 : * and if corresponding elements compare equal.
1696 : */
1697 : template<typename _Tp, typename _Alloc>
1698 : inline bool
1699 : operator==(const deque<_Tp, _Alloc>& __x,
1700 : const deque<_Tp, _Alloc>& __y)
1701 : { return __x.size() == __y.size()
1702 : && std::equal(__x.begin(), __x.end(), __y.begin()); }
1703 :
1704 : /**
1705 : * @brief Deque ordering relation.
1706 : * @param x A %deque.
1707 : * @param y A %deque of the same type as @a x.
1708 : * @return True iff @a x is lexicographically less than @a y.
1709 : *
1710 : * This is a total ordering relation. It is linear in the size of the
1711 : * deques. The elements must be comparable with @c <.
1712 : *
1713 : * See std::lexicographical_compare() for how the determination is made.
1714 : */
1715 : template<typename _Tp, typename _Alloc>
1716 : inline bool
1717 : operator<(const deque<_Tp, _Alloc>& __x,
1718 : const deque<_Tp, _Alloc>& __y)
1719 : { return std::lexicographical_compare(__x.begin(), __x.end(),
1720 : __y.begin(), __y.end()); }
1721 :
1722 : /// Based on operator==
1723 : template<typename _Tp, typename _Alloc>
1724 : inline bool
1725 : operator!=(const deque<_Tp, _Alloc>& __x,
1726 : const deque<_Tp, _Alloc>& __y)
1727 : { return !(__x == __y); }
1728 :
1729 : /// Based on operator<
1730 : template<typename _Tp, typename _Alloc>
1731 : inline bool
1732 : operator>(const deque<_Tp, _Alloc>& __x,
1733 : const deque<_Tp, _Alloc>& __y)
1734 : { return __y < __x; }
1735 :
1736 : /// Based on operator<
1737 : template<typename _Tp, typename _Alloc>
1738 : inline bool
1739 : operator<=(const deque<_Tp, _Alloc>& __x,
1740 : const deque<_Tp, _Alloc>& __y)
1741 : { return !(__y < __x); }
1742 :
1743 : /// Based on operator<
1744 : template<typename _Tp, typename _Alloc>
1745 : inline bool
1746 : operator>=(const deque<_Tp, _Alloc>& __x,
1747 : const deque<_Tp, _Alloc>& __y)
1748 : { return !(__x < __y); }
1749 :
1750 : /// See std::deque::swap().
1751 : template<typename _Tp, typename _Alloc>
1752 : inline void
1753 : swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
1754 : { __x.swap(__y); }
1755 :
1756 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
1757 : template<typename _Tp, typename _Alloc>
1758 : inline void
1759 : swap(deque<_Tp,_Alloc>&& __x, deque<_Tp,_Alloc>& __y)
1760 : { __x.swap(__y); }
1761 :
1762 : template<typename _Tp, typename _Alloc>
1763 : inline void
1764 : swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>&& __y)
1765 : { __x.swap(__y); }
1766 : #endif
1767 :
1768 : _GLIBCXX_END_NESTED_NAMESPACE
1769 :
1770 : #endif /* _STL_DEQUE_H */
|