00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00027 #include "libavutil/audioconvert.h"
00028 #include "avcodec.h"
00029 #include "get_bits.h"
00030 #include "mathops.h"
00031 #include "mpegaudiodsp.h"
00032
00033
00034
00035
00036
00037
00038 #include "mpegaudio.h"
00039 #include "mpegaudiodecheader.h"
00040
00041 #define BACKSTEP_SIZE 512
00042 #define EXTRABYTES 24
00043 #define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
00044
00045
00046 typedef struct GranuleDef {
00047 uint8_t scfsi;
00048 int part2_3_length;
00049 int big_values;
00050 int global_gain;
00051 int scalefac_compress;
00052 uint8_t block_type;
00053 uint8_t switch_point;
00054 int table_select[3];
00055 int subblock_gain[3];
00056 uint8_t scalefac_scale;
00057 uint8_t count1table_select;
00058 int region_size[3];
00059 int preflag;
00060 int short_start, long_end;
00061 uint8_t scale_factors[40];
00062 DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18];
00063 } GranuleDef;
00064
00065 typedef struct MPADecodeContext {
00066 MPA_DECODE_HEADER
00067 uint8_t last_buf[LAST_BUF_SIZE];
00068 int last_buf_size;
00069
00070 uint32_t free_format_next_header;
00071 GetBitContext gb;
00072 GetBitContext in_gb;
00073 DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
00074 int synth_buf_offset[MPA_MAX_CHANNELS];
00075 DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
00076 INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18];
00077 GranuleDef granules[2][2];
00078 int adu_mode;
00079 int dither_state;
00080 int err_recognition;
00081 AVCodecContext* avctx;
00082 MPADSPContext mpadsp;
00083 AVFrame frame;
00084 } MPADecodeContext;
00085
00086 #if CONFIG_FLOAT
00087 # define SHR(a,b) ((a)*(1.0f/(1<<(b))))
00088 # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
00089 # define FIXR(x) ((float)(x))
00090 # define FIXHR(x) ((float)(x))
00091 # define MULH3(x, y, s) ((s)*(y)*(x))
00092 # define MULLx(x, y, s) ((y)*(x))
00093 # define RENAME(a) a ## _float
00094 # define OUT_FMT AV_SAMPLE_FMT_FLT
00095 #else
00096 # define SHR(a,b) ((a)>>(b))
00097
00098 # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
00099 # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
00100 # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
00101 # define MULH3(x, y, s) MULH((s)*(x), y)
00102 # define MULLx(x, y, s) MULL(x,y,s)
00103 # define RENAME(a) a ## _fixed
00104 # define OUT_FMT AV_SAMPLE_FMT_S16
00105 #endif
00106
00107
00108
00109 #define HEADER_SIZE 4
00110
00111 #include "mpegaudiodata.h"
00112 #include "mpegaudiodectab.h"
00113
00114
00115 static VLC huff_vlc[16];
00116 static VLC_TYPE huff_vlc_tables[
00117 0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
00118 142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
00119 ][2];
00120 static const int huff_vlc_tables_sizes[16] = {
00121 0, 128, 128, 128, 130, 128, 154, 166,
00122 142, 204, 190, 170, 542, 460, 662, 414
00123 };
00124 static VLC huff_quad_vlc[2];
00125 static VLC_TYPE huff_quad_vlc_tables[128+16][2];
00126 static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
00127
00128 static uint16_t band_index_long[9][23];
00129 #include "mpegaudio_tablegen.h"
00130
00131 static INTFLOAT is_table[2][16];
00132 static INTFLOAT is_table_lsf[2][2][16];
00133 static INTFLOAT csa_table[8][4];
00134
00135 static int16_t division_tab3[1<<6 ];
00136 static int16_t division_tab5[1<<8 ];
00137 static int16_t division_tab9[1<<11];
00138
00139 static int16_t * const division_tabs[4] = {
00140 division_tab3, division_tab5, NULL, division_tab9
00141 };
00142
00143
00144 static uint16_t scale_factor_modshift[64];
00145
00146 static int32_t scale_factor_mult[15][3];
00147
00148
00149 #define SCALE_GEN(v) \
00150 { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
00151
00152 static const int32_t scale_factor_mult2[3][3] = {
00153 SCALE_GEN(4.0 / 3.0),
00154 SCALE_GEN(4.0 / 5.0),
00155 SCALE_GEN(4.0 / 9.0),
00156 };
00157
00162 static void ff_region_offset2size(GranuleDef *g)
00163 {
00164 int i, k, j = 0;
00165 g->region_size[2] = 576 / 2;
00166 for (i = 0; i < 3; i++) {
00167 k = FFMIN(g->region_size[i], g->big_values);
00168 g->region_size[i] = k - j;
00169 j = k;
00170 }
00171 }
00172
00173 static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g)
00174 {
00175 if (g->block_type == 2)
00176 g->region_size[0] = (36 / 2);
00177 else {
00178 if (s->sample_rate_index <= 2)
00179 g->region_size[0] = (36 / 2);
00180 else if (s->sample_rate_index != 8)
00181 g->region_size[0] = (54 / 2);
00182 else
00183 g->region_size[0] = (108 / 2);
00184 }
00185 g->region_size[1] = (576 / 2);
00186 }
00187
00188 static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2)
00189 {
00190 int l;
00191 g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
00192
00193 l = FFMIN(ra1 + ra2 + 2, 22);
00194 g->region_size[1] = band_index_long[s->sample_rate_index][ l] >> 1;
00195 }
00196
00197 static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
00198 {
00199 if (g->block_type == 2) {
00200 if (g->switch_point) {
00201
00202
00203
00204 if (s->sample_rate_index <= 2)
00205 g->long_end = 8;
00206 else if (s->sample_rate_index != 8)
00207 g->long_end = 6;
00208 else
00209 g->long_end = 4;
00210
00211 g->short_start = 3;
00212 } else {
00213 g->long_end = 0;
00214 g->short_start = 0;
00215 }
00216 } else {
00217 g->short_start = 13;
00218 g->long_end = 22;
00219 }
00220 }
00221
00222
00223
00224 static inline int l1_unscale(int n, int mant, int scale_factor)
00225 {
00226 int shift, mod;
00227 int64_t val;
00228
00229 shift = scale_factor_modshift[scale_factor];
00230 mod = shift & 3;
00231 shift >>= 2;
00232 val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
00233 shift += n;
00234
00235 return (int)((val + (1LL << (shift - 1))) >> shift);
00236 }
00237
00238 static inline int l2_unscale_group(int steps, int mant, int scale_factor)
00239 {
00240 int shift, mod, val;
00241
00242 shift = scale_factor_modshift[scale_factor];
00243 mod = shift & 3;
00244 shift >>= 2;
00245
00246 val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
00247
00248 if (shift > 0)
00249 val = (val + (1 << (shift - 1))) >> shift;
00250 return val;
00251 }
00252
00253
00254 static inline int l3_unscale(int value, int exponent)
00255 {
00256 unsigned int m;
00257 int e;
00258
00259 e = table_4_3_exp [4 * value + (exponent & 3)];
00260 m = table_4_3_value[4 * value + (exponent & 3)];
00261 e -= exponent >> 2;
00262 assert(e >= 1);
00263 if (e > 31)
00264 return 0;
00265 m = (m + (1 << (e - 1))) >> e;
00266
00267 return m;
00268 }
00269
00270 static av_cold void decode_init_static(void)
00271 {
00272 int i, j, k;
00273 int offset;
00274
00275
00276 for (i = 0; i < 64; i++) {
00277 int shift, mod;
00278
00279 shift = i / 3;
00280 mod = i % 3;
00281 scale_factor_modshift[i] = mod | (shift << 2);
00282 }
00283
00284
00285 for (i = 0; i < 15; i++) {
00286 int n, norm;
00287 n = i + 2;
00288 norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
00289 scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
00290 scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
00291 scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
00292 av_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm,
00293 scale_factor_mult[i][0],
00294 scale_factor_mult[i][1],
00295 scale_factor_mult[i][2]);
00296 }
00297
00298 RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
00299
00300
00301 offset = 0;
00302 for (i = 1; i < 16; i++) {
00303 const HuffTable *h = &mpa_huff_tables[i];
00304 int xsize, x, y;
00305 uint8_t tmp_bits [512];
00306 uint16_t tmp_codes[512];
00307
00308 memset(tmp_bits , 0, sizeof(tmp_bits ));
00309 memset(tmp_codes, 0, sizeof(tmp_codes));
00310
00311 xsize = h->xsize;
00312
00313 j = 0;
00314 for (x = 0; x < xsize; x++) {
00315 for (y = 0; y < xsize; y++) {
00316 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
00317 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
00318 }
00319 }
00320
00321
00322 huff_vlc[i].table = huff_vlc_tables+offset;
00323 huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
00324 init_vlc(&huff_vlc[i], 7, 512,
00325 tmp_bits, 1, 1, tmp_codes, 2, 2,
00326 INIT_VLC_USE_NEW_STATIC);
00327 offset += huff_vlc_tables_sizes[i];
00328 }
00329 assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
00330
00331 offset = 0;
00332 for (i = 0; i < 2; i++) {
00333 huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
00334 huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
00335 init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
00336 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
00337 INIT_VLC_USE_NEW_STATIC);
00338 offset += huff_quad_vlc_tables_sizes[i];
00339 }
00340 assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
00341
00342 for (i = 0; i < 9; i++) {
00343 k = 0;
00344 for (j = 0; j < 22; j++) {
00345 band_index_long[i][j] = k;
00346 k += band_size_long[i][j];
00347 }
00348 band_index_long[i][22] = k;
00349 }
00350
00351
00352
00353 mpegaudio_tableinit();
00354
00355 for (i = 0; i < 4; i++) {
00356 if (ff_mpa_quant_bits[i] < 0) {
00357 for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
00358 int val1, val2, val3, steps;
00359 int val = j;
00360 steps = ff_mpa_quant_steps[i];
00361 val1 = val % steps;
00362 val /= steps;
00363 val2 = val % steps;
00364 val3 = val / steps;
00365 division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
00366 }
00367 }
00368 }
00369
00370
00371 for (i = 0; i < 7; i++) {
00372 float f;
00373 INTFLOAT v;
00374 if (i != 6) {
00375 f = tan((double)i * M_PI / 12.0);
00376 v = FIXR(f / (1.0 + f));
00377 } else {
00378 v = FIXR(1.0);
00379 }
00380 is_table[0][ i] = v;
00381 is_table[1][6 - i] = v;
00382 }
00383
00384 for (i = 7; i < 16; i++)
00385 is_table[0][i] = is_table[1][i] = 0.0;
00386
00387 for (i = 0; i < 16; i++) {
00388 double f;
00389 int e, k;
00390
00391 for (j = 0; j < 2; j++) {
00392 e = -(j + 1) * ((i + 1) >> 1);
00393 f = pow(2.0, e / 4.0);
00394 k = i & 1;
00395 is_table_lsf[j][k ^ 1][i] = FIXR(f);
00396 is_table_lsf[j][k ][i] = FIXR(1.0);
00397 av_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
00398 i, j, (float) is_table_lsf[j][0][i],
00399 (float) is_table_lsf[j][1][i]);
00400 }
00401 }
00402
00403 for (i = 0; i < 8; i++) {
00404 float ci, cs, ca;
00405 ci = ci_table[i];
00406 cs = 1.0 / sqrt(1.0 + ci * ci);
00407 ca = cs * ci;
00408 #if !CONFIG_FLOAT
00409 csa_table[i][0] = FIXHR(cs/4);
00410 csa_table[i][1] = FIXHR(ca/4);
00411 csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
00412 csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
00413 #else
00414 csa_table[i][0] = cs;
00415 csa_table[i][1] = ca;
00416 csa_table[i][2] = ca + cs;
00417 csa_table[i][3] = ca - cs;
00418 #endif
00419 }
00420 }
00421
00422 static av_cold int decode_init(AVCodecContext * avctx)
00423 {
00424 static int initialized_tables = 0;
00425 MPADecodeContext *s = avctx->priv_data;
00426
00427 if (!initialized_tables) {
00428 decode_init_static();
00429 initialized_tables = 1;
00430 }
00431
00432 s->avctx = avctx;
00433
00434 ff_mpadsp_init(&s->mpadsp);
00435
00436 avctx->sample_fmt= OUT_FMT;
00437 s->err_recognition = avctx->err_recognition;
00438
00439 if (avctx->codec_id == CODEC_ID_MP3ADU)
00440 s->adu_mode = 1;
00441
00442 avcodec_get_frame_defaults(&s->frame);
00443 avctx->coded_frame = &s->frame;
00444
00445 return 0;
00446 }
00447
00448 #define C3 FIXHR(0.86602540378443864676/2)
00449 #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
00450 #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
00451 #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
00452
00453
00454
00455 static void imdct12(INTFLOAT *out, INTFLOAT *in)
00456 {
00457 INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
00458
00459 in0 = in[0*3];
00460 in1 = in[1*3] + in[0*3];
00461 in2 = in[2*3] + in[1*3];
00462 in3 = in[3*3] + in[2*3];
00463 in4 = in[4*3] + in[3*3];
00464 in5 = in[5*3] + in[4*3];
00465 in5 += in3;
00466 in3 += in1;
00467
00468 in2 = MULH3(in2, C3, 2);
00469 in3 = MULH3(in3, C3, 4);
00470
00471 t1 = in0 - in4;
00472 t2 = MULH3(in1 - in5, C4, 2);
00473
00474 out[ 7] =
00475 out[10] = t1 + t2;
00476 out[ 1] =
00477 out[ 4] = t1 - t2;
00478
00479 in0 += SHR(in4, 1);
00480 in4 = in0 + in2;
00481 in5 += 2*in1;
00482 in1 = MULH3(in5 + in3, C5, 1);
00483 out[ 8] =
00484 out[ 9] = in4 + in1;
00485 out[ 2] =
00486 out[ 3] = in4 - in1;
00487
00488 in0 -= in2;
00489 in5 = MULH3(in5 - in3, C6, 2);
00490 out[ 0] =
00491 out[ 5] = in0 - in5;
00492 out[ 6] =
00493 out[11] = in0 + in5;
00494 }
00495
00496
00497 static int mp_decode_layer1(MPADecodeContext *s)
00498 {
00499 int bound, i, v, n, ch, j, mant;
00500 uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
00501 uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
00502
00503 if (s->mode == MPA_JSTEREO)
00504 bound = (s->mode_ext + 1) * 4;
00505 else
00506 bound = SBLIMIT;
00507
00508
00509 for (i = 0; i < bound; i++) {
00510 for (ch = 0; ch < s->nb_channels; ch++) {
00511 allocation[ch][i] = get_bits(&s->gb, 4);
00512 }
00513 }
00514 for (i = bound; i < SBLIMIT; i++)
00515 allocation[0][i] = get_bits(&s->gb, 4);
00516
00517
00518 for (i = 0; i < bound; i++) {
00519 for (ch = 0; ch < s->nb_channels; ch++) {
00520 if (allocation[ch][i])
00521 scale_factors[ch][i] = get_bits(&s->gb, 6);
00522 }
00523 }
00524 for (i = bound; i < SBLIMIT; i++) {
00525 if (allocation[0][i]) {
00526 scale_factors[0][i] = get_bits(&s->gb, 6);
00527 scale_factors[1][i] = get_bits(&s->gb, 6);
00528 }
00529 }
00530
00531
00532 for (j = 0; j < 12; j++) {
00533 for (i = 0; i < bound; i++) {
00534 for (ch = 0; ch < s->nb_channels; ch++) {
00535 n = allocation[ch][i];
00536 if (n) {
00537 mant = get_bits(&s->gb, n + 1);
00538 v = l1_unscale(n, mant, scale_factors[ch][i]);
00539 } else {
00540 v = 0;
00541 }
00542 s->sb_samples[ch][j][i] = v;
00543 }
00544 }
00545 for (i = bound; i < SBLIMIT; i++) {
00546 n = allocation[0][i];
00547 if (n) {
00548 mant = get_bits(&s->gb, n + 1);
00549 v = l1_unscale(n, mant, scale_factors[0][i]);
00550 s->sb_samples[0][j][i] = v;
00551 v = l1_unscale(n, mant, scale_factors[1][i]);
00552 s->sb_samples[1][j][i] = v;
00553 } else {
00554 s->sb_samples[0][j][i] = 0;
00555 s->sb_samples[1][j][i] = 0;
00556 }
00557 }
00558 }
00559 return 12;
00560 }
00561
00562 static int mp_decode_layer2(MPADecodeContext *s)
00563 {
00564 int sblimit;
00565 const unsigned char *alloc_table;
00566 int table, bit_alloc_bits, i, j, ch, bound, v;
00567 unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
00568 unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
00569 unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
00570 int scale, qindex, bits, steps, k, l, m, b;
00571
00572
00573 table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
00574 s->sample_rate, s->lsf);
00575 sblimit = ff_mpa_sblimit_table[table];
00576 alloc_table = ff_mpa_alloc_tables[table];
00577
00578 if (s->mode == MPA_JSTEREO)
00579 bound = (s->mode_ext + 1) * 4;
00580 else
00581 bound = sblimit;
00582
00583 av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
00584
00585
00586 if (bound > sblimit)
00587 bound = sblimit;
00588
00589
00590 j = 0;
00591 for (i = 0; i < bound; i++) {
00592 bit_alloc_bits = alloc_table[j];
00593 for (ch = 0; ch < s->nb_channels; ch++)
00594 bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
00595 j += 1 << bit_alloc_bits;
00596 }
00597 for (i = bound; i < sblimit; i++) {
00598 bit_alloc_bits = alloc_table[j];
00599 v = get_bits(&s->gb, bit_alloc_bits);
00600 bit_alloc[0][i] = v;
00601 bit_alloc[1][i] = v;
00602 j += 1 << bit_alloc_bits;
00603 }
00604
00605
00606 for (i = 0; i < sblimit; i++) {
00607 for (ch = 0; ch < s->nb_channels; ch++) {
00608 if (bit_alloc[ch][i])
00609 scale_code[ch][i] = get_bits(&s->gb, 2);
00610 }
00611 }
00612
00613
00614 for (i = 0; i < sblimit; i++) {
00615 for (ch = 0; ch < s->nb_channels; ch++) {
00616 if (bit_alloc[ch][i]) {
00617 sf = scale_factors[ch][i];
00618 switch (scale_code[ch][i]) {
00619 default:
00620 case 0:
00621 sf[0] = get_bits(&s->gb, 6);
00622 sf[1] = get_bits(&s->gb, 6);
00623 sf[2] = get_bits(&s->gb, 6);
00624 break;
00625 case 2:
00626 sf[0] = get_bits(&s->gb, 6);
00627 sf[1] = sf[0];
00628 sf[2] = sf[0];
00629 break;
00630 case 1:
00631 sf[0] = get_bits(&s->gb, 6);
00632 sf[2] = get_bits(&s->gb, 6);
00633 sf[1] = sf[0];
00634 break;
00635 case 3:
00636 sf[0] = get_bits(&s->gb, 6);
00637 sf[2] = get_bits(&s->gb, 6);
00638 sf[1] = sf[2];
00639 break;
00640 }
00641 }
00642 }
00643 }
00644
00645
00646 for (k = 0; k < 3; k++) {
00647 for (l = 0; l < 12; l += 3) {
00648 j = 0;
00649 for (i = 0; i < bound; i++) {
00650 bit_alloc_bits = alloc_table[j];
00651 for (ch = 0; ch < s->nb_channels; ch++) {
00652 b = bit_alloc[ch][i];
00653 if (b) {
00654 scale = scale_factors[ch][i][k];
00655 qindex = alloc_table[j+b];
00656 bits = ff_mpa_quant_bits[qindex];
00657 if (bits < 0) {
00658 int v2;
00659
00660 v = get_bits(&s->gb, -bits);
00661 v2 = division_tabs[qindex][v];
00662 steps = ff_mpa_quant_steps[qindex];
00663
00664 s->sb_samples[ch][k * 12 + l + 0][i] =
00665 l2_unscale_group(steps, v2 & 15, scale);
00666 s->sb_samples[ch][k * 12 + l + 1][i] =
00667 l2_unscale_group(steps, (v2 >> 4) & 15, scale);
00668 s->sb_samples[ch][k * 12 + l + 2][i] =
00669 l2_unscale_group(steps, v2 >> 8 , scale);
00670 } else {
00671 for (m = 0; m < 3; m++) {
00672 v = get_bits(&s->gb, bits);
00673 v = l1_unscale(bits - 1, v, scale);
00674 s->sb_samples[ch][k * 12 + l + m][i] = v;
00675 }
00676 }
00677 } else {
00678 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
00679 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
00680 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
00681 }
00682 }
00683
00684 j += 1 << bit_alloc_bits;
00685 }
00686
00687 for (i = bound; i < sblimit; i++) {
00688 bit_alloc_bits = alloc_table[j];
00689 b = bit_alloc[0][i];
00690 if (b) {
00691 int mant, scale0, scale1;
00692 scale0 = scale_factors[0][i][k];
00693 scale1 = scale_factors[1][i][k];
00694 qindex = alloc_table[j+b];
00695 bits = ff_mpa_quant_bits[qindex];
00696 if (bits < 0) {
00697
00698 v = get_bits(&s->gb, -bits);
00699 steps = ff_mpa_quant_steps[qindex];
00700 mant = v % steps;
00701 v = v / steps;
00702 s->sb_samples[0][k * 12 + l + 0][i] =
00703 l2_unscale_group(steps, mant, scale0);
00704 s->sb_samples[1][k * 12 + l + 0][i] =
00705 l2_unscale_group(steps, mant, scale1);
00706 mant = v % steps;
00707 v = v / steps;
00708 s->sb_samples[0][k * 12 + l + 1][i] =
00709 l2_unscale_group(steps, mant, scale0);
00710 s->sb_samples[1][k * 12 + l + 1][i] =
00711 l2_unscale_group(steps, mant, scale1);
00712 s->sb_samples[0][k * 12 + l + 2][i] =
00713 l2_unscale_group(steps, v, scale0);
00714 s->sb_samples[1][k * 12 + l + 2][i] =
00715 l2_unscale_group(steps, v, scale1);
00716 } else {
00717 for (m = 0; m < 3; m++) {
00718 mant = get_bits(&s->gb, bits);
00719 s->sb_samples[0][k * 12 + l + m][i] =
00720 l1_unscale(bits - 1, mant, scale0);
00721 s->sb_samples[1][k * 12 + l + m][i] =
00722 l1_unscale(bits - 1, mant, scale1);
00723 }
00724 }
00725 } else {
00726 s->sb_samples[0][k * 12 + l + 0][i] = 0;
00727 s->sb_samples[0][k * 12 + l + 1][i] = 0;
00728 s->sb_samples[0][k * 12 + l + 2][i] = 0;
00729 s->sb_samples[1][k * 12 + l + 0][i] = 0;
00730 s->sb_samples[1][k * 12 + l + 1][i] = 0;
00731 s->sb_samples[1][k * 12 + l + 2][i] = 0;
00732 }
00733
00734 j += 1 << bit_alloc_bits;
00735 }
00736
00737 for (i = sblimit; i < SBLIMIT; i++) {
00738 for (ch = 0; ch < s->nb_channels; ch++) {
00739 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
00740 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
00741 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
00742 }
00743 }
00744 }
00745 }
00746 return 3 * 12;
00747 }
00748
00749 #define SPLIT(dst,sf,n) \
00750 if (n == 3) { \
00751 int m = (sf * 171) >> 9; \
00752 dst = sf - 3 * m; \
00753 sf = m; \
00754 } else if (n == 4) { \
00755 dst = sf & 3; \
00756 sf >>= 2; \
00757 } else if (n == 5) { \
00758 int m = (sf * 205) >> 10; \
00759 dst = sf - 5 * m; \
00760 sf = m; \
00761 } else if (n == 6) { \
00762 int m = (sf * 171) >> 10; \
00763 dst = sf - 6 * m; \
00764 sf = m; \
00765 } else { \
00766 dst = 0; \
00767 }
00768
00769 static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
00770 int n3)
00771 {
00772 SPLIT(slen[3], sf, n3)
00773 SPLIT(slen[2], sf, n2)
00774 SPLIT(slen[1], sf, n1)
00775 slen[0] = sf;
00776 }
00777
00778 static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
00779 int16_t *exponents)
00780 {
00781 const uint8_t *bstab, *pretab;
00782 int len, i, j, k, l, v0, shift, gain, gains[3];
00783 int16_t *exp_ptr;
00784
00785 exp_ptr = exponents;
00786 gain = g->global_gain - 210;
00787 shift = g->scalefac_scale + 1;
00788
00789 bstab = band_size_long[s->sample_rate_index];
00790 pretab = mpa_pretab[g->preflag];
00791 for (i = 0; i < g->long_end; i++) {
00792 v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
00793 len = bstab[i];
00794 for (j = len; j > 0; j--)
00795 *exp_ptr++ = v0;
00796 }
00797
00798 if (g->short_start < 13) {
00799 bstab = band_size_short[s->sample_rate_index];
00800 gains[0] = gain - (g->subblock_gain[0] << 3);
00801 gains[1] = gain - (g->subblock_gain[1] << 3);
00802 gains[2] = gain - (g->subblock_gain[2] << 3);
00803 k = g->long_end;
00804 for (i = g->short_start; i < 13; i++) {
00805 len = bstab[i];
00806 for (l = 0; l < 3; l++) {
00807 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
00808 for (j = len; j > 0; j--)
00809 *exp_ptr++ = v0;
00810 }
00811 }
00812 }
00813 }
00814
00815
00816 static inline int get_bitsz(GetBitContext *s, int n)
00817 {
00818 return n ? get_bits(s, n) : 0;
00819 }
00820
00821
00822 static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
00823 int *end_pos2)
00824 {
00825 if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) {
00826 s->gb = s->in_gb;
00827 s->in_gb.buffer = NULL;
00828 assert((get_bits_count(&s->gb) & 7) == 0);
00829 skip_bits_long(&s->gb, *pos - *end_pos);
00830 *end_pos2 =
00831 *end_pos = *end_pos2 + get_bits_count(&s->gb) - *pos;
00832 *pos = get_bits_count(&s->gb);
00833 }
00834 }
00835
00836
00837
00838
00839
00840
00841
00842 #if CONFIG_FLOAT
00843 #define READ_FLIP_SIGN(dst,src) \
00844 v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31); \
00845 AV_WN32A(dst, v);
00846 #else
00847 #define READ_FLIP_SIGN(dst,src) \
00848 v = -get_bits1(&s->gb); \
00849 *(dst) = (*(src) ^ v) - v;
00850 #endif
00851
00852 static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
00853 int16_t *exponents, int end_pos2)
00854 {
00855 int s_index;
00856 int i;
00857 int last_pos, bits_left;
00858 VLC *vlc;
00859 int end_pos = FFMIN(end_pos2, s->gb.size_in_bits);
00860
00861
00862 s_index = 0;
00863 for (i = 0; i < 3; i++) {
00864 int j, k, l, linbits;
00865 j = g->region_size[i];
00866 if (j == 0)
00867 continue;
00868
00869 k = g->table_select[i];
00870 l = mpa_huff_data[k][0];
00871 linbits = mpa_huff_data[k][1];
00872 vlc = &huff_vlc[l];
00873
00874 if (!l) {
00875 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
00876 s_index += 2 * j;
00877 continue;
00878 }
00879
00880
00881 for (; j > 0; j--) {
00882 int exponent, x, y;
00883 int v;
00884 int pos = get_bits_count(&s->gb);
00885
00886 if (pos >= end_pos){
00887
00888 switch_buffer(s, &pos, &end_pos, &end_pos2);
00889
00890 if (pos >= end_pos)
00891 break;
00892 }
00893 y = get_vlc2(&s->gb, vlc->table, 7, 3);
00894
00895 if (!y) {
00896 g->sb_hybrid[s_index ] =
00897 g->sb_hybrid[s_index+1] = 0;
00898 s_index += 2;
00899 continue;
00900 }
00901
00902 exponent= exponents[s_index];
00903
00904 av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
00905 i, g->region_size[i] - j, x, y, exponent);
00906 if (y & 16) {
00907 x = y >> 5;
00908 y = y & 0x0f;
00909 if (x < 15) {
00910 READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
00911 } else {
00912 x += get_bitsz(&s->gb, linbits);
00913 v = l3_unscale(x, exponent);
00914 if (get_bits1(&s->gb))
00915 v = -v;
00916 g->sb_hybrid[s_index] = v;
00917 }
00918 if (y < 15) {
00919 READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
00920 } else {
00921 y += get_bitsz(&s->gb, linbits);
00922 v = l3_unscale(y, exponent);
00923 if (get_bits1(&s->gb))
00924 v = -v;
00925 g->sb_hybrid[s_index+1] = v;
00926 }
00927 } else {
00928 x = y >> 5;
00929 y = y & 0x0f;
00930 x += y;
00931 if (x < 15) {
00932 READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
00933 } else {
00934 x += get_bitsz(&s->gb, linbits);
00935 v = l3_unscale(x, exponent);
00936 if (get_bits1(&s->gb))
00937 v = -v;
00938 g->sb_hybrid[s_index+!!y] = v;
00939 }
00940 g->sb_hybrid[s_index + !y] = 0;
00941 }
00942 s_index += 2;
00943 }
00944 }
00945
00946
00947 vlc = &huff_quad_vlc[g->count1table_select];
00948 last_pos = 0;
00949 while (s_index <= 572) {
00950 int pos, code;
00951 pos = get_bits_count(&s->gb);
00952 if (pos >= end_pos) {
00953 if (pos > end_pos2 && last_pos) {
00954
00955
00956 s_index -= 4;
00957 skip_bits_long(&s->gb, last_pos - pos);
00958 av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
00959 if(s->err_recognition & AV_EF_BITSTREAM)
00960 s_index=0;
00961 break;
00962 }
00963
00964 switch_buffer(s, &pos, &end_pos, &end_pos2);
00965
00966 if (pos >= end_pos)
00967 break;
00968 }
00969 last_pos = pos;
00970
00971 code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
00972 av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
00973 g->sb_hybrid[s_index+0] =
00974 g->sb_hybrid[s_index+1] =
00975 g->sb_hybrid[s_index+2] =
00976 g->sb_hybrid[s_index+3] = 0;
00977 while (code) {
00978 static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
00979 int v;
00980 int pos = s_index + idxtab[code];
00981 code ^= 8 >> idxtab[code];
00982 READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
00983 }
00984 s_index += 4;
00985 }
00986
00987 bits_left = end_pos2 - get_bits_count(&s->gb);
00988
00989 if (bits_left < 0 && (s->err_recognition & AV_EF_BUFFER)) {
00990 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
00991 s_index=0;
00992 } else if (bits_left > 0 && (s->err_recognition & AV_EF_BUFFER)) {
00993 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
00994 s_index = 0;
00995 }
00996 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
00997 skip_bits_long(&s->gb, bits_left);
00998
00999 i = get_bits_count(&s->gb);
01000 switch_buffer(s, &i, &end_pos, &end_pos2);
01001
01002 return 0;
01003 }
01004
01005
01006
01007
01008 static void reorder_block(MPADecodeContext *s, GranuleDef *g)
01009 {
01010 int i, j, len;
01011 INTFLOAT *ptr, *dst, *ptr1;
01012 INTFLOAT tmp[576];
01013
01014 if (g->block_type != 2)
01015 return;
01016
01017 if (g->switch_point) {
01018 if (s->sample_rate_index != 8)
01019 ptr = g->sb_hybrid + 36;
01020 else
01021 ptr = g->sb_hybrid + 48;
01022 } else {
01023 ptr = g->sb_hybrid;
01024 }
01025
01026 for (i = g->short_start; i < 13; i++) {
01027 len = band_size_short[s->sample_rate_index][i];
01028 ptr1 = ptr;
01029 dst = tmp;
01030 for (j = len; j > 0; j--) {
01031 *dst++ = ptr[0*len];
01032 *dst++ = ptr[1*len];
01033 *dst++ = ptr[2*len];
01034 ptr++;
01035 }
01036 ptr += 2 * len;
01037 memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
01038 }
01039 }
01040
01041 #define ISQRT2 FIXR(0.70710678118654752440)
01042
01043 static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
01044 {
01045 int i, j, k, l;
01046 int sf_max, sf, len, non_zero_found;
01047 INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
01048 int non_zero_found_short[3];
01049
01050
01051 if (s->mode_ext & MODE_EXT_I_STEREO) {
01052 if (!s->lsf) {
01053 is_tab = is_table;
01054 sf_max = 7;
01055 } else {
01056 is_tab = is_table_lsf[g1->scalefac_compress & 1];
01057 sf_max = 16;
01058 }
01059
01060 tab0 = g0->sb_hybrid + 576;
01061 tab1 = g1->sb_hybrid + 576;
01062
01063 non_zero_found_short[0] = 0;
01064 non_zero_found_short[1] = 0;
01065 non_zero_found_short[2] = 0;
01066 k = (13 - g1->short_start) * 3 + g1->long_end - 3;
01067 for (i = 12; i >= g1->short_start; i--) {
01068
01069 if (i != 11)
01070 k -= 3;
01071 len = band_size_short[s->sample_rate_index][i];
01072 for (l = 2; l >= 0; l--) {
01073 tab0 -= len;
01074 tab1 -= len;
01075 if (!non_zero_found_short[l]) {
01076
01077 for (j = 0; j < len; j++) {
01078 if (tab1[j] != 0) {
01079 non_zero_found_short[l] = 1;
01080 goto found1;
01081 }
01082 }
01083 sf = g1->scale_factors[k + l];
01084 if (sf >= sf_max)
01085 goto found1;
01086
01087 v1 = is_tab[0][sf];
01088 v2 = is_tab[1][sf];
01089 for (j = 0; j < len; j++) {
01090 tmp0 = tab0[j];
01091 tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
01092 tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
01093 }
01094 } else {
01095 found1:
01096 if (s->mode_ext & MODE_EXT_MS_STEREO) {
01097
01098
01099 for (j = 0; j < len; j++) {
01100 tmp0 = tab0[j];
01101 tmp1 = tab1[j];
01102 tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
01103 tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
01104 }
01105 }
01106 }
01107 }
01108 }
01109
01110 non_zero_found = non_zero_found_short[0] |
01111 non_zero_found_short[1] |
01112 non_zero_found_short[2];
01113
01114 for (i = g1->long_end - 1;i >= 0;i--) {
01115 len = band_size_long[s->sample_rate_index][i];
01116 tab0 -= len;
01117 tab1 -= len;
01118
01119 if (!non_zero_found) {
01120 for (j = 0; j < len; j++) {
01121 if (tab1[j] != 0) {
01122 non_zero_found = 1;
01123 goto found2;
01124 }
01125 }
01126
01127 k = (i == 21) ? 20 : i;
01128 sf = g1->scale_factors[k];
01129 if (sf >= sf_max)
01130 goto found2;
01131 v1 = is_tab[0][sf];
01132 v2 = is_tab[1][sf];
01133 for (j = 0; j < len; j++) {
01134 tmp0 = tab0[j];
01135 tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
01136 tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
01137 }
01138 } else {
01139 found2:
01140 if (s->mode_ext & MODE_EXT_MS_STEREO) {
01141
01142
01143 for (j = 0; j < len; j++) {
01144 tmp0 = tab0[j];
01145 tmp1 = tab1[j];
01146 tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
01147 tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
01148 }
01149 }
01150 }
01151 }
01152 } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
01153
01154
01155
01156 tab0 = g0->sb_hybrid;
01157 tab1 = g1->sb_hybrid;
01158 for (i = 0; i < 576; i++) {
01159 tmp0 = tab0[i];
01160 tmp1 = tab1[i];
01161 tab0[i] = tmp0 + tmp1;
01162 tab1[i] = tmp0 - tmp1;
01163 }
01164 }
01165 }
01166
01167 #if CONFIG_FLOAT
01168 #define AA(j) do { \
01169 float tmp0 = ptr[-1-j]; \
01170 float tmp1 = ptr[ j]; \
01171 ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1]; \
01172 ptr[ j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0]; \
01173 } while (0)
01174 #else
01175 #define AA(j) do { \
01176 int tmp0 = ptr[-1-j]; \
01177 int tmp1 = ptr[ j]; \
01178 int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]); \
01179 ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2])); \
01180 ptr[ j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3])); \
01181 } while (0)
01182 #endif
01183
01184 static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
01185 {
01186 INTFLOAT *ptr;
01187 int n, i;
01188
01189
01190 if (g->block_type == 2) {
01191 if (!g->switch_point)
01192 return;
01193
01194 n = 1;
01195 } else {
01196 n = SBLIMIT - 1;
01197 }
01198
01199 ptr = g->sb_hybrid + 18;
01200 for (i = n; i > 0; i--) {
01201 AA(0);
01202 AA(1);
01203 AA(2);
01204 AA(3);
01205 AA(4);
01206 AA(5);
01207 AA(6);
01208 AA(7);
01209
01210 ptr += 18;
01211 }
01212 }
01213
01214 static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
01215 INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
01216 {
01217 INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
01218 INTFLOAT out2[12];
01219 int i, j, mdct_long_end, sblimit;
01220
01221
01222 ptr = g->sb_hybrid + 576;
01223 ptr1 = g->sb_hybrid + 2 * 18;
01224 while (ptr >= ptr1) {
01225 int32_t *p;
01226 ptr -= 6;
01227 p = (int32_t*)ptr;
01228 if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
01229 break;
01230 }
01231 sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
01232
01233 if (g->block_type == 2) {
01234
01235 if (g->switch_point)
01236 mdct_long_end = 2;
01237 else
01238 mdct_long_end = 0;
01239 } else {
01240 mdct_long_end = sblimit;
01241 }
01242
01243 s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
01244 mdct_long_end, g->switch_point,
01245 g->block_type);
01246
01247 buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
01248 ptr = g->sb_hybrid + 18 * mdct_long_end;
01249
01250 for (j = mdct_long_end; j < sblimit; j++) {
01251
01252 win = RENAME(ff_mdct_win)[2 + (4 & -(j & 1))];
01253 out_ptr = sb_samples + j;
01254
01255 for (i = 0; i < 6; i++) {
01256 *out_ptr = buf[4*i];
01257 out_ptr += SBLIMIT;
01258 }
01259 imdct12(out2, ptr + 0);
01260 for (i = 0; i < 6; i++) {
01261 *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*1)];
01262 buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
01263 out_ptr += SBLIMIT;
01264 }
01265 imdct12(out2, ptr + 1);
01266 for (i = 0; i < 6; i++) {
01267 *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*2)];
01268 buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
01269 out_ptr += SBLIMIT;
01270 }
01271 imdct12(out2, ptr + 2);
01272 for (i = 0; i < 6; i++) {
01273 buf[4*(i + 6*0)] = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*0)];
01274 buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
01275 buf[4*(i + 6*2)] = 0;
01276 }
01277 ptr += 18;
01278 buf += (j&3) != 3 ? 1 : (4*18-3);
01279 }
01280
01281 for (j = sblimit; j < SBLIMIT; j++) {
01282
01283 out_ptr = sb_samples + j;
01284 for (i = 0; i < 18; i++) {
01285 *out_ptr = buf[4*i];
01286 buf[4*i] = 0;
01287 out_ptr += SBLIMIT;
01288 }
01289 buf += (j&3) != 3 ? 1 : (4*18-3);
01290 }
01291 }
01292
01293
01294 static int mp_decode_layer3(MPADecodeContext *s)
01295 {
01296 int nb_granules, main_data_begin;
01297 int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
01298 GranuleDef *g;
01299 int16_t exponents[576];
01300
01301
01302 if (s->lsf) {
01303 main_data_begin = get_bits(&s->gb, 8);
01304 skip_bits(&s->gb, s->nb_channels);
01305 nb_granules = 1;
01306 } else {
01307 main_data_begin = get_bits(&s->gb, 9);
01308 if (s->nb_channels == 2)
01309 skip_bits(&s->gb, 3);
01310 else
01311 skip_bits(&s->gb, 5);
01312 nb_granules = 2;
01313 for (ch = 0; ch < s->nb_channels; ch++) {
01314 s->granules[ch][0].scfsi = 0;
01315 s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
01316 }
01317 }
01318
01319 for (gr = 0; gr < nb_granules; gr++) {
01320 for (ch = 0; ch < s->nb_channels; ch++) {
01321 av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
01322 g = &s->granules[ch][gr];
01323 g->part2_3_length = get_bits(&s->gb, 12);
01324 g->big_values = get_bits(&s->gb, 9);
01325 if (g->big_values > 288) {
01326 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
01327 return AVERROR_INVALIDDATA;
01328 }
01329
01330 g->global_gain = get_bits(&s->gb, 8);
01331
01332
01333 if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
01334 MODE_EXT_MS_STEREO)
01335 g->global_gain -= 2;
01336 if (s->lsf)
01337 g->scalefac_compress = get_bits(&s->gb, 9);
01338 else
01339 g->scalefac_compress = get_bits(&s->gb, 4);
01340 blocksplit_flag = get_bits1(&s->gb);
01341 if (blocksplit_flag) {
01342 g->block_type = get_bits(&s->gb, 2);
01343 if (g->block_type == 0) {
01344 av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
01345 return AVERROR_INVALIDDATA;
01346 }
01347 g->switch_point = get_bits1(&s->gb);
01348 for (i = 0; i < 2; i++)
01349 g->table_select[i] = get_bits(&s->gb, 5);
01350 for (i = 0; i < 3; i++)
01351 g->subblock_gain[i] = get_bits(&s->gb, 3);
01352 ff_init_short_region(s, g);
01353 } else {
01354 int region_address1, region_address2;
01355 g->block_type = 0;
01356 g->switch_point = 0;
01357 for (i = 0; i < 3; i++)
01358 g->table_select[i] = get_bits(&s->gb, 5);
01359
01360 region_address1 = get_bits(&s->gb, 4);
01361 region_address2 = get_bits(&s->gb, 3);
01362 av_dlog(s->avctx, "region1=%d region2=%d\n",
01363 region_address1, region_address2);
01364 ff_init_long_region(s, g, region_address1, region_address2);
01365 }
01366 ff_region_offset2size(g);
01367 ff_compute_band_indexes(s, g);
01368
01369 g->preflag = 0;
01370 if (!s->lsf)
01371 g->preflag = get_bits1(&s->gb);
01372 g->scalefac_scale = get_bits1(&s->gb);
01373 g->count1table_select = get_bits1(&s->gb);
01374 av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
01375 g->block_type, g->switch_point);
01376 }
01377 }
01378
01379 if (!s->adu_mode) {
01380 int skip;
01381 const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
01382 int extrasize = av_clip(get_bits_left(&s->gb) >> 3, 0,
01383 FFMAX(0, LAST_BUF_SIZE - s->last_buf_size));
01384 assert((get_bits_count(&s->gb) & 7) == 0);
01385
01386 av_dlog(s->avctx, "seekback: %d\n", main_data_begin);
01387
01388
01389 memcpy(s->last_buf + s->last_buf_size, ptr, extrasize);
01390 s->in_gb = s->gb;
01391 init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
01392 #if !UNCHECKED_BITSTREAM_READER
01393 s->gb.size_in_bits_plus8 += extrasize * 8;
01394 #endif
01395 s->last_buf_size <<= 3;
01396 for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
01397 for (ch = 0; ch < s->nb_channels; ch++) {
01398 g = &s->granules[ch][gr];
01399 s->last_buf_size += g->part2_3_length;
01400 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
01401 }
01402 }
01403 skip = s->last_buf_size - 8 * main_data_begin;
01404 if (skip >= s->gb.size_in_bits && s->in_gb.buffer) {
01405 skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits);
01406 s->gb = s->in_gb;
01407 s->in_gb.buffer = NULL;
01408 } else {
01409 skip_bits_long(&s->gb, skip);
01410 }
01411 } else {
01412 gr = 0;
01413 }
01414
01415 for (; gr < nb_granules; gr++) {
01416 for (ch = 0; ch < s->nb_channels; ch++) {
01417 g = &s->granules[ch][gr];
01418 bits_pos = get_bits_count(&s->gb);
01419
01420 if (!s->lsf) {
01421 uint8_t *sc;
01422 int slen, slen1, slen2;
01423
01424
01425 slen1 = slen_table[0][g->scalefac_compress];
01426 slen2 = slen_table[1][g->scalefac_compress];
01427 av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
01428 if (g->block_type == 2) {
01429 n = g->switch_point ? 17 : 18;
01430 j = 0;
01431 if (slen1) {
01432 for (i = 0; i < n; i++)
01433 g->scale_factors[j++] = get_bits(&s->gb, slen1);
01434 } else {
01435 for (i = 0; i < n; i++)
01436 g->scale_factors[j++] = 0;
01437 }
01438 if (slen2) {
01439 for (i = 0; i < 18; i++)
01440 g->scale_factors[j++] = get_bits(&s->gb, slen2);
01441 for (i = 0; i < 3; i++)
01442 g->scale_factors[j++] = 0;
01443 } else {
01444 for (i = 0; i < 21; i++)
01445 g->scale_factors[j++] = 0;
01446 }
01447 } else {
01448 sc = s->granules[ch][0].scale_factors;
01449 j = 0;
01450 for (k = 0; k < 4; k++) {
01451 n = k == 0 ? 6 : 5;
01452 if ((g->scfsi & (0x8 >> k)) == 0) {
01453 slen = (k < 2) ? slen1 : slen2;
01454 if (slen) {
01455 for (i = 0; i < n; i++)
01456 g->scale_factors[j++] = get_bits(&s->gb, slen);
01457 } else {
01458 for (i = 0; i < n; i++)
01459 g->scale_factors[j++] = 0;
01460 }
01461 } else {
01462
01463 for (i = 0; i < n; i++) {
01464 g->scale_factors[j] = sc[j];
01465 j++;
01466 }
01467 }
01468 }
01469 g->scale_factors[j++] = 0;
01470 }
01471 } else {
01472 int tindex, tindex2, slen[4], sl, sf;
01473
01474
01475 if (g->block_type == 2)
01476 tindex = g->switch_point ? 2 : 1;
01477 else
01478 tindex = 0;
01479
01480 sf = g->scalefac_compress;
01481 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
01482
01483 sf >>= 1;
01484 if (sf < 180) {
01485 lsf_sf_expand(slen, sf, 6, 6, 0);
01486 tindex2 = 3;
01487 } else if (sf < 244) {
01488 lsf_sf_expand(slen, sf - 180, 4, 4, 0);
01489 tindex2 = 4;
01490 } else {
01491 lsf_sf_expand(slen, sf - 244, 3, 0, 0);
01492 tindex2 = 5;
01493 }
01494 } else {
01495
01496 if (sf < 400) {
01497 lsf_sf_expand(slen, sf, 5, 4, 4);
01498 tindex2 = 0;
01499 } else if (sf < 500) {
01500 lsf_sf_expand(slen, sf - 400, 5, 4, 0);
01501 tindex2 = 1;
01502 } else {
01503 lsf_sf_expand(slen, sf - 500, 3, 0, 0);
01504 tindex2 = 2;
01505 g->preflag = 1;
01506 }
01507 }
01508
01509 j = 0;
01510 for (k = 0; k < 4; k++) {
01511 n = lsf_nsf_table[tindex2][tindex][k];
01512 sl = slen[k];
01513 if (sl) {
01514 for (i = 0; i < n; i++)
01515 g->scale_factors[j++] = get_bits(&s->gb, sl);
01516 } else {
01517 for (i = 0; i < n; i++)
01518 g->scale_factors[j++] = 0;
01519 }
01520 }
01521
01522 for (; j < 40; j++)
01523 g->scale_factors[j] = 0;
01524 }
01525
01526 exponents_from_scale_factors(s, g, exponents);
01527
01528
01529 huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
01530 }
01531
01532 if (s->nb_channels == 2)
01533 compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
01534
01535 for (ch = 0; ch < s->nb_channels; ch++) {
01536 g = &s->granules[ch][gr];
01537
01538 reorder_block(s, g);
01539 compute_antialias(s, g);
01540 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
01541 }
01542 }
01543 if (get_bits_count(&s->gb) < 0)
01544 skip_bits_long(&s->gb, -get_bits_count(&s->gb));
01545 return nb_granules * 18;
01546 }
01547
01548 static int mp_decode_frame(MPADecodeContext *s, OUT_INT *samples,
01549 const uint8_t *buf, int buf_size)
01550 {
01551 int i, nb_frames, ch, ret;
01552 OUT_INT *samples_ptr;
01553
01554 init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
01555
01556
01557 if (s->error_protection)
01558 skip_bits(&s->gb, 16);
01559
01560 switch(s->layer) {
01561 case 1:
01562 s->avctx->frame_size = 384;
01563 nb_frames = mp_decode_layer1(s);
01564 break;
01565 case 2:
01566 s->avctx->frame_size = 1152;
01567 nb_frames = mp_decode_layer2(s);
01568 break;
01569 case 3:
01570 s->avctx->frame_size = s->lsf ? 576 : 1152;
01571 default:
01572 nb_frames = mp_decode_layer3(s);
01573
01574 s->last_buf_size=0;
01575 if (s->in_gb.buffer) {
01576 align_get_bits(&s->gb);
01577 i = get_bits_left(&s->gb)>>3;
01578 if (i >= 0 && i <= BACKSTEP_SIZE) {
01579 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
01580 s->last_buf_size=i;
01581 } else
01582 av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
01583 s->gb = s->in_gb;
01584 s->in_gb.buffer = NULL;
01585 }
01586
01587 align_get_bits(&s->gb);
01588 assert((get_bits_count(&s->gb) & 7) == 0);
01589 i = get_bits_left(&s->gb) >> 3;
01590
01591 if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
01592 if (i < 0)
01593 av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
01594 i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
01595 }
01596 assert(i <= buf_size - HEADER_SIZE && i >= 0);
01597 memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
01598 s->last_buf_size += i;
01599 }
01600
01601
01602 if (!samples) {
01603 s->frame.nb_samples = s->avctx->frame_size;
01604 if ((ret = s->avctx->get_buffer(s->avctx, &s->frame)) < 0) {
01605 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
01606 return ret;
01607 }
01608 samples = (OUT_INT *)s->frame.data[0];
01609 }
01610
01611
01612 for (ch = 0; ch < s->nb_channels; ch++) {
01613 samples_ptr = samples + ch;
01614 for (i = 0; i < nb_frames; i++) {
01615 RENAME(ff_mpa_synth_filter)(
01616 &s->mpadsp,
01617 s->synth_buf[ch], &(s->synth_buf_offset[ch]),
01618 RENAME(ff_mpa_synth_window), &s->dither_state,
01619 samples_ptr, s->nb_channels,
01620 s->sb_samples[ch][i]);
01621 samples_ptr += 32 * s->nb_channels;
01622 }
01623 }
01624
01625 return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
01626 }
01627
01628 static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
01629 AVPacket *avpkt)
01630 {
01631 const uint8_t *buf = avpkt->data;
01632 int buf_size = avpkt->size;
01633 MPADecodeContext *s = avctx->priv_data;
01634 uint32_t header;
01635 int out_size;
01636
01637 if (buf_size < HEADER_SIZE)
01638 return AVERROR_INVALIDDATA;
01639
01640 header = AV_RB32(buf);
01641 if (ff_mpa_check_header(header) < 0) {
01642 av_log(avctx, AV_LOG_ERROR, "Header missing\n");
01643 return AVERROR_INVALIDDATA;
01644 }
01645
01646 if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
01647
01648 s->frame_size = -1;
01649 return AVERROR_INVALIDDATA;
01650 }
01651
01652 avctx->channels = s->nb_channels;
01653 avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
01654 if (!avctx->bit_rate)
01655 avctx->bit_rate = s->bit_rate;
01656 avctx->sub_id = s->layer;
01657
01658 if (s->frame_size <= 0 || s->frame_size > buf_size) {
01659 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
01660 return AVERROR_INVALIDDATA;
01661 } else if (s->frame_size < buf_size) {
01662 av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
01663 buf_size= s->frame_size;
01664 }
01665
01666 out_size = mp_decode_frame(s, NULL, buf, buf_size);
01667 if (out_size >= 0) {
01668 *got_frame_ptr = 1;
01669 *(AVFrame *)data = s->frame;
01670 avctx->sample_rate = s->sample_rate;
01671
01672 } else {
01673 av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
01674
01675
01676
01677
01678 *got_frame_ptr = 0;
01679 if (buf_size == avpkt->size)
01680 return out_size;
01681 }
01682 s->frame_size = 0;
01683 return buf_size;
01684 }
01685
01686 static void flush(AVCodecContext *avctx)
01687 {
01688 MPADecodeContext *s = avctx->priv_data;
01689 memset(s->synth_buf, 0, sizeof(s->synth_buf));
01690 s->last_buf_size = 0;
01691 }
01692
01693 #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
01694 static int decode_frame_adu(AVCodecContext *avctx, void *data,
01695 int *got_frame_ptr, AVPacket *avpkt)
01696 {
01697 const uint8_t *buf = avpkt->data;
01698 int buf_size = avpkt->size;
01699 MPADecodeContext *s = avctx->priv_data;
01700 uint32_t header;
01701 int len, out_size;
01702
01703 len = buf_size;
01704
01705
01706 if (buf_size < HEADER_SIZE) {
01707 av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
01708 return AVERROR_INVALIDDATA;
01709 }
01710
01711
01712 if (len > MPA_MAX_CODED_FRAME_SIZE)
01713 len = MPA_MAX_CODED_FRAME_SIZE;
01714
01715
01716 header = AV_RB32(buf) | 0xffe00000;
01717
01718 if (ff_mpa_check_header(header) < 0) {
01719 av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
01720 return AVERROR_INVALIDDATA;
01721 }
01722
01723 avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
01724
01725 avctx->sample_rate = s->sample_rate;
01726 avctx->channels = s->nb_channels;
01727 if (!avctx->bit_rate)
01728 avctx->bit_rate = s->bit_rate;
01729 avctx->sub_id = s->layer;
01730
01731 s->frame_size = len;
01732
01733 #if FF_API_PARSE_FRAME
01734 if (avctx->parse_only)
01735 out_size = buf_size;
01736 else
01737 #endif
01738 out_size = mp_decode_frame(s, NULL, buf, buf_size);
01739
01740 *got_frame_ptr = 1;
01741 *(AVFrame *)data = s->frame;
01742
01743 return buf_size;
01744 }
01745 #endif
01746
01747 #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
01748
01752 typedef struct MP3On4DecodeContext {
01753 AVFrame *frame;
01754 int frames;
01755 int syncword;
01756 const uint8_t *coff;
01757 MPADecodeContext *mp3decctx[5];
01758 OUT_INT *decoded_buf;
01759 } MP3On4DecodeContext;
01760
01761 #include "mpeg4audio.h"
01762
01763
01764
01765
01766 static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
01767
01768
01769 static const uint8_t chan_offset[8][5] = {
01770 { 0 },
01771 { 0 },
01772 { 0 },
01773 { 2, 0 },
01774 { 2, 0, 3 },
01775 { 2, 0, 3 },
01776 { 2, 0, 4, 3 },
01777 { 2, 0, 6, 4, 3 },
01778 };
01779
01780
01781 static const int16_t chan_layout[8] = {
01782 0,
01783 AV_CH_LAYOUT_MONO,
01784 AV_CH_LAYOUT_STEREO,
01785 AV_CH_LAYOUT_SURROUND,
01786 AV_CH_LAYOUT_4POINT0,
01787 AV_CH_LAYOUT_5POINT0,
01788 AV_CH_LAYOUT_5POINT1,
01789 AV_CH_LAYOUT_7POINT1
01790 };
01791
01792 static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
01793 {
01794 MP3On4DecodeContext *s = avctx->priv_data;
01795 int i;
01796
01797 for (i = 0; i < s->frames; i++)
01798 av_free(s->mp3decctx[i]);
01799
01800 av_freep(&s->decoded_buf);
01801
01802 return 0;
01803 }
01804
01805
01806 static int decode_init_mp3on4(AVCodecContext * avctx)
01807 {
01808 MP3On4DecodeContext *s = avctx->priv_data;
01809 MPEG4AudioConfig cfg;
01810 int i;
01811
01812 if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
01813 av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
01814 return AVERROR_INVALIDDATA;
01815 }
01816
01817 avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
01818 avctx->extradata_size * 8, 1);
01819 if (!cfg.chan_config || cfg.chan_config > 7) {
01820 av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
01821 return AVERROR_INVALIDDATA;
01822 }
01823 s->frames = mp3Frames[cfg.chan_config];
01824 s->coff = chan_offset[cfg.chan_config];
01825 avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
01826 avctx->channel_layout = chan_layout[cfg.chan_config];
01827
01828 if (cfg.sample_rate < 16000)
01829 s->syncword = 0xffe00000;
01830 else
01831 s->syncword = 0xfff00000;
01832
01833
01834
01835
01836
01837
01838
01839 s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
01840 if (!s->mp3decctx[0])
01841 goto alloc_fail;
01842
01843 avctx->priv_data = s->mp3decctx[0];
01844 decode_init(avctx);
01845 s->frame = avctx->coded_frame;
01846
01847 avctx->priv_data = s;
01848 s->mp3decctx[0]->adu_mode = 1;
01849
01850
01851
01852
01853 for (i = 1; i < s->frames; i++) {
01854 s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
01855 if (!s->mp3decctx[i])
01856 goto alloc_fail;
01857 s->mp3decctx[i]->adu_mode = 1;
01858 s->mp3decctx[i]->avctx = avctx;
01859 s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
01860 }
01861
01862
01863 if (s->frames > 1) {
01864 s->decoded_buf = av_malloc(MPA_FRAME_SIZE * MPA_MAX_CHANNELS *
01865 sizeof(*s->decoded_buf));
01866 if (!s->decoded_buf)
01867 goto alloc_fail;
01868 }
01869
01870 return 0;
01871 alloc_fail:
01872 decode_close_mp3on4(avctx);
01873 return AVERROR(ENOMEM);
01874 }
01875
01876
01877 static void flush_mp3on4(AVCodecContext *avctx)
01878 {
01879 int i;
01880 MP3On4DecodeContext *s = avctx->priv_data;
01881
01882 for (i = 0; i < s->frames; i++) {
01883 MPADecodeContext *m = s->mp3decctx[i];
01884 memset(m->synth_buf, 0, sizeof(m->synth_buf));
01885 m->last_buf_size = 0;
01886 }
01887 }
01888
01889
01890 static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
01891 int *got_frame_ptr, AVPacket *avpkt)
01892 {
01893 const uint8_t *buf = avpkt->data;
01894 int buf_size = avpkt->size;
01895 MP3On4DecodeContext *s = avctx->priv_data;
01896 MPADecodeContext *m;
01897 int fsize, len = buf_size, out_size = 0;
01898 uint32_t header;
01899 OUT_INT *out_samples;
01900 OUT_INT *outptr, *bp;
01901 int fr, j, n, ch, ret;
01902
01903
01904 s->frame->nb_samples = MPA_FRAME_SIZE;
01905 if ((ret = avctx->get_buffer(avctx, s->frame)) < 0) {
01906 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
01907 return ret;
01908 }
01909 out_samples = (OUT_INT *)s->frame->data[0];
01910
01911
01912 if (buf_size < HEADER_SIZE)
01913 return AVERROR_INVALIDDATA;
01914
01915
01916 outptr = s->frames == 1 ? out_samples : s->decoded_buf;
01917
01918 avctx->bit_rate = 0;
01919
01920 ch = 0;
01921 for (fr = 0; fr < s->frames; fr++) {
01922 fsize = AV_RB16(buf) >> 4;
01923 fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
01924 m = s->mp3decctx[fr];
01925 assert(m != NULL);
01926
01927 if (fsize < HEADER_SIZE) {
01928 av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
01929 return AVERROR_INVALIDDATA;
01930 }
01931 header = (AV_RB32(buf) & 0x000fffff) | s->syncword;
01932
01933 if (ff_mpa_check_header(header) < 0)
01934 break;
01935
01936 avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
01937
01938 if (ch + m->nb_channels > avctx->channels) {
01939 av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
01940 "channel count\n");
01941 return AVERROR_INVALIDDATA;
01942 }
01943 ch += m->nb_channels;
01944
01945 out_size += mp_decode_frame(m, outptr, buf, fsize);
01946 buf += fsize;
01947 len -= fsize;
01948
01949 if (s->frames > 1) {
01950 n = m->avctx->frame_size*m->nb_channels;
01951
01952 bp = out_samples + s->coff[fr];
01953 if (m->nb_channels == 1) {
01954 for (j = 0; j < n; j++) {
01955 *bp = s->decoded_buf[j];
01956 bp += avctx->channels;
01957 }
01958 } else {
01959 for (j = 0; j < n; j++) {
01960 bp[0] = s->decoded_buf[j++];
01961 bp[1] = s->decoded_buf[j];
01962 bp += avctx->channels;
01963 }
01964 }
01965 }
01966 avctx->bit_rate += m->bit_rate;
01967 }
01968
01969
01970 avctx->sample_rate = s->mp3decctx[0]->sample_rate;
01971
01972 s->frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
01973 *got_frame_ptr = 1;
01974 *(AVFrame *)data = *s->frame;
01975
01976 return buf_size;
01977 }
01978 #endif
01979
01980 #if !CONFIG_FLOAT
01981 #if CONFIG_MP1_DECODER
01982 AVCodec ff_mp1_decoder = {
01983 .name = "mp1",
01984 .type = AVMEDIA_TYPE_AUDIO,
01985 .id = CODEC_ID_MP1,
01986 .priv_data_size = sizeof(MPADecodeContext),
01987 .init = decode_init,
01988 .decode = decode_frame,
01989 #if FF_API_PARSE_FRAME
01990 .capabilities = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
01991 #else
01992 .capabilities = CODEC_CAP_DR1,
01993 #endif
01994 .flush = flush,
01995 .long_name = NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
01996 };
01997 #endif
01998 #if CONFIG_MP2_DECODER
01999 AVCodec ff_mp2_decoder = {
02000 .name = "mp2",
02001 .type = AVMEDIA_TYPE_AUDIO,
02002 .id = CODEC_ID_MP2,
02003 .priv_data_size = sizeof(MPADecodeContext),
02004 .init = decode_init,
02005 .decode = decode_frame,
02006 #if FF_API_PARSE_FRAME
02007 .capabilities = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02008 #else
02009 .capabilities = CODEC_CAP_DR1,
02010 #endif
02011 .flush = flush,
02012 .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
02013 };
02014 #endif
02015 #if CONFIG_MP3_DECODER
02016 AVCodec ff_mp3_decoder = {
02017 .name = "mp3",
02018 .type = AVMEDIA_TYPE_AUDIO,
02019 .id = CODEC_ID_MP3,
02020 .priv_data_size = sizeof(MPADecodeContext),
02021 .init = decode_init,
02022 .decode = decode_frame,
02023 #if FF_API_PARSE_FRAME
02024 .capabilities = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02025 #else
02026 .capabilities = CODEC_CAP_DR1,
02027 #endif
02028 .flush = flush,
02029 .long_name = NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
02030 };
02031 #endif
02032 #if CONFIG_MP3ADU_DECODER
02033 AVCodec ff_mp3adu_decoder = {
02034 .name = "mp3adu",
02035 .type = AVMEDIA_TYPE_AUDIO,
02036 .id = CODEC_ID_MP3ADU,
02037 .priv_data_size = sizeof(MPADecodeContext),
02038 .init = decode_init,
02039 .decode = decode_frame_adu,
02040 #if FF_API_PARSE_FRAME
02041 .capabilities = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02042 #else
02043 .capabilities = CODEC_CAP_DR1,
02044 #endif
02045 .flush = flush,
02046 .long_name = NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
02047 };
02048 #endif
02049 #if CONFIG_MP3ON4_DECODER
02050 AVCodec ff_mp3on4_decoder = {
02051 .name = "mp3on4",
02052 .type = AVMEDIA_TYPE_AUDIO,
02053 .id = CODEC_ID_MP3ON4,
02054 .priv_data_size = sizeof(MP3On4DecodeContext),
02055 .init = decode_init_mp3on4,
02056 .close = decode_close_mp3on4,
02057 .decode = decode_frame_mp3on4,
02058 .capabilities = CODEC_CAP_DR1,
02059 .flush = flush_mp3on4,
02060 .long_name = NULL_IF_CONFIG_SMALL("MP3onMP4"),
02061 };
02062 #endif
02063 #endif