00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00029 #include "aac.h"
00030 #include "sbr.h"
00031 #include "aacsbr.h"
00032 #include "aacsbrdata.h"
00033 #include "fft.h"
00034 #include "aacps.h"
00035 #include "libavutil/libm.h"
00036
00037 #include <stdint.h>
00038 #include <float.h>
00039
00040 #define ENVELOPE_ADJUSTMENT_OFFSET 2
00041 #define NOISE_FLOOR_OFFSET 6.0f
00042
00046 enum {
00047 T_HUFFMAN_ENV_1_5DB,
00048 F_HUFFMAN_ENV_1_5DB,
00049 T_HUFFMAN_ENV_BAL_1_5DB,
00050 F_HUFFMAN_ENV_BAL_1_5DB,
00051 T_HUFFMAN_ENV_3_0DB,
00052 F_HUFFMAN_ENV_3_0DB,
00053 T_HUFFMAN_ENV_BAL_3_0DB,
00054 F_HUFFMAN_ENV_BAL_3_0DB,
00055 T_HUFFMAN_NOISE_3_0DB,
00056 T_HUFFMAN_NOISE_BAL_3_0DB,
00057 };
00058
00062 enum {
00063 FIXFIX,
00064 FIXVAR,
00065 VARFIX,
00066 VARVAR,
00067 };
00068
00069 enum {
00070 EXTENSION_ID_PS = 2,
00071 };
00072
00073 static VLC vlc_sbr[10];
00074 static const int8_t vlc_sbr_lav[10] =
00075 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
00076 static const DECLARE_ALIGNED(16, float, zero64)[64];
00077
00078 #define SBR_INIT_VLC_STATIC(num, size) \
00079 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
00080 sbr_tmp[num].sbr_bits , 1, 1, \
00081 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
00082 size)
00083
00084 #define SBR_VLC_ROW(name) \
00085 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
00086
00087 av_cold void ff_aac_sbr_init(void)
00088 {
00089 int n;
00090 static const struct {
00091 const void *sbr_codes, *sbr_bits;
00092 const unsigned int table_size, elem_size;
00093 } sbr_tmp[] = {
00094 SBR_VLC_ROW(t_huffman_env_1_5dB),
00095 SBR_VLC_ROW(f_huffman_env_1_5dB),
00096 SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
00097 SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
00098 SBR_VLC_ROW(t_huffman_env_3_0dB),
00099 SBR_VLC_ROW(f_huffman_env_3_0dB),
00100 SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
00101 SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
00102 SBR_VLC_ROW(t_huffman_noise_3_0dB),
00103 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
00104 };
00105
00106
00107 SBR_INIT_VLC_STATIC(0, 1098);
00108 SBR_INIT_VLC_STATIC(1, 1092);
00109 SBR_INIT_VLC_STATIC(2, 768);
00110 SBR_INIT_VLC_STATIC(3, 1026);
00111 SBR_INIT_VLC_STATIC(4, 1058);
00112 SBR_INIT_VLC_STATIC(5, 1052);
00113 SBR_INIT_VLC_STATIC(6, 544);
00114 SBR_INIT_VLC_STATIC(7, 544);
00115 SBR_INIT_VLC_STATIC(8, 592);
00116 SBR_INIT_VLC_STATIC(9, 512);
00117
00118 for (n = 1; n < 320; n++)
00119 sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
00120 sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
00121 sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
00122
00123 for (n = 0; n < 320; n++)
00124 sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
00125
00126 ff_ps_init();
00127 }
00128
00129 av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
00130 {
00131 float mdct_scale;
00132 sbr->kx[0] = sbr->kx[1] = 32;
00133 sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
00134 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
00135 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
00136
00137
00138
00139 mdct_scale = ac->avctx->sample_fmt == AV_SAMPLE_FMT_FLT ? 32768.0f : 1.0f;
00140 ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * mdct_scale));
00141 ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * mdct_scale);
00142 ff_ps_ctx_init(&sbr->ps);
00143 }
00144
00145 av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
00146 {
00147 ff_mdct_end(&sbr->mdct);
00148 ff_mdct_end(&sbr->mdct_ana);
00149 }
00150
00151 static int qsort_comparison_function_int16(const void *a, const void *b)
00152 {
00153 return *(const int16_t *)a - *(const int16_t *)b;
00154 }
00155
00156 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
00157 {
00158 int i;
00159 for (i = 0; i <= last_el; i++)
00160 if (table[i] == needle)
00161 return 1;
00162 return 0;
00163 }
00164
00166 static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
00167 {
00168 int k;
00169 if (sbr->bs_limiter_bands > 0) {
00170 static const float bands_warped[3] = { 1.32715174233856803909f,
00171 1.18509277094158210129f,
00172 1.11987160404675912501f };
00173 const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
00174 int16_t patch_borders[7];
00175 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
00176
00177 patch_borders[0] = sbr->kx[1];
00178 for (k = 1; k <= sbr->num_patches; k++)
00179 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
00180
00181 memcpy(sbr->f_tablelim, sbr->f_tablelow,
00182 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
00183 if (sbr->num_patches > 1)
00184 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
00185 (sbr->num_patches - 1) * sizeof(patch_borders[0]));
00186
00187 qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
00188 sizeof(sbr->f_tablelim[0]),
00189 qsort_comparison_function_int16);
00190
00191 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
00192 while (out < sbr->f_tablelim + sbr->n_lim) {
00193 if (*in >= *out * lim_bands_per_octave_warped) {
00194 *++out = *in++;
00195 } else if (*in == *out ||
00196 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
00197 in++;
00198 sbr->n_lim--;
00199 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
00200 *out = *in++;
00201 sbr->n_lim--;
00202 } else {
00203 *++out = *in++;
00204 }
00205 }
00206 } else {
00207 sbr->f_tablelim[0] = sbr->f_tablelow[0];
00208 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
00209 sbr->n_lim = 1;
00210 }
00211 }
00212
00213 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
00214 {
00215 unsigned int cnt = get_bits_count(gb);
00216 uint8_t bs_header_extra_1;
00217 uint8_t bs_header_extra_2;
00218 int old_bs_limiter_bands = sbr->bs_limiter_bands;
00219 SpectrumParameters old_spectrum_params;
00220
00221 sbr->start = 1;
00222
00223
00224 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
00225
00226 sbr->bs_amp_res_header = get_bits1(gb);
00227 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
00228 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
00229 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
00230 skip_bits(gb, 2);
00231
00232 bs_header_extra_1 = get_bits1(gb);
00233 bs_header_extra_2 = get_bits1(gb);
00234
00235 if (bs_header_extra_1) {
00236 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
00237 sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
00238 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
00239 } else {
00240 sbr->spectrum_params.bs_freq_scale = 2;
00241 sbr->spectrum_params.bs_alter_scale = 1;
00242 sbr->spectrum_params.bs_noise_bands = 2;
00243 }
00244
00245
00246 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
00247 sbr->reset = 1;
00248
00249 if (bs_header_extra_2) {
00250 sbr->bs_limiter_bands = get_bits(gb, 2);
00251 sbr->bs_limiter_gains = get_bits(gb, 2);
00252 sbr->bs_interpol_freq = get_bits1(gb);
00253 sbr->bs_smoothing_mode = get_bits1(gb);
00254 } else {
00255 sbr->bs_limiter_bands = 2;
00256 sbr->bs_limiter_gains = 2;
00257 sbr->bs_interpol_freq = 1;
00258 sbr->bs_smoothing_mode = 1;
00259 }
00260
00261 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
00262 sbr_make_f_tablelim(sbr);
00263
00264 return get_bits_count(gb) - cnt;
00265 }
00266
00267 static int array_min_int16(const int16_t *array, int nel)
00268 {
00269 int i, min = array[0];
00270 for (i = 1; i < nel; i++)
00271 min = FFMIN(array[i], min);
00272 return min;
00273 }
00274
00275 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
00276 {
00277 int k, previous, present;
00278 float base, prod;
00279
00280 base = powf((float)stop / start, 1.0f / num_bands);
00281 prod = start;
00282 previous = start;
00283
00284 for (k = 0; k < num_bands-1; k++) {
00285 prod *= base;
00286 present = lrintf(prod);
00287 bands[k] = present - previous;
00288 previous = present;
00289 }
00290 bands[num_bands-1] = stop - previous;
00291 }
00292
00293 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
00294 {
00295
00296 if (n_master <= 0) {
00297 av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
00298 return -1;
00299 }
00300 if (bs_xover_band >= n_master) {
00301 av_log(avctx, AV_LOG_ERROR,
00302 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
00303 bs_xover_band);
00304 return -1;
00305 }
00306 return 0;
00307 }
00308
00310 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
00311 SpectrumParameters *spectrum)
00312 {
00313 unsigned int temp, max_qmf_subbands;
00314 unsigned int start_min, stop_min;
00315 int k;
00316 const int8_t *sbr_offset_ptr;
00317 int16_t stop_dk[13];
00318
00319 if (sbr->sample_rate < 32000) {
00320 temp = 3000;
00321 } else if (sbr->sample_rate < 64000) {
00322 temp = 4000;
00323 } else
00324 temp = 5000;
00325
00326 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
00327 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
00328
00329 switch (sbr->sample_rate) {
00330 case 16000:
00331 sbr_offset_ptr = sbr_offset[0];
00332 break;
00333 case 22050:
00334 sbr_offset_ptr = sbr_offset[1];
00335 break;
00336 case 24000:
00337 sbr_offset_ptr = sbr_offset[2];
00338 break;
00339 case 32000:
00340 sbr_offset_ptr = sbr_offset[3];
00341 break;
00342 case 44100: case 48000: case 64000:
00343 sbr_offset_ptr = sbr_offset[4];
00344 break;
00345 case 88200: case 96000: case 128000: case 176400: case 192000:
00346 sbr_offset_ptr = sbr_offset[5];
00347 break;
00348 default:
00349 av_log(ac->avctx, AV_LOG_ERROR,
00350 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
00351 return -1;
00352 }
00353
00354 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
00355
00356 if (spectrum->bs_stop_freq < 14) {
00357 sbr->k[2] = stop_min;
00358 make_bands(stop_dk, stop_min, 64, 13);
00359 qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
00360 for (k = 0; k < spectrum->bs_stop_freq; k++)
00361 sbr->k[2] += stop_dk[k];
00362 } else if (spectrum->bs_stop_freq == 14) {
00363 sbr->k[2] = 2*sbr->k[0];
00364 } else if (spectrum->bs_stop_freq == 15) {
00365 sbr->k[2] = 3*sbr->k[0];
00366 } else {
00367 av_log(ac->avctx, AV_LOG_ERROR,
00368 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
00369 return -1;
00370 }
00371 sbr->k[2] = FFMIN(64, sbr->k[2]);
00372
00373
00374 if (sbr->sample_rate <= 32000) {
00375 max_qmf_subbands = 48;
00376 } else if (sbr->sample_rate == 44100) {
00377 max_qmf_subbands = 35;
00378 } else if (sbr->sample_rate >= 48000)
00379 max_qmf_subbands = 32;
00380
00381 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
00382 av_log(ac->avctx, AV_LOG_ERROR,
00383 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
00384 return -1;
00385 }
00386
00387 if (!spectrum->bs_freq_scale) {
00388 int dk, k2diff;
00389
00390 dk = spectrum->bs_alter_scale + 1;
00391 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
00392 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
00393 return -1;
00394
00395 for (k = 1; k <= sbr->n_master; k++)
00396 sbr->f_master[k] = dk;
00397
00398 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
00399 if (k2diff < 0) {
00400 sbr->f_master[1]--;
00401 sbr->f_master[2]-= (k2diff < -1);
00402 } else if (k2diff) {
00403 sbr->f_master[sbr->n_master]++;
00404 }
00405
00406 sbr->f_master[0] = sbr->k[0];
00407 for (k = 1; k <= sbr->n_master; k++)
00408 sbr->f_master[k] += sbr->f_master[k - 1];
00409
00410 } else {
00411 int half_bands = 7 - spectrum->bs_freq_scale;
00412 int two_regions, num_bands_0;
00413 int vdk0_max, vdk1_min;
00414 int16_t vk0[49];
00415
00416 if (49 * sbr->k[2] > 110 * sbr->k[0]) {
00417 two_regions = 1;
00418 sbr->k[1] = 2 * sbr->k[0];
00419 } else {
00420 two_regions = 0;
00421 sbr->k[1] = sbr->k[2];
00422 }
00423
00424 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
00425
00426 if (num_bands_0 <= 0) {
00427 av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
00428 return -1;
00429 }
00430
00431 vk0[0] = 0;
00432
00433 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
00434
00435 qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
00436 vdk0_max = vk0[num_bands_0];
00437
00438 vk0[0] = sbr->k[0];
00439 for (k = 1; k <= num_bands_0; k++) {
00440 if (vk0[k] <= 0) {
00441 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
00442 return -1;
00443 }
00444 vk0[k] += vk0[k-1];
00445 }
00446
00447 if (two_regions) {
00448 int16_t vk1[49];
00449 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
00450 : 1.0f;
00451 int num_bands_1 = lrintf(half_bands * invwarp *
00452 log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
00453
00454 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
00455
00456 vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
00457
00458 if (vdk1_min < vdk0_max) {
00459 int change;
00460 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
00461 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
00462 vk1[1] += change;
00463 vk1[num_bands_1] -= change;
00464 }
00465
00466 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
00467
00468 vk1[0] = sbr->k[1];
00469 for (k = 1; k <= num_bands_1; k++) {
00470 if (vk1[k] <= 0) {
00471 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
00472 return -1;
00473 }
00474 vk1[k] += vk1[k-1];
00475 }
00476
00477 sbr->n_master = num_bands_0 + num_bands_1;
00478 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
00479 return -1;
00480 memcpy(&sbr->f_master[0], vk0,
00481 (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
00482 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
00483 num_bands_1 * sizeof(sbr->f_master[0]));
00484
00485 } else {
00486 sbr->n_master = num_bands_0;
00487 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
00488 return -1;
00489 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
00490 }
00491 }
00492
00493 return 0;
00494 }
00495
00497 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
00498 {
00499 int i, k, sb = 0;
00500 int msb = sbr->k[0];
00501 int usb = sbr->kx[1];
00502 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
00503
00504 sbr->num_patches = 0;
00505
00506 if (goal_sb < sbr->kx[1] + sbr->m[1]) {
00507 for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
00508 } else
00509 k = sbr->n_master;
00510
00511 do {
00512 int odd = 0;
00513 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
00514 sb = sbr->f_master[i];
00515 odd = (sb + sbr->k[0]) & 1;
00516 }
00517
00518
00519
00520
00521
00522 if (sbr->num_patches > 5) {
00523 av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
00524 return -1;
00525 }
00526
00527 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
00528 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
00529
00530 if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
00531 usb = sb;
00532 msb = sb;
00533 sbr->num_patches++;
00534 } else
00535 msb = sbr->kx[1];
00536
00537 if (sbr->f_master[k] - sb < 3)
00538 k = sbr->n_master;
00539 } while (sb != sbr->kx[1] + sbr->m[1]);
00540
00541 if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
00542 sbr->num_patches--;
00543
00544 return 0;
00545 }
00546
00548 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
00549 {
00550 int k, temp;
00551
00552 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
00553 sbr->n[0] = (sbr->n[1] + 1) >> 1;
00554
00555 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
00556 (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
00557 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
00558 sbr->kx[1] = sbr->f_tablehigh[0];
00559
00560
00561 if (sbr->kx[1] + sbr->m[1] > 64) {
00562 av_log(ac->avctx, AV_LOG_ERROR,
00563 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
00564 return -1;
00565 }
00566 if (sbr->kx[1] > 32) {
00567 av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
00568 return -1;
00569 }
00570
00571 sbr->f_tablelow[0] = sbr->f_tablehigh[0];
00572 temp = sbr->n[1] & 1;
00573 for (k = 1; k <= sbr->n[0]; k++)
00574 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
00575
00576 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
00577 log2f(sbr->k[2] / (float)sbr->kx[1])));
00578 if (sbr->n_q > 5) {
00579 av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
00580 return -1;
00581 }
00582
00583 sbr->f_tablenoise[0] = sbr->f_tablelow[0];
00584 temp = 0;
00585 for (k = 1; k <= sbr->n_q; k++) {
00586 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
00587 sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
00588 }
00589
00590 if (sbr_hf_calc_npatches(ac, sbr) < 0)
00591 return -1;
00592
00593 sbr_make_f_tablelim(sbr);
00594
00595 sbr->data[0].f_indexnoise = 0;
00596 sbr->data[1].f_indexnoise = 0;
00597
00598 return 0;
00599 }
00600
00601 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
00602 int elements)
00603 {
00604 int i;
00605 for (i = 0; i < elements; i++) {
00606 vec[i] = get_bits1(gb);
00607 }
00608 }
00609
00611 static const int8_t ceil_log2[] = {
00612 0, 1, 2, 2, 3, 3,
00613 };
00614
00615 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
00616 GetBitContext *gb, SBRData *ch_data)
00617 {
00618 int i;
00619 unsigned bs_pointer = 0;
00620
00621 int abs_bord_trail = 16;
00622 int num_rel_lead, num_rel_trail;
00623 unsigned bs_num_env_old = ch_data->bs_num_env;
00624
00625 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
00626 ch_data->bs_amp_res = sbr->bs_amp_res_header;
00627 ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
00628
00629 switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
00630 case FIXFIX:
00631 ch_data->bs_num_env = 1 << get_bits(gb, 2);
00632 num_rel_lead = ch_data->bs_num_env - 1;
00633 if (ch_data->bs_num_env == 1)
00634 ch_data->bs_amp_res = 0;
00635
00636 if (ch_data->bs_num_env > 4) {
00637 av_log(ac->avctx, AV_LOG_ERROR,
00638 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
00639 ch_data->bs_num_env);
00640 return -1;
00641 }
00642
00643 ch_data->t_env[0] = 0;
00644 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
00645
00646 abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
00647 ch_data->bs_num_env;
00648 for (i = 0; i < num_rel_lead; i++)
00649 ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
00650
00651 ch_data->bs_freq_res[1] = get_bits1(gb);
00652 for (i = 1; i < ch_data->bs_num_env; i++)
00653 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
00654 break;
00655 case FIXVAR:
00656 abs_bord_trail += get_bits(gb, 2);
00657 num_rel_trail = get_bits(gb, 2);
00658 ch_data->bs_num_env = num_rel_trail + 1;
00659 ch_data->t_env[0] = 0;
00660 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
00661
00662 for (i = 0; i < num_rel_trail; i++)
00663 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
00664 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
00665
00666 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
00667
00668 for (i = 0; i < ch_data->bs_num_env; i++)
00669 ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
00670 break;
00671 case VARFIX:
00672 ch_data->t_env[0] = get_bits(gb, 2);
00673 num_rel_lead = get_bits(gb, 2);
00674 ch_data->bs_num_env = num_rel_lead + 1;
00675 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
00676
00677 for (i = 0; i < num_rel_lead; i++)
00678 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
00679
00680 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
00681
00682 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
00683 break;
00684 case VARVAR:
00685 ch_data->t_env[0] = get_bits(gb, 2);
00686 abs_bord_trail += get_bits(gb, 2);
00687 num_rel_lead = get_bits(gb, 2);
00688 num_rel_trail = get_bits(gb, 2);
00689 ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
00690
00691 if (ch_data->bs_num_env > 5) {
00692 av_log(ac->avctx, AV_LOG_ERROR,
00693 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
00694 ch_data->bs_num_env);
00695 return -1;
00696 }
00697
00698 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
00699
00700 for (i = 0; i < num_rel_lead; i++)
00701 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
00702 for (i = 0; i < num_rel_trail; i++)
00703 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
00704 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
00705
00706 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
00707
00708 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
00709 break;
00710 }
00711
00712 if (bs_pointer > ch_data->bs_num_env + 1) {
00713 av_log(ac->avctx, AV_LOG_ERROR,
00714 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
00715 bs_pointer);
00716 return -1;
00717 }
00718
00719 for (i = 1; i <= ch_data->bs_num_env; i++) {
00720 if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
00721 av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
00722 return -1;
00723 }
00724 }
00725
00726 ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
00727
00728 ch_data->t_q[0] = ch_data->t_env[0];
00729 ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
00730 if (ch_data->bs_num_noise > 1) {
00731 unsigned int idx;
00732 if (ch_data->bs_frame_class == FIXFIX) {
00733 idx = ch_data->bs_num_env >> 1;
00734 } else if (ch_data->bs_frame_class & 1) {
00735 idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
00736 } else {
00737 if (!bs_pointer)
00738 idx = 1;
00739 else if (bs_pointer == 1)
00740 idx = ch_data->bs_num_env - 1;
00741 else
00742 idx = bs_pointer - 1;
00743 }
00744 ch_data->t_q[1] = ch_data->t_env[idx];
00745 }
00746
00747 ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old);
00748 ch_data->e_a[1] = -1;
00749 if ((ch_data->bs_frame_class & 1) && bs_pointer) {
00750 ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
00751 } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1))
00752 ch_data->e_a[1] = bs_pointer - 1;
00753
00754 return 0;
00755 }
00756
00757 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
00758
00759 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
00760 dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
00761 dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
00762
00763
00764 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
00765 memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
00766 memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
00767 dst->bs_num_env = src->bs_num_env;
00768 dst->bs_amp_res = src->bs_amp_res;
00769 dst->bs_num_noise = src->bs_num_noise;
00770 dst->bs_frame_class = src->bs_frame_class;
00771 dst->e_a[1] = src->e_a[1];
00772 }
00773
00775 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
00776 SBRData *ch_data)
00777 {
00778 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
00779 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
00780 }
00781
00783 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
00784 SBRData *ch_data)
00785 {
00786 int i;
00787
00788 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
00789 for (i = 0; i < sbr->n_q; i++)
00790 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
00791 }
00792
00793 static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
00794 SBRData *ch_data, int ch)
00795 {
00796 int bits;
00797 int i, j, k;
00798 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
00799 int t_lav, f_lav;
00800 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
00801 const int odd = sbr->n[1] & 1;
00802
00803 if (sbr->bs_coupling && ch) {
00804 if (ch_data->bs_amp_res) {
00805 bits = 5;
00806 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
00807 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
00808 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
00809 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
00810 } else {
00811 bits = 6;
00812 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
00813 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
00814 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
00815 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
00816 }
00817 } else {
00818 if (ch_data->bs_amp_res) {
00819 bits = 6;
00820 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
00821 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
00822 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
00823 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
00824 } else {
00825 bits = 7;
00826 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
00827 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
00828 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
00829 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
00830 }
00831 }
00832
00833 for (i = 0; i < ch_data->bs_num_env; i++) {
00834 if (ch_data->bs_df_env[i]) {
00835
00836 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
00837 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
00838 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
00839 } else if (ch_data->bs_freq_res[i + 1]) {
00840 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
00841 k = (j + odd) >> 1;
00842 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
00843 }
00844 } else {
00845 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
00846 k = j ? 2*j - odd : 0;
00847 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
00848 }
00849 }
00850 } else {
00851 ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits);
00852 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
00853 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
00854 }
00855 }
00856
00857
00858 memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
00859 sizeof(ch_data->env_facs[0]));
00860 }
00861
00862 static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
00863 SBRData *ch_data, int ch)
00864 {
00865 int i, j;
00866 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
00867 int t_lav, f_lav;
00868 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
00869
00870 if (sbr->bs_coupling && ch) {
00871 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
00872 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
00873 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
00874 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
00875 } else {
00876 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
00877 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
00878 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
00879 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
00880 }
00881
00882 for (i = 0; i < ch_data->bs_num_noise; i++) {
00883 if (ch_data->bs_df_noise[i]) {
00884 for (j = 0; j < sbr->n_q; j++)
00885 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
00886 } else {
00887 ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5);
00888 for (j = 1; j < sbr->n_q; j++)
00889 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
00890 }
00891 }
00892
00893
00894 memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
00895 sizeof(ch_data->noise_facs[0]));
00896 }
00897
00898 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
00899 GetBitContext *gb,
00900 int bs_extension_id, int *num_bits_left)
00901 {
00902 switch (bs_extension_id) {
00903 case EXTENSION_ID_PS:
00904 if (!ac->m4ac.ps) {
00905 av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
00906 skip_bits_long(gb, *num_bits_left);
00907 *num_bits_left = 0;
00908 } else {
00909 #if 1
00910 *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
00911 #else
00912 av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0);
00913 skip_bits_long(gb, *num_bits_left);
00914 *num_bits_left = 0;
00915 #endif
00916 }
00917 break;
00918 default:
00919 av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1);
00920 skip_bits_long(gb, *num_bits_left);
00921 *num_bits_left = 0;
00922 break;
00923 }
00924 }
00925
00926 static int read_sbr_single_channel_element(AACContext *ac,
00927 SpectralBandReplication *sbr,
00928 GetBitContext *gb)
00929 {
00930 if (get_bits1(gb))
00931 skip_bits(gb, 4);
00932
00933 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
00934 return -1;
00935 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
00936 read_sbr_invf(sbr, gb, &sbr->data[0]);
00937 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
00938 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
00939
00940 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
00941 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
00942
00943 return 0;
00944 }
00945
00946 static int read_sbr_channel_pair_element(AACContext *ac,
00947 SpectralBandReplication *sbr,
00948 GetBitContext *gb)
00949 {
00950 if (get_bits1(gb))
00951 skip_bits(gb, 8);
00952
00953 if ((sbr->bs_coupling = get_bits1(gb))) {
00954 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
00955 return -1;
00956 copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
00957 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
00958 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
00959 read_sbr_invf(sbr, gb, &sbr->data[0]);
00960 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
00961 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
00962 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
00963 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
00964 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
00965 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
00966 } else {
00967 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
00968 read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
00969 return -1;
00970 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
00971 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
00972 read_sbr_invf(sbr, gb, &sbr->data[0]);
00973 read_sbr_invf(sbr, gb, &sbr->data[1]);
00974 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
00975 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
00976 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
00977 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
00978 }
00979
00980 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
00981 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
00982 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
00983 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
00984
00985 return 0;
00986 }
00987
00988 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
00989 GetBitContext *gb, int id_aac)
00990 {
00991 unsigned int cnt = get_bits_count(gb);
00992
00993 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
00994 if (read_sbr_single_channel_element(ac, sbr, gb)) {
00995 sbr->start = 0;
00996 return get_bits_count(gb) - cnt;
00997 }
00998 } else if (id_aac == TYPE_CPE) {
00999 if (read_sbr_channel_pair_element(ac, sbr, gb)) {
01000 sbr->start = 0;
01001 return get_bits_count(gb) - cnt;
01002 }
01003 } else {
01004 av_log(ac->avctx, AV_LOG_ERROR,
01005 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
01006 sbr->start = 0;
01007 return get_bits_count(gb) - cnt;
01008 }
01009 if (get_bits1(gb)) {
01010 int num_bits_left = get_bits(gb, 4);
01011 if (num_bits_left == 15)
01012 num_bits_left += get_bits(gb, 8);
01013
01014 num_bits_left <<= 3;
01015 while (num_bits_left > 7) {
01016 num_bits_left -= 2;
01017 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left);
01018 }
01019 if (num_bits_left < 0) {
01020 av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
01021 }
01022 if (num_bits_left > 0)
01023 skip_bits(gb, num_bits_left);
01024 }
01025
01026 return get_bits_count(gb) - cnt;
01027 }
01028
01029 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
01030 {
01031 int err;
01032 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
01033 if (err >= 0)
01034 err = sbr_make_f_derived(ac, sbr);
01035 if (err < 0) {
01036 av_log(ac->avctx, AV_LOG_ERROR,
01037 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
01038 sbr->start = 0;
01039 }
01040 }
01041
01050 int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
01051 GetBitContext *gb_host, int crc, int cnt, int id_aac)
01052 {
01053 unsigned int num_sbr_bits = 0, num_align_bits;
01054 unsigned bytes_read;
01055 GetBitContext gbc = *gb_host, *gb = &gbc;
01056 skip_bits_long(gb_host, cnt*8 - 4);
01057
01058 sbr->reset = 0;
01059
01060 if (!sbr->sample_rate)
01061 sbr->sample_rate = 2 * ac->m4ac.sample_rate;
01062 if (!ac->m4ac.ext_sample_rate)
01063 ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
01064
01065 if (crc) {
01066 skip_bits(gb, 10);
01067 num_sbr_bits += 10;
01068 }
01069
01070
01071 sbr->kx[0] = sbr->kx[1];
01072 sbr->m[0] = sbr->m[1];
01073
01074 num_sbr_bits++;
01075 if (get_bits1(gb))
01076 num_sbr_bits += read_sbr_header(sbr, gb);
01077
01078 if (sbr->reset)
01079 sbr_reset(ac, sbr);
01080
01081 if (sbr->start)
01082 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
01083
01084 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
01085 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
01086
01087 if (bytes_read > cnt) {
01088 av_log(ac->avctx, AV_LOG_ERROR,
01089 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
01090 }
01091 return cnt;
01092 }
01093
01095 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
01096 {
01097 int k, e;
01098 int ch;
01099
01100 if (id_aac == TYPE_CPE && sbr->bs_coupling) {
01101 float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
01102 float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
01103 for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
01104 for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
01105 float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
01106 float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
01107 float fac = temp1 / (1.0f + temp2);
01108 sbr->data[0].env_facs[e][k] = fac;
01109 sbr->data[1].env_facs[e][k] = fac * temp2;
01110 }
01111 }
01112 for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
01113 for (k = 0; k < sbr->n_q; k++) {
01114 float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
01115 float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
01116 float fac = temp1 / (1.0f + temp2);
01117 sbr->data[0].noise_facs[e][k] = fac;
01118 sbr->data[1].noise_facs[e][k] = fac * temp2;
01119 }
01120 }
01121 } else {
01122 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
01123 float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
01124 for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
01125 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
01126 sbr->data[ch].env_facs[e][k] =
01127 exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
01128 for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
01129 for (k = 0; k < sbr->n_q; k++)
01130 sbr->data[ch].noise_facs[e][k] =
01131 exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
01132 }
01133 }
01134 }
01135
01142 static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct, const float *in, float *x,
01143 float z[320], float W[2][32][32][2])
01144 {
01145 int i, k;
01146 memcpy(W[0], W[1], sizeof(W[0]));
01147 memcpy(x , x+1024, (320-32)*sizeof(x[0]));
01148 memcpy(x+288, in, 1024*sizeof(x[0]));
01149 for (i = 0; i < 32; i++) {
01150
01151 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
01152 for (k = 0; k < 64; k++) {
01153 float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
01154 z[k] = f;
01155 }
01156
01157 z[64] = z[0];
01158 for (k = 1; k < 32; k++) {
01159 z[64+2*k-1] = z[ k];
01160 z[64+2*k ] = -z[64-k];
01161 }
01162 z[64+63] = z[32];
01163
01164 mdct->imdct_half(mdct, z, z+64);
01165 for (k = 0; k < 32; k++) {
01166 W[1][i][k][0] = -z[63-k];
01167 W[1][i][k][1] = z[k];
01168 }
01169 x += 32;
01170 }
01171 }
01172
01177 static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
01178 float *out, float X[2][38][64],
01179 float mdct_buf[2][64],
01180 float *v0, int *v_off, const unsigned int div)
01181 {
01182 int i, n;
01183 const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
01184 const int step = 128 >> div;
01185 float *v;
01186 for (i = 0; i < 32; i++) {
01187 if (*v_off < step) {
01188 int saved_samples = (1280 - 128) >> div;
01189 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
01190 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
01191 } else {
01192 *v_off -= step;
01193 }
01194 v = v0 + *v_off;
01195 if (div) {
01196 for (n = 0; n < 32; n++) {
01197 X[0][i][ n] = -X[0][i][n];
01198 X[0][i][32+n] = X[1][i][31-n];
01199 }
01200 mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
01201 for (n = 0; n < 32; n++) {
01202 v[ n] = mdct_buf[0][63 - 2*n];
01203 v[63 - n] = -mdct_buf[0][62 - 2*n];
01204 }
01205 } else {
01206 for (n = 1; n < 64; n+=2) {
01207 X[1][i][n] = -X[1][i][n];
01208 }
01209 mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
01210 mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
01211 for (n = 0; n < 64; n++) {
01212 v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
01213 v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
01214 }
01215 }
01216 dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
01217 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
01218 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
01219 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
01220 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
01221 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
01222 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
01223 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
01224 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
01225 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
01226 out += 64 >> div;
01227 }
01228 }
01229
01230 static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
01231 {
01232 int i;
01233 float real_sum = 0.0f;
01234 float imag_sum = 0.0f;
01235 if (lag) {
01236 for (i = 1; i < 38; i++) {
01237 real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
01238 imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
01239 }
01240 phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
01241 phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
01242 if (lag == 1) {
01243 phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
01244 phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
01245 }
01246 } else {
01247 for (i = 1; i < 38; i++) {
01248 real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
01249 }
01250 phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
01251 phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
01252 }
01253 }
01254
01259 static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
01260 const float X_low[32][40][2], int k0)
01261 {
01262 int k;
01263 for (k = 0; k < k0; k++) {
01264 float phi[3][2][2], dk;
01265
01266 autocorrelate(X_low[k], phi, 0);
01267 autocorrelate(X_low[k], phi, 1);
01268 autocorrelate(X_low[k], phi, 2);
01269
01270 dk = phi[2][1][0] * phi[1][0][0] -
01271 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
01272
01273 if (!dk) {
01274 alpha1[k][0] = 0;
01275 alpha1[k][1] = 0;
01276 } else {
01277 float temp_real, temp_im;
01278 temp_real = phi[0][0][0] * phi[1][1][0] -
01279 phi[0][0][1] * phi[1][1][1] -
01280 phi[0][1][0] * phi[1][0][0];
01281 temp_im = phi[0][0][0] * phi[1][1][1] +
01282 phi[0][0][1] * phi[1][1][0] -
01283 phi[0][1][1] * phi[1][0][0];
01284
01285 alpha1[k][0] = temp_real / dk;
01286 alpha1[k][1] = temp_im / dk;
01287 }
01288
01289 if (!phi[1][0][0]) {
01290 alpha0[k][0] = 0;
01291 alpha0[k][1] = 0;
01292 } else {
01293 float temp_real, temp_im;
01294 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
01295 alpha1[k][1] * phi[1][1][1];
01296 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
01297 alpha1[k][0] * phi[1][1][1];
01298
01299 alpha0[k][0] = -temp_real / phi[1][0][0];
01300 alpha0[k][1] = -temp_im / phi[1][0][0];
01301 }
01302
01303 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
01304 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
01305 alpha1[k][0] = 0;
01306 alpha1[k][1] = 0;
01307 alpha0[k][0] = 0;
01308 alpha0[k][1] = 0;
01309 }
01310 }
01311 }
01312
01314 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
01315 {
01316 int i;
01317 float new_bw;
01318 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
01319
01320 for (i = 0; i < sbr->n_q; i++) {
01321 if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
01322 new_bw = 0.6f;
01323 } else
01324 new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
01325
01326 if (new_bw < ch_data->bw_array[i]) {
01327 new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
01328 } else
01329 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
01330 ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
01331 }
01332 }
01333
01335 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
01336 float X_low[32][40][2], const float W[2][32][32][2])
01337 {
01338 int i, k;
01339 const int t_HFGen = 8;
01340 const int i_f = 32;
01341 memset(X_low, 0, 32*sizeof(*X_low));
01342 for (k = 0; k < sbr->kx[1]; k++) {
01343 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
01344 X_low[k][i][0] = W[1][i - t_HFGen][k][0];
01345 X_low[k][i][1] = W[1][i - t_HFGen][k][1];
01346 }
01347 }
01348 for (k = 0; k < sbr->kx[0]; k++) {
01349 for (i = 0; i < t_HFGen; i++) {
01350 X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
01351 X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
01352 }
01353 }
01354 return 0;
01355 }
01356
01358 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
01359 float X_high[64][40][2], const float X_low[32][40][2],
01360 const float (*alpha0)[2], const float (*alpha1)[2],
01361 const float bw_array[5], const uint8_t *t_env,
01362 int bs_num_env)
01363 {
01364 int i, j, x;
01365 int g = 0;
01366 int k = sbr->kx[1];
01367 for (j = 0; j < sbr->num_patches; j++) {
01368 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
01369 float alpha[4];
01370 const int p = sbr->patch_start_subband[j] + x;
01371 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
01372 g++;
01373 g--;
01374
01375 if (g < 0) {
01376 av_log(ac->avctx, AV_LOG_ERROR,
01377 "ERROR : no subband found for frequency %d\n", k);
01378 return -1;
01379 }
01380
01381 alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
01382 alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
01383 alpha[2] = alpha0[p][0] * bw_array[g];
01384 alpha[3] = alpha0[p][1] * bw_array[g];
01385
01386 for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
01387 const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
01388 X_high[k][idx][0] =
01389 X_low[p][idx - 2][0] * alpha[0] -
01390 X_low[p][idx - 2][1] * alpha[1] +
01391 X_low[p][idx - 1][0] * alpha[2] -
01392 X_low[p][idx - 1][1] * alpha[3] +
01393 X_low[p][idx][0];
01394 X_high[k][idx][1] =
01395 X_low[p][idx - 2][1] * alpha[0] +
01396 X_low[p][idx - 2][0] * alpha[1] +
01397 X_low[p][idx - 1][1] * alpha[2] +
01398 X_low[p][idx - 1][0] * alpha[3] +
01399 X_low[p][idx][1];
01400 }
01401 }
01402 }
01403 if (k < sbr->m[1] + sbr->kx[1])
01404 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
01405
01406 return 0;
01407 }
01408
01410 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
01411 const float X_low[32][40][2], const float Y[2][38][64][2],
01412 int ch)
01413 {
01414 int k, i;
01415 const int i_f = 32;
01416 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
01417 memset(X, 0, 2*sizeof(*X));
01418 for (k = 0; k < sbr->kx[0]; k++) {
01419 for (i = 0; i < i_Temp; i++) {
01420 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
01421 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
01422 }
01423 }
01424 for (; k < sbr->kx[0] + sbr->m[0]; k++) {
01425 for (i = 0; i < i_Temp; i++) {
01426 X[0][i][k] = Y[0][i + i_f][k][0];
01427 X[1][i][k] = Y[0][i + i_f][k][1];
01428 }
01429 }
01430
01431 for (k = 0; k < sbr->kx[1]; k++) {
01432 for (i = i_Temp; i < 38; i++) {
01433 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
01434 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
01435 }
01436 }
01437 for (; k < sbr->kx[1] + sbr->m[1]; k++) {
01438 for (i = i_Temp; i < i_f; i++) {
01439 X[0][i][k] = Y[1][i][k][0];
01440 X[1][i][k] = Y[1][i][k][1];
01441 }
01442 }
01443 return 0;
01444 }
01445
01449 static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
01450 SBRData *ch_data, int e_a[2])
01451 {
01452 int e, i, m;
01453
01454 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
01455 for (e = 0; e < ch_data->bs_num_env; e++) {
01456 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
01457 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
01458 int k;
01459
01460 for (i = 0; i < ilim; i++)
01461 for (m = table[i]; m < table[i + 1]; m++)
01462 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
01463
01464
01465 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
01466 for (i = 0; i < sbr->n_q; i++)
01467 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
01468 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
01469
01470 for (i = 0; i < sbr->n[1]; i++) {
01471 if (ch_data->bs_add_harmonic_flag) {
01472 const unsigned int m_midpoint =
01473 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
01474
01475 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
01476 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
01477 }
01478 }
01479
01480 for (i = 0; i < ilim; i++) {
01481 int additional_sinusoid_present = 0;
01482 for (m = table[i]; m < table[i + 1]; m++) {
01483 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
01484 additional_sinusoid_present = 1;
01485 break;
01486 }
01487 }
01488 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
01489 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
01490 }
01491 }
01492
01493 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
01494 }
01495
01497 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
01498 SpectralBandReplication *sbr, SBRData *ch_data)
01499 {
01500 int e, i, m;
01501
01502 if (sbr->bs_interpol_freq) {
01503 for (e = 0; e < ch_data->bs_num_env; e++) {
01504 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
01505 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
01506 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
01507
01508 for (m = 0; m < sbr->m[1]; m++) {
01509 float sum = 0.0f;
01510
01511 for (i = ilb; i < iub; i++) {
01512 sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
01513 X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
01514 }
01515 e_curr[e][m] = sum * recip_env_size;
01516 }
01517 }
01518 } else {
01519 int k, p;
01520
01521 for (e = 0; e < ch_data->bs_num_env; e++) {
01522 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
01523 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
01524 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
01525 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
01526
01527 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
01528 float sum = 0.0f;
01529 const int den = env_size * (table[p + 1] - table[p]);
01530
01531 for (k = table[p]; k < table[p + 1]; k++) {
01532 for (i = ilb; i < iub; i++) {
01533 sum += X_high[k][i][0] * X_high[k][i][0] +
01534 X_high[k][i][1] * X_high[k][i][1];
01535 }
01536 }
01537 sum /= den;
01538 for (k = table[p]; k < table[p + 1]; k++) {
01539 e_curr[e][k - sbr->kx[1]] = sum;
01540 }
01541 }
01542 }
01543 }
01544 }
01545
01550 static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
01551 SBRData *ch_data, const int e_a[2])
01552 {
01553 int e, k, m;
01554
01555 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
01556
01557 for (e = 0; e < ch_data->bs_num_env; e++) {
01558 int delta = !((e == e_a[1]) || (e == e_a[0]));
01559 for (k = 0; k < sbr->n_lim; k++) {
01560 float gain_boost, gain_max;
01561 float sum[2] = { 0.0f, 0.0f };
01562 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
01563 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
01564 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
01565 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
01566 if (!sbr->s_mapped[e][m]) {
01567 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
01568 ((1.0f + sbr->e_curr[e][m]) *
01569 (1.0f + sbr->q_mapped[e][m] * delta)));
01570 } else {
01571 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
01572 ((1.0f + sbr->e_curr[e][m]) *
01573 (1.0f + sbr->q_mapped[e][m])));
01574 }
01575 }
01576 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
01577 sum[0] += sbr->e_origmapped[e][m];
01578 sum[1] += sbr->e_curr[e][m];
01579 }
01580 gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
01581 gain_max = FFMIN(100000.f, gain_max);
01582 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
01583 float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
01584 sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
01585 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
01586 }
01587 sum[0] = sum[1] = 0.0f;
01588 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
01589 sum[0] += sbr->e_origmapped[e][m];
01590 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
01591 + sbr->s_m[e][m] * sbr->s_m[e][m]
01592 + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
01593 }
01594 gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
01595 gain_boost = FFMIN(1.584893192f, gain_boost);
01596 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
01597 sbr->gain[e][m] *= gain_boost;
01598 sbr->q_m[e][m] *= gain_boost;
01599 sbr->s_m[e][m] *= gain_boost;
01600 }
01601 }
01602 }
01603 }
01604
01606 static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
01607 SpectralBandReplication *sbr, SBRData *ch_data,
01608 const int e_a[2])
01609 {
01610 int e, i, j, m;
01611 const int h_SL = 4 * !sbr->bs_smoothing_mode;
01612 const int kx = sbr->kx[1];
01613 const int m_max = sbr->m[1];
01614 static const float h_smooth[5] = {
01615 0.33333333333333,
01616 0.30150283239582,
01617 0.21816949906249,
01618 0.11516383427084,
01619 0.03183050093751,
01620 };
01621 static const int8_t phi[2][4] = {
01622 { 1, 0, -1, 0},
01623 { 0, 1, 0, -1},
01624 };
01625 float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
01626 int indexnoise = ch_data->f_indexnoise;
01627 int indexsine = ch_data->f_indexsine;
01628 memcpy(Y[0], Y[1], sizeof(Y[0]));
01629
01630 if (sbr->reset) {
01631 for (i = 0; i < h_SL; i++) {
01632 memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
01633 memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
01634 }
01635 } else if (h_SL) {
01636 memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
01637 memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
01638 }
01639
01640 for (e = 0; e < ch_data->bs_num_env; e++) {
01641 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
01642 memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
01643 memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
01644 }
01645 }
01646
01647 for (e = 0; e < ch_data->bs_num_env; e++) {
01648 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
01649 int phi_sign = (1 - 2*(kx & 1));
01650
01651 if (h_SL && e != e_a[0] && e != e_a[1]) {
01652 for (m = 0; m < m_max; m++) {
01653 const int idx1 = i + h_SL;
01654 float g_filt = 0.0f;
01655 for (j = 0; j <= h_SL; j++)
01656 g_filt += g_temp[idx1 - j][m] * h_smooth[j];
01657 Y[1][i][m + kx][0] =
01658 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
01659 Y[1][i][m + kx][1] =
01660 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
01661 }
01662 } else {
01663 for (m = 0; m < m_max; m++) {
01664 const float g_filt = g_temp[i + h_SL][m];
01665 Y[1][i][m + kx][0] =
01666 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
01667 Y[1][i][m + kx][1] =
01668 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
01669 }
01670 }
01671
01672 if (e != e_a[0] && e != e_a[1]) {
01673 for (m = 0; m < m_max; m++) {
01674 indexnoise = (indexnoise + 1) & 0x1ff;
01675 if (sbr->s_m[e][m]) {
01676 Y[1][i][m + kx][0] +=
01677 sbr->s_m[e][m] * phi[0][indexsine];
01678 Y[1][i][m + kx][1] +=
01679 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
01680 } else {
01681 float q_filt;
01682 if (h_SL) {
01683 const int idx1 = i + h_SL;
01684 q_filt = 0.0f;
01685 for (j = 0; j <= h_SL; j++)
01686 q_filt += q_temp[idx1 - j][m] * h_smooth[j];
01687 } else {
01688 q_filt = q_temp[i][m];
01689 }
01690 Y[1][i][m + kx][0] +=
01691 q_filt * sbr_noise_table[indexnoise][0];
01692 Y[1][i][m + kx][1] +=
01693 q_filt * sbr_noise_table[indexnoise][1];
01694 }
01695 phi_sign = -phi_sign;
01696 }
01697 } else {
01698 indexnoise = (indexnoise + m_max) & 0x1ff;
01699 for (m = 0; m < m_max; m++) {
01700 Y[1][i][m + kx][0] +=
01701 sbr->s_m[e][m] * phi[0][indexsine];
01702 Y[1][i][m + kx][1] +=
01703 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
01704 phi_sign = -phi_sign;
01705 }
01706 }
01707 indexsine = (indexsine + 1) & 3;
01708 }
01709 }
01710 ch_data->f_indexnoise = indexnoise;
01711 ch_data->f_indexsine = indexsine;
01712 }
01713
01714 void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
01715 float* L, float* R)
01716 {
01717 int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
01718 int ch;
01719 int nch = (id_aac == TYPE_CPE) ? 2 : 1;
01720
01721 if (sbr->start) {
01722 sbr_dequant(sbr, id_aac);
01723 }
01724 for (ch = 0; ch < nch; ch++) {
01725
01726 sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
01727 (float*)sbr->qmf_filter_scratch,
01728 sbr->data[ch].W);
01729 sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
01730 if (sbr->start) {
01731 sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
01732 sbr_chirp(sbr, &sbr->data[ch]);
01733 sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
01734 sbr->data[ch].bw_array, sbr->data[ch].t_env,
01735 sbr->data[ch].bs_num_env);
01736
01737
01738 sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
01739 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
01740 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
01741 sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
01742 sbr->data[ch].e_a);
01743 }
01744
01745
01746 sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch);
01747 }
01748
01749 if (ac->m4ac.ps == 1) {
01750 if (sbr->ps.start) {
01751 ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
01752 } else {
01753 memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
01754 }
01755 nch = 2;
01756 }
01757
01758 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch,
01759 sbr->data[0].synthesis_filterbank_samples,
01760 &sbr->data[0].synthesis_filterbank_samples_offset,
01761 downsampled);
01762 if (nch == 2)
01763 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch,
01764 sbr->data[1].synthesis_filterbank_samples,
01765 &sbr->data[1].synthesis_filterbank_samples_offset,
01766 downsampled);
01767 }