indeo3.c
Go to the documentation of this file.
1 /*
2  * Indeo Video v3 compatible decoder
3  * Copyright (c) 2009 - 2011 Maxim Poliakovski
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
32 #include "libavutil/imgutils.h"
33 #include "libavutil/intreadwrite.h"
34 #include "avcodec.h"
35 #include "dsputil.h"
36 #include "bytestream.h"
37 #include "get_bits.h"
38 
39 #include "indeo3data.h"
40 
41 /* RLE opcodes. */
42 enum {
43  RLE_ESC_F9 = 249,
44  RLE_ESC_FA = 250,
45  RLE_ESC_FB = 251,
46  RLE_ESC_FC = 252,
47  RLE_ESC_FD = 253,
48  RLE_ESC_FE = 254,
49  RLE_ESC_FF = 255
50 };
51 
52 
53 /* Some constants for parsing frame bitstream flags. */
54 #define BS_8BIT_PEL (1 << 1)
55 #define BS_KEYFRAME (1 << 2)
56 #define BS_MV_Y_HALF (1 << 4)
57 #define BS_MV_X_HALF (1 << 5)
58 #define BS_NONREF (1 << 8)
59 #define BS_BUFFER 9
60 
61 
62 typedef struct Plane {
63  uint8_t *buffers[2];
64  uint8_t *pixels[2];
65  uint32_t width;
66  uint32_t height;
67  uint32_t pitch;
68 } Plane;
69 
70 #define CELL_STACK_MAX 20
71 
72 typedef struct Cell {
73  int16_t xpos;
74  int16_t ypos;
75  int16_t width;
76  int16_t height;
77  uint8_t tree;
78  const int8_t *mv_ptr;
79 } Cell;
80 
81 typedef struct Indeo3DecodeContext {
85 
88  int skip_bits;
89  const uint8_t *next_cell_data;
90  const uint8_t *last_byte;
91  const int8_t *mc_vectors;
92  unsigned num_vectors;
93 
94  int16_t width, height;
95  uint32_t frame_num;
96  uint32_t data_size;
97  uint16_t frame_flags;
98  uint8_t cb_offset;
99  uint8_t buf_sel;
100  const uint8_t *y_data_ptr;
101  const uint8_t *v_data_ptr;
102  const uint8_t *u_data_ptr;
103  int32_t y_data_size;
104  int32_t v_data_size;
105  int32_t u_data_size;
106  const uint8_t *alt_quant;
109 
110 
111 static uint8_t requant_tab[8][128];
112 
113 /*
114  * Build the static requantization table.
115  * This table is used to remap pixel values according to a specific
116  * quant index and thus avoid overflows while adding deltas.
117  */
118 static av_cold void build_requant_tab(void)
119 {
120  static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
121  static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
122 
123  int i, j, step;
124 
125  for (i = 0; i < 8; i++) {
126  step = i + 2;
127  for (j = 0; j < 128; j++)
128  requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
129  }
130 
131  /* some last elements calculated above will have values >= 128 */
132  /* pixel values shall never exceed 127 so set them to non-overflowing values */
133  /* according with the quantization step of the respective section */
134  requant_tab[0][127] = 126;
135  requant_tab[1][119] = 118;
136  requant_tab[1][120] = 118;
137  requant_tab[2][126] = 124;
138  requant_tab[2][127] = 124;
139  requant_tab[6][124] = 120;
140  requant_tab[6][125] = 120;
141  requant_tab[6][126] = 120;
142  requant_tab[6][127] = 120;
143 
144  /* Patch for compatibility with the Intel's binary decoders */
145  requant_tab[1][7] = 10;
146  requant_tab[4][8] = 10;
147 }
148 
149 
151  AVCodecContext *avctx)
152 {
153  int p, luma_width, luma_height, chroma_width, chroma_height;
154  int luma_pitch, chroma_pitch, luma_size, chroma_size;
155 
156  luma_width = ctx->width;
157  luma_height = ctx->height;
158 
159  if (luma_width < 16 || luma_width > 640 ||
160  luma_height < 16 || luma_height > 480 ||
161  luma_width & 3 || luma_height & 3) {
162  av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
163  luma_width, luma_height);
164  return AVERROR_INVALIDDATA;
165  }
166 
167  chroma_width = FFALIGN(luma_width >> 2, 4);
168  chroma_height = FFALIGN(luma_height >> 2, 4);
169 
170  luma_pitch = FFALIGN(luma_width, 16);
171  chroma_pitch = FFALIGN(chroma_width, 16);
172 
173  /* Calculate size of the luminance plane. */
174  /* Add one line more for INTRA prediction. */
175  luma_size = luma_pitch * (luma_height + 1);
176 
177  /* Calculate size of a chrominance planes. */
178  /* Add one line more for INTRA prediction. */
179  chroma_size = chroma_pitch * (chroma_height + 1);
180 
181  /* allocate frame buffers */
182  for (p = 0; p < 3; p++) {
183  ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
184  ctx->planes[p].width = !p ? luma_width : chroma_width;
185  ctx->planes[p].height = !p ? luma_height : chroma_height;
186 
187  ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
188  ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
189 
190  /* fill the INTRA prediction lines with the middle pixel value = 64 */
191  memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
192  memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
193 
194  /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
195  ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
196  ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
197  }
198 
199  return 0;
200 }
201 
202 
204 {
205  int p;
206 
207  for (p = 0; p < 3; p++) {
208  av_freep(&ctx->planes[p].buffers[0]);
209  av_freep(&ctx->planes[p].buffers[1]);
210  }
211 }
212 
213 
222 static void copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
223 {
224  int h, w, mv_x, mv_y, offset, offset_dst;
225  uint8_t *src, *dst;
226 
227  /* setup output and reference pointers */
228  offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
229  dst = plane->pixels[ctx->buf_sel] + offset_dst;
230  mv_y = cell->mv_ptr[0];
231  mv_x = cell->mv_ptr[1];
232  offset = offset_dst + mv_y * plane->pitch + mv_x;
233  src = plane->pixels[ctx->buf_sel ^ 1] + offset;
234 
235  h = cell->height << 2;
236 
237  for (w = cell->width; w > 0;) {
238  /* copy using 16xH blocks */
239  if (!((cell->xpos << 2) & 15) && w >= 4) {
240  for (; w >= 4; src += 16, dst += 16, w -= 4)
241  ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h);
242  }
243 
244  /* copy using 8xH blocks */
245  if (!((cell->xpos << 2) & 7) && w >= 2) {
246  ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h);
247  w -= 2;
248  src += 8;
249  dst += 8;
250  }
251 
252  if (w >= 1) {
253  copy_block4(dst, src, plane->pitch, plane->pitch, h);
254  w--;
255  src += 4;
256  dst += 4;
257  }
258  }
259 }
260 
261 
262 /* Average 4/8 pixels at once without rounding using SWAR */
263 #define AVG_32(dst, src, ref) \
264  AV_WN32A(dst, ((AV_RN32A(src) + AV_RN32A(ref)) >> 1) & 0x7F7F7F7FUL)
265 
266 #define AVG_64(dst, src, ref) \
267  AV_WN64A(dst, ((AV_RN64A(src) + AV_RN64A(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
268 
269 
270 /*
271  * Replicate each even pixel as follows:
272  * ABCDEFGH -> AACCEEGG
273  */
274 static inline uint64_t replicate64(uint64_t a) {
275 #if HAVE_BIGENDIAN
276  a &= 0xFF00FF00FF00FF00ULL;
277  a |= a >> 8;
278 #else
279  a &= 0x00FF00FF00FF00FFULL;
280  a |= a << 8;
281 #endif
282  return a;
283 }
284 
285 static inline uint32_t replicate32(uint32_t a) {
286 #if HAVE_BIGENDIAN
287  a &= 0xFF00FF00UL;
288  a |= a >> 8;
289 #else
290  a &= 0x00FF00FFUL;
291  a |= a << 8;
292 #endif
293  return a;
294 }
295 
296 
297 /* Fill n lines with 64bit pixel value pix */
298 static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
299  int32_t row_offset)
300 {
301  for (; n > 0; dst += row_offset, n--)
302  AV_WN64A(dst, pix);
303 }
304 
305 
306 /* Error codes for cell decoding. */
307 enum {
314 };
315 
316 
317 #define BUFFER_PRECHECK \
318 if (*data_ptr >= last_ptr) \
319  return IV3_OUT_OF_DATA; \
320 
321 #define RLE_BLOCK_COPY \
322  if (cell->mv_ptr || !skip_flag) \
323  copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
324 
325 #define RLE_BLOCK_COPY_8 \
326  pix64 = AV_RN64A(ref);\
327  if (is_first_row) {/* special prediction case: top line of a cell */\
328  pix64 = replicate64(pix64);\
329  fill_64(dst + row_offset, pix64, 7, row_offset);\
330  AVG_64(dst, ref, dst + row_offset);\
331  } else \
332  fill_64(dst, pix64, 8, row_offset)
333 
334 #define RLE_LINES_COPY \
335  copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
336 
337 #define RLE_LINES_COPY_M10 \
338  pix64 = AV_RN64A(ref);\
339  if (is_top_of_cell) {\
340  pix64 = replicate64(pix64);\
341  fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
342  AVG_64(dst, ref, dst + row_offset);\
343  } else \
344  fill_64(dst, pix64, num_lines << 1, row_offset)
345 
346 #define APPLY_DELTA_4 \
347  AV_WN16A(dst + line_offset , AV_RN16A(ref ) + delta_tab->deltas[dyad1]);\
348  AV_WN16A(dst + line_offset + 2, AV_RN16A(ref + 2) + delta_tab->deltas[dyad2]);\
349  if (mode >= 3) {\
350  if (is_top_of_cell && !cell->ypos) {\
351  AV_COPY32(dst, dst + row_offset);\
352  } else {\
353  AVG_32(dst, ref, dst + row_offset);\
354  }\
355  }
356 
357 #define APPLY_DELTA_8 \
358  /* apply two 32-bit VQ deltas to next even line */\
359  if (is_top_of_cell) { \
360  AV_WN32A(dst + row_offset , \
361  replicate32(AV_RN32A(ref )) + delta_tab->deltas_m10[dyad1]);\
362  AV_WN32A(dst + row_offset + 4, \
363  replicate32(AV_RN32A(ref + 4)) + delta_tab->deltas_m10[dyad2]);\
364  } else { \
365  AV_WN32A(dst + row_offset , \
366  AV_RN32A(ref ) + delta_tab->deltas_m10[dyad1]);\
367  AV_WN32A(dst + row_offset + 4, \
368  AV_RN32A(ref + 4) + delta_tab->deltas_m10[dyad2]);\
369  } \
370  /* odd lines are not coded but rather interpolated/replicated */\
371  /* first line of the cell on the top of image? - replicate */\
372  /* otherwise - interpolate */\
373  if (is_top_of_cell && !cell->ypos) {\
374  AV_COPY64(dst, dst + row_offset);\
375  } else \
376  AVG_64(dst, ref, dst + row_offset);
377 
378 
379 #define APPLY_DELTA_1011_INTER \
380  if (mode == 10) { \
381  AV_WN32A(dst , \
382  AV_RN32A(dst ) + delta_tab->deltas_m10[dyad1]);\
383  AV_WN32A(dst + 4 , \
384  AV_RN32A(dst + 4 ) + delta_tab->deltas_m10[dyad2]);\
385  AV_WN32A(dst + row_offset , \
386  AV_RN32A(dst + row_offset ) + delta_tab->deltas_m10[dyad1]);\
387  AV_WN32A(dst + row_offset + 4, \
388  AV_RN32A(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]);\
389  } else { \
390  AV_WN16A(dst , \
391  AV_RN16A(dst ) + delta_tab->deltas[dyad1]);\
392  AV_WN16A(dst + 2 , \
393  AV_RN16A(dst + 2 ) + delta_tab->deltas[dyad2]);\
394  AV_WN16A(dst + row_offset , \
395  AV_RN16A(dst + row_offset ) + delta_tab->deltas[dyad1]);\
396  AV_WN16A(dst + row_offset + 2, \
397  AV_RN16A(dst + row_offset + 2) + delta_tab->deltas[dyad2]);\
398  }
399 
400 
401 static int decode_cell_data(Cell *cell, uint8_t *block, uint8_t *ref_block,
402  int pitch, int h_zoom, int v_zoom, int mode,
403  const vqEntry *delta[2], int swap_quads[2],
404  const uint8_t **data_ptr, const uint8_t *last_ptr)
405 {
406  int x, y, line, num_lines;
407  int rle_blocks = 0;
408  uint8_t code, *dst, *ref;
409  const vqEntry *delta_tab;
410  unsigned int dyad1, dyad2;
411  uint64_t pix64;
412  int skip_flag = 0, is_top_of_cell, is_first_row = 1;
413  int row_offset, blk_row_offset, line_offset;
414 
415  row_offset = pitch;
416  blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
417  line_offset = v_zoom ? row_offset : 0;
418 
419  if (cell->height & v_zoom || cell->width & h_zoom)
420  return IV3_BAD_DATA;
421 
422  for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
423  for (x = 0; x < cell->width; x += 1 + h_zoom) {
424  ref = ref_block;
425  dst = block;
426 
427  if (rle_blocks > 0) {
428  if (mode <= 4) {
430  } else if (mode == 10 && !cell->mv_ptr) {
432  }
433  rle_blocks--;
434  } else {
435  for (line = 0; line < 4;) {
436  num_lines = 1;
437  is_top_of_cell = is_first_row && !line;
438 
439  /* select primary VQ table for odd, secondary for even lines */
440  if (mode <= 4)
441  delta_tab = delta[line & 1];
442  else
443  delta_tab = delta[1];
445  code = bytestream_get_byte(data_ptr);
446  if (code < 248) {
447  if (code < delta_tab->num_dyads) {
449  dyad1 = bytestream_get_byte(data_ptr);
450  dyad2 = code;
451  if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
452  return IV3_BAD_DATA;
453  } else {
454  /* process QUADS */
455  code -= delta_tab->num_dyads;
456  dyad1 = code / delta_tab->quad_exp;
457  dyad2 = code % delta_tab->quad_exp;
458  if (swap_quads[line & 1])
459  FFSWAP(unsigned int, dyad1, dyad2);
460  }
461  if (mode <= 4) {
463  } else if (mode == 10 && !cell->mv_ptr) {
465  } else {
467  }
468  } else {
469  /* process RLE codes */
470  switch (code) {
471  case RLE_ESC_FC:
472  skip_flag = 0;
473  rle_blocks = 1;
474  code = 253;
475  /* FALLTHROUGH */
476  case RLE_ESC_FF:
477  case RLE_ESC_FE:
478  case RLE_ESC_FD:
479  num_lines = 257 - code - line;
480  if (num_lines <= 0)
481  return IV3_BAD_RLE;
482  if (mode <= 4) {
484  } else if (mode == 10 && !cell->mv_ptr) {
486  }
487  break;
488  case RLE_ESC_FB:
490  code = bytestream_get_byte(data_ptr);
491  rle_blocks = (code & 0x1F) - 1; /* set block counter */
492  if (code >= 64 || rle_blocks < 0)
493  return IV3_BAD_COUNTER;
494  skip_flag = code & 0x20;
495  num_lines = 4 - line; /* enforce next block processing */
496  if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
497  if (mode <= 4) {
499  } else if (mode == 10 && !cell->mv_ptr) {
501  }
502  }
503  break;
504  case RLE_ESC_F9:
505  skip_flag = 1;
506  rle_blocks = 1;
507  /* FALLTHROUGH */
508  case RLE_ESC_FA:
509  if (line)
510  return IV3_BAD_RLE;
511  num_lines = 4; /* enforce next block processing */
512  if (cell->mv_ptr) {
513  if (mode <= 4) {
515  } else if (mode == 10 && !cell->mv_ptr) {
517  }
518  }
519  break;
520  default:
521  return IV3_UNSUPPORTED;
522  }
523  }
524 
525  line += num_lines;
526  ref += row_offset * (num_lines << v_zoom);
527  dst += row_offset * (num_lines << v_zoom);
528  }
529  }
530 
531  /* move to next horizontal block */
532  block += 4 << h_zoom;
533  ref_block += 4 << h_zoom;
534  }
535 
536  /* move to next line of blocks */
537  ref_block += blk_row_offset;
538  block += blk_row_offset;
539  }
540  return IV3_NOERR;
541 }
542 
543 
558  Plane *plane, Cell *cell, const uint8_t *data_ptr,
559  const uint8_t *last_ptr)
560 {
561  int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
562  int zoom_fac;
563  int offset, error = 0, swap_quads[2];
564  uint8_t code, *block, *ref_block = 0;
565  const vqEntry *delta[2];
566  const uint8_t *data_start = data_ptr;
567 
568  /* get coding mode and VQ table index from the VQ descriptor byte */
569  code = *data_ptr++;
570  mode = code >> 4;
571  vq_index = code & 0xF;
572 
573  /* setup output and reference pointers */
574  offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
575  block = plane->pixels[ctx->buf_sel] + offset;
576  if (!cell->mv_ptr) {
577  /* use previous line as reference for INTRA cells */
578  ref_block = block - plane->pitch;
579  } else if (mode >= 10) {
580  /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
581  /* so we don't need to do data copying for each RLE code later */
582  copy_cell(ctx, plane, cell);
583  } else {
584  /* set the pointer to the reference pixels for modes 0-4 INTER */
585  mv_y = cell->mv_ptr[0];
586  mv_x = cell->mv_ptr[1];
587  offset += mv_y * plane->pitch + mv_x;
588  ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
589  }
590 
591  /* select VQ tables as follows: */
592  /* modes 0 and 3 use only the primary table for all lines in a block */
593  /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
594  if (mode == 1 || mode == 4) {
595  code = ctx->alt_quant[vq_index];
596  prim_indx = (code >> 4) + ctx->cb_offset;
597  second_indx = (code & 0xF) + ctx->cb_offset;
598  } else {
599  vq_index += ctx->cb_offset;
600  prim_indx = second_indx = vq_index;
601  }
602 
603  if (prim_indx >= 24 || second_indx >= 24) {
604  av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
605  prim_indx, second_indx);
606  return AVERROR_INVALIDDATA;
607  }
608 
609  delta[0] = &vq_tab[second_indx];
610  delta[1] = &vq_tab[prim_indx];
611  swap_quads[0] = second_indx >= 16;
612  swap_quads[1] = prim_indx >= 16;
613 
614  /* requantize the prediction if VQ index of this cell differs from VQ index */
615  /* of the predicted cell in order to avoid overflows. */
616  if (vq_index >= 8 && ref_block) {
617  for (x = 0; x < cell->width << 2; x++)
618  ref_block[x] = requant_tab[vq_index & 7][ref_block[x]];
619  }
620 
621  error = IV3_NOERR;
622 
623  switch (mode) {
624  case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
625  case 1:
626  case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
627  case 4:
628  if (mode >= 3 && cell->mv_ptr) {
629  av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
630  return AVERROR_INVALIDDATA;
631  }
632 
633  zoom_fac = mode >= 3;
634  error = decode_cell_data(cell, block, ref_block, plane->pitch, 0, zoom_fac,
635  mode, delta, swap_quads, &data_ptr, last_ptr);
636  break;
637  case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
638  case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
639  if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
640  error = decode_cell_data(cell, block, ref_block, plane->pitch, 1, 1,
641  mode, delta, swap_quads, &data_ptr, last_ptr);
642  } else { /* mode 10 and 11 INTER processing */
643  if (mode == 11 && !cell->mv_ptr) {
644  av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
645  return AVERROR_INVALIDDATA;
646  }
647 
648  zoom_fac = mode == 10;
649  error = decode_cell_data(cell, block, ref_block, plane->pitch,
650  zoom_fac, 1, mode, delta, swap_quads,
651  &data_ptr, last_ptr);
652  }
653  break;
654  default:
655  av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
656  return AVERROR_INVALIDDATA;
657  }//switch mode
658 
659  switch (error) {
660  case IV3_BAD_RLE:
661  av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
662  mode, data_ptr[-1]);
663  return AVERROR_INVALIDDATA;
664  case IV3_BAD_DATA:
665  av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
666  return AVERROR_INVALIDDATA;
667  case IV3_BAD_COUNTER:
668  av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
669  return AVERROR_INVALIDDATA;
670  case IV3_UNSUPPORTED:
671  av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
672  return AVERROR_INVALIDDATA;
673  case IV3_OUT_OF_DATA:
674  av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
675  return AVERROR_INVALIDDATA;
676  }
677 
678  return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
679 }
680 
681 
682 /* Binary tree codes. */
683 enum {
684  H_SPLIT = 0,
685  V_SPLIT = 1,
688 };
689 
690 
691 #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
692 
693 #define UPDATE_BITPOS(n) \
694  ctx->skip_bits += (n); \
695  ctx->need_resync = 1
696 
697 #define RESYNC_BITSTREAM \
698  if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
699  skip_bits_long(&ctx->gb, ctx->skip_bits); \
700  ctx->skip_bits = 0; \
701  ctx->need_resync = 0; \
702  }
703 
704 #define CHECK_CELL \
705  if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
706  curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
707  av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
708  curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
709  return AVERROR_INVALIDDATA; \
710  }
711 
712 
714  Plane *plane, int code, Cell *ref_cell,
715  const int depth, const int strip_width)
716 {
717  Cell curr_cell;
718  int bytes_used;
719 
720  if (depth <= 0) {
721  av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
722  return AVERROR_INVALIDDATA; // unwind recursion
723  }
724 
725  curr_cell = *ref_cell; // clone parent cell
726  if (code == H_SPLIT) {
727  SPLIT_CELL(ref_cell->height, curr_cell.height);
728  ref_cell->ypos += curr_cell.height;
729  ref_cell->height -= curr_cell.height;
730  if (ref_cell->height <= 0 || curr_cell.height <= 0)
731  return AVERROR_INVALIDDATA;
732  } else if (code == V_SPLIT) {
733  if (curr_cell.width > strip_width) {
734  /* split strip */
735  curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
736  } else
737  SPLIT_CELL(ref_cell->width, curr_cell.width);
738  ref_cell->xpos += curr_cell.width;
739  ref_cell->width -= curr_cell.width;
740  if (ref_cell->width <= 0 || curr_cell.width <= 0)
741  return AVERROR_INVALIDDATA;
742  }
743 
744  while (1) { /* loop until return */
746  switch (code = get_bits(&ctx->gb, 2)) {
747  case H_SPLIT:
748  case V_SPLIT:
749  if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
750  return AVERROR_INVALIDDATA;
751  break;
752  case INTRA_NULL:
753  if (!curr_cell.tree) { /* MC tree INTRA code */
754  curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
755  curr_cell.tree = 1; /* enter the VQ tree */
756  } else { /* VQ tree NULL code */
758  code = get_bits(&ctx->gb, 2);
759  if (code >= 2) {
760  av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
761  return AVERROR_INVALIDDATA;
762  }
763  if (code == 1)
764  av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
765 
766  CHECK_CELL
767  if (!curr_cell.mv_ptr)
768  return AVERROR_INVALIDDATA;
769  copy_cell(ctx, plane, &curr_cell);
770  return 0;
771  }
772  break;
773  case INTER_DATA:
774  if (!curr_cell.tree) { /* MC tree INTER code */
775  unsigned mv_idx;
776  /* get motion vector index and setup the pointer to the mv set */
777  if (!ctx->need_resync)
778  ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
779  mv_idx = *(ctx->next_cell_data++) << 1;
780  if (mv_idx >= ctx->num_vectors) {
781  av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
782  return AVERROR_INVALIDDATA;
783  }
784  curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx];
785  curr_cell.tree = 1; /* enter the VQ tree */
786  UPDATE_BITPOS(8);
787  } else { /* VQ tree DATA code */
788  if (!ctx->need_resync)
789  ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
790 
791  CHECK_CELL
792  bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
793  ctx->next_cell_data, ctx->last_byte);
794  if (bytes_used < 0)
795  return AVERROR_INVALIDDATA;
796 
797  UPDATE_BITPOS(bytes_used << 3);
798  ctx->next_cell_data += bytes_used;
799  return 0;
800  }
801  break;
802  }
803  }//while
804 
805  return 0;
806 }
807 
808 
810  Plane *plane, const uint8_t *data, int32_t data_size,
811  int32_t strip_width)
812 {
813  Cell curr_cell;
814  unsigned num_vectors;
815 
816  /* each plane data starts with mc_vector_count field, */
817  /* an optional array of motion vectors followed by the vq data */
818  num_vectors = bytestream_get_le32(&data);
819  if (num_vectors > 256) {
820  av_log(ctx->avctx, AV_LOG_ERROR,
821  "Read invalid number of motion vectors %d\n", num_vectors);
822  return AVERROR_INVALIDDATA;
823  }
824  if (num_vectors * 2 >= data_size)
825  return AVERROR_INVALIDDATA;
826 
827  ctx->num_vectors = num_vectors;
828  ctx->mc_vectors = num_vectors ? data : 0;
829 
830  /* init the bitreader */
831  init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
832  ctx->skip_bits = 0;
833  ctx->need_resync = 0;
834 
835  ctx->last_byte = data + data_size - 1;
836 
837  /* initialize the 1st cell and set its dimensions to whole plane */
838  curr_cell.xpos = curr_cell.ypos = 0;
839  curr_cell.width = plane->width >> 2;
840  curr_cell.height = plane->height >> 2;
841  curr_cell.tree = 0; // we are in the MC tree now
842  curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
843 
844  return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
845 }
846 
847 
848 #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
849 
851  const uint8_t *buf, int buf_size)
852 {
853  const uint8_t *buf_ptr = buf, *bs_hdr;
854  uint32_t frame_num, word2, check_sum, data_size;
855  uint32_t y_offset, u_offset, v_offset, starts[3], ends[3];
856  uint16_t height, width;
857  int i, j;
858 
859  /* parse and check the OS header */
860  frame_num = bytestream_get_le32(&buf_ptr);
861  word2 = bytestream_get_le32(&buf_ptr);
862  check_sum = bytestream_get_le32(&buf_ptr);
863  data_size = bytestream_get_le32(&buf_ptr);
864 
865  if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
866  av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
867  return AVERROR_INVALIDDATA;
868  }
869 
870  /* parse the bitstream header */
871  bs_hdr = buf_ptr;
872 
873  if (bytestream_get_le16(&buf_ptr) != 32) {
874  av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
875  return AVERROR_INVALIDDATA;
876  }
877 
878  ctx->frame_num = frame_num;
879  ctx->frame_flags = bytestream_get_le16(&buf_ptr);
880  ctx->data_size = (bytestream_get_le32(&buf_ptr) + 7) >> 3;
881  ctx->cb_offset = *buf_ptr++;
882 
883  if (ctx->data_size == 16)
884  return 4;
885  if (ctx->data_size > buf_size)
886  ctx->data_size = buf_size;
887 
888  buf_ptr += 3; // skip reserved byte and checksum
889 
890  /* check frame dimensions */
891  height = bytestream_get_le16(&buf_ptr);
892  width = bytestream_get_le16(&buf_ptr);
893  if (av_image_check_size(width, height, 0, avctx))
894  return AVERROR_INVALIDDATA;
895 
896  if (width != ctx->width || height != ctx->height) {
897  int res;
898 
899  av_dlog(avctx, "Frame dimensions changed!\n");
900 
901  if (width < 16 || width > 640 ||
902  height < 16 || height > 480 ||
903  width & 3 || height & 3) {
904  av_log(avctx, AV_LOG_ERROR,
905  "Invalid picture dimensions: %d x %d!\n", width, height);
906  return AVERROR_INVALIDDATA;
907  }
908 
909  ctx->width = width;
910  ctx->height = height;
911 
912  free_frame_buffers(ctx);
913  if ((res = allocate_frame_buffers(ctx, avctx)) < 0)
914  return res;
915  avcodec_set_dimensions(avctx, width, height);
916  }
917 
918  y_offset = bytestream_get_le32(&buf_ptr);
919  v_offset = bytestream_get_le32(&buf_ptr);
920  u_offset = bytestream_get_le32(&buf_ptr);
921 
922  /* unfortunately there is no common order of planes in the buffer */
923  /* so we use that sorting algo for determining planes data sizes */
924  starts[0] = y_offset;
925  starts[1] = v_offset;
926  starts[2] = u_offset;
927 
928  for (j = 0; j < 3; j++) {
929  ends[j] = ctx->data_size;
930  for (i = 2; i >= 0; i--)
931  if (starts[i] < ends[j] && starts[i] > starts[j])
932  ends[j] = starts[i];
933  }
934 
935  ctx->y_data_size = ends[0] - starts[0];
936  ctx->v_data_size = ends[1] - starts[1];
937  ctx->u_data_size = ends[2] - starts[2];
938  if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
939  FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
940  av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
941  return AVERROR_INVALIDDATA;
942  }
943 
944  ctx->y_data_ptr = bs_hdr + y_offset;
945  ctx->v_data_ptr = bs_hdr + v_offset;
946  ctx->u_data_ptr = bs_hdr + u_offset;
947  ctx->alt_quant = buf_ptr + sizeof(uint32_t);
948 
949  if (ctx->data_size == 16) {
950  av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
951  return 16;
952  }
953 
954  if (ctx->frame_flags & BS_8BIT_PEL) {
955  av_log_ask_for_sample(avctx, "8-bit pixel format\n");
956  return AVERROR_PATCHWELCOME;
957  }
958 
959  if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
960  av_log_ask_for_sample(avctx, "halfpel motion vectors\n");
961  return AVERROR_PATCHWELCOME;
962  }
963 
964  return 0;
965 }
966 
967 
977 static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, int dst_pitch)
978 {
979  int x,y;
980  const uint8_t *src = plane->pixels[buf_sel];
981  uint32_t pitch = plane->pitch;
982 
983  for (y = 0; y < plane->height; y++) {
984  /* convert four pixels at once using SWAR */
985  for (x = 0; x < plane->width >> 2; x++) {
986  AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
987  src += 4;
988  dst += 4;
989  }
990 
991  for (x <<= 2; x < plane->width; x++)
992  *dst++ = *src++ << 1;
993 
994  src += pitch - plane->width;
995  dst += dst_pitch - plane->width;
996  }
997 }
998 
999 
1001 {
1002  Indeo3DecodeContext *ctx = avctx->priv_data;
1003 
1004  ctx->avctx = avctx;
1005  ctx->width = avctx->width;
1006  ctx->height = avctx->height;
1007  avctx->pix_fmt = PIX_FMT_YUV410P;
1008 
1010 
1011  dsputil_init(&ctx->dsp, avctx);
1012 
1013  allocate_frame_buffers(ctx, avctx);
1014 
1015  return 0;
1016 }
1017 
1018 
1019 static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
1020  AVPacket *avpkt)
1021 {
1022  Indeo3DecodeContext *ctx = avctx->priv_data;
1023  const uint8_t *buf = avpkt->data;
1024  int buf_size = avpkt->size;
1025  int res;
1026 
1027  res = decode_frame_headers(ctx, avctx, buf, buf_size);
1028  if (res < 0)
1029  return res;
1030 
1031  /* skip sync(null) frames */
1032  if (res) {
1033  // we have processed 16 bytes but no data was decoded
1034  *data_size = 0;
1035  return buf_size;
1036  }
1037 
1038  /* skip droppable INTER frames if requested */
1039  if (ctx->frame_flags & BS_NONREF &&
1040  (avctx->skip_frame >= AVDISCARD_NONREF))
1041  return 0;
1042 
1043  /* skip INTER frames if requested */
1044  if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
1045  return 0;
1046 
1047  /* use BS_BUFFER flag for buffer switching */
1048  ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
1049 
1050  /* decode luma plane */
1051  if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
1052  return res;
1053 
1054  /* decode chroma planes */
1055  if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
1056  return res;
1057 
1058  if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
1059  return res;
1060 
1061  if (ctx->frame.data[0])
1062  avctx->release_buffer(avctx, &ctx->frame);
1063 
1064  ctx->frame.reference = 0;
1065  if ((res = avctx->get_buffer(avctx, &ctx->frame)) < 0) {
1066  av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1067  return res;
1068  }
1069 
1070  output_plane(&ctx->planes[0], ctx->buf_sel, ctx->frame.data[0], ctx->frame.linesize[0]);
1071  output_plane(&ctx->planes[1], ctx->buf_sel, ctx->frame.data[1], ctx->frame.linesize[1]);
1072  output_plane(&ctx->planes[2], ctx->buf_sel, ctx->frame.data[2], ctx->frame.linesize[2]);
1073 
1074  *data_size = sizeof(AVFrame);
1075  *(AVFrame*)data = ctx->frame;
1076 
1077  return buf_size;
1078 }
1079 
1080 
1082 {
1083  Indeo3DecodeContext *ctx = avctx->priv_data;
1084 
1085  free_frame_buffers(avctx->priv_data);
1086 
1087  if (ctx->frame.data[0])
1088  avctx->release_buffer(avctx, &ctx->frame);
1089 
1090  return 0;
1091 }
1092 
1094  .name = "indeo3",
1095  .type = AVMEDIA_TYPE_VIDEO,
1096  .id = CODEC_ID_INDEO3,
1097  .priv_data_size = sizeof(Indeo3DecodeContext),
1098  .init = decode_init,
1099  .close = decode_close,
1100  .decode = decode_frame,
1101  .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
1102 };