libavcodec/truemotion1.c
Go to the documentation of this file.
00001 /*
00002  * Duck TrueMotion 1.0 Decoder
00003  * Copyright (C) 2003 Alex Beregszaszi & Mike Melanson
00004  *
00005  * This file is part of Libav.
00006  *
00007  * Libav is free software; you can redistribute it and/or
00008  * modify it under the terms of the GNU Lesser General Public
00009  * License as published by the Free Software Foundation; either
00010  * version 2.1 of the License, or (at your option) any later version.
00011  *
00012  * Libav is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00015  * Lesser General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU Lesser General Public
00018  * License along with Libav; if not, write to the Free Software
00019  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
00020  */
00021 
00032 #include <stdio.h>
00033 #include <stdlib.h>
00034 #include <string.h>
00035 
00036 #include "avcodec.h"
00037 #include "dsputil.h"
00038 #include "libavutil/imgutils.h"
00039 
00040 #include "truemotion1data.h"
00041 
00042 typedef struct TrueMotion1Context {
00043     AVCodecContext *avctx;
00044     AVFrame frame;
00045 
00046     const uint8_t *buf;
00047     int size;
00048 
00049     const uint8_t *mb_change_bits;
00050     int mb_change_bits_row_size;
00051     const uint8_t *index_stream;
00052     int index_stream_size;
00053 
00054     int flags;
00055     int x, y, w, h;
00056 
00057     uint32_t y_predictor_table[1024];
00058     uint32_t c_predictor_table[1024];
00059     uint32_t fat_y_predictor_table[1024];
00060     uint32_t fat_c_predictor_table[1024];
00061 
00062     int compression;
00063     int block_type;
00064     int block_width;
00065     int block_height;
00066 
00067     int16_t ydt[8];
00068     int16_t cdt[8];
00069     int16_t fat_ydt[8];
00070     int16_t fat_cdt[8];
00071 
00072     int last_deltaset, last_vectable;
00073 
00074     unsigned int *vert_pred;
00075     int vert_pred_size;
00076 
00077 } TrueMotion1Context;
00078 
00079 #define FLAG_SPRITE         32
00080 #define FLAG_KEYFRAME       16
00081 #define FLAG_INTERFRAME      8
00082 #define FLAG_INTERPOLATED    4
00083 
00084 struct frame_header {
00085     uint8_t header_size;
00086     uint8_t compression;
00087     uint8_t deltaset;
00088     uint8_t vectable;
00089     uint16_t ysize;
00090     uint16_t xsize;
00091     uint16_t checksum;
00092     uint8_t version;
00093     uint8_t header_type;
00094     uint8_t flags;
00095     uint8_t control;
00096     uint16_t xoffset;
00097     uint16_t yoffset;
00098     uint16_t width;
00099     uint16_t height;
00100 };
00101 
00102 #define ALGO_NOP        0
00103 #define ALGO_RGB16V     1
00104 #define ALGO_RGB16H     2
00105 #define ALGO_RGB24H     3
00106 
00107 /* these are the various block sizes that can occupy a 4x4 block */
00108 #define BLOCK_2x2  0
00109 #define BLOCK_2x4  1
00110 #define BLOCK_4x2  2
00111 #define BLOCK_4x4  3
00112 
00113 typedef struct comp_types {
00114     int algorithm;
00115     int block_width; // vres
00116     int block_height; // hres
00117     int block_type;
00118 } comp_types;
00119 
00120 /* { valid for metatype }, algorithm, num of deltas, vert res, horiz res */
00121 static const comp_types compression_types[17] = {
00122     { ALGO_NOP,    0, 0, 0 },
00123 
00124     { ALGO_RGB16V, 4, 4, BLOCK_4x4 },
00125     { ALGO_RGB16H, 4, 4, BLOCK_4x4 },
00126     { ALGO_RGB16V, 4, 2, BLOCK_4x2 },
00127     { ALGO_RGB16H, 4, 2, BLOCK_4x2 },
00128 
00129     { ALGO_RGB16V, 2, 4, BLOCK_2x4 },
00130     { ALGO_RGB16H, 2, 4, BLOCK_2x4 },
00131     { ALGO_RGB16V, 2, 2, BLOCK_2x2 },
00132     { ALGO_RGB16H, 2, 2, BLOCK_2x2 },
00133 
00134     { ALGO_NOP,    4, 4, BLOCK_4x4 },
00135     { ALGO_RGB24H, 4, 4, BLOCK_4x4 },
00136     { ALGO_NOP,    4, 2, BLOCK_4x2 },
00137     { ALGO_RGB24H, 4, 2, BLOCK_4x2 },
00138 
00139     { ALGO_NOP,    2, 4, BLOCK_2x4 },
00140     { ALGO_RGB24H, 2, 4, BLOCK_2x4 },
00141     { ALGO_NOP,    2, 2, BLOCK_2x2 },
00142     { ALGO_RGB24H, 2, 2, BLOCK_2x2 }
00143 };
00144 
00145 static void select_delta_tables(TrueMotion1Context *s, int delta_table_index)
00146 {
00147     int i;
00148 
00149     if (delta_table_index > 3)
00150         return;
00151 
00152     memcpy(s->ydt, ydts[delta_table_index], 8 * sizeof(int16_t));
00153     memcpy(s->cdt, cdts[delta_table_index], 8 * sizeof(int16_t));
00154     memcpy(s->fat_ydt, fat_ydts[delta_table_index], 8 * sizeof(int16_t));
00155     memcpy(s->fat_cdt, fat_cdts[delta_table_index], 8 * sizeof(int16_t));
00156 
00157     /* Y skinny deltas need to be halved for some reason; maybe the
00158      * skinny Y deltas should be modified */
00159     for (i = 0; i < 8; i++)
00160     {
00161         /* drop the lsb before dividing by 2-- net effect: round down
00162          * when dividing a negative number (e.g., -3/2 = -2, not -1) */
00163         s->ydt[i] &= 0xFFFE;
00164         s->ydt[i] /= 2;
00165     }
00166 }
00167 
00168 #if HAVE_BIGENDIAN
00169 static int make_ydt15_entry(int p2, int p1, int16_t *ydt)
00170 #else
00171 static int make_ydt15_entry(int p1, int p2, int16_t *ydt)
00172 #endif
00173 {
00174     int lo, hi;
00175 
00176     lo = ydt[p1];
00177     lo += (lo << 5) + (lo << 10);
00178     hi = ydt[p2];
00179     hi += (hi << 5) + (hi << 10);
00180     return (lo + (hi << 16)) << 1;
00181 }
00182 
00183 static int make_cdt15_entry(int p1, int p2, int16_t *cdt)
00184 {
00185     int r, b, lo;
00186 
00187     b = cdt[p2];
00188     r = cdt[p1] << 10;
00189     lo = b + r;
00190     return (lo + (lo << 16)) << 1;
00191 }
00192 
00193 #if HAVE_BIGENDIAN
00194 static int make_ydt16_entry(int p2, int p1, int16_t *ydt)
00195 #else
00196 static int make_ydt16_entry(int p1, int p2, int16_t *ydt)
00197 #endif
00198 {
00199     int lo, hi;
00200 
00201     lo = ydt[p1];
00202     lo += (lo << 6) + (lo << 11);
00203     hi = ydt[p2];
00204     hi += (hi << 6) + (hi << 11);
00205     return (lo + (hi << 16)) << 1;
00206 }
00207 
00208 static int make_cdt16_entry(int p1, int p2, int16_t *cdt)
00209 {
00210     int r, b, lo;
00211 
00212     b = cdt[p2];
00213     r = cdt[p1] << 11;
00214     lo = b + r;
00215     return (lo + (lo << 16)) << 1;
00216 }
00217 
00218 static int make_ydt24_entry(int p1, int p2, int16_t *ydt)
00219 {
00220     int lo, hi;
00221 
00222     lo = ydt[p1];
00223     hi = ydt[p2];
00224     return (lo + (hi << 8) + (hi << 16)) << 1;
00225 }
00226 
00227 static int make_cdt24_entry(int p1, int p2, int16_t *cdt)
00228 {
00229     int r, b;
00230 
00231     b = cdt[p2];
00232     r = cdt[p1]<<16;
00233     return (b+r) << 1;
00234 }
00235 
00236 static void gen_vector_table15(TrueMotion1Context *s, const uint8_t *sel_vector_table)
00237 {
00238     int len, i, j;
00239     unsigned char delta_pair;
00240 
00241     for (i = 0; i < 1024; i += 4)
00242     {
00243         len = *sel_vector_table++ / 2;
00244         for (j = 0; j < len; j++)
00245         {
00246             delta_pair = *sel_vector_table++;
00247             s->y_predictor_table[i+j] = 0xfffffffe &
00248                 make_ydt15_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
00249             s->c_predictor_table[i+j] = 0xfffffffe &
00250                 make_cdt15_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
00251         }
00252         s->y_predictor_table[i+(j-1)] |= 1;
00253         s->c_predictor_table[i+(j-1)] |= 1;
00254     }
00255 }
00256 
00257 static void gen_vector_table16(TrueMotion1Context *s, const uint8_t *sel_vector_table)
00258 {
00259     int len, i, j;
00260     unsigned char delta_pair;
00261 
00262     for (i = 0; i < 1024; i += 4)
00263     {
00264         len = *sel_vector_table++ / 2;
00265         for (j = 0; j < len; j++)
00266         {
00267             delta_pair = *sel_vector_table++;
00268             s->y_predictor_table[i+j] = 0xfffffffe &
00269                 make_ydt16_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
00270             s->c_predictor_table[i+j] = 0xfffffffe &
00271                 make_cdt16_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
00272         }
00273         s->y_predictor_table[i+(j-1)] |= 1;
00274         s->c_predictor_table[i+(j-1)] |= 1;
00275     }
00276 }
00277 
00278 static void gen_vector_table24(TrueMotion1Context *s, const uint8_t *sel_vector_table)
00279 {
00280     int len, i, j;
00281     unsigned char delta_pair;
00282 
00283     for (i = 0; i < 1024; i += 4)
00284     {
00285         len = *sel_vector_table++ / 2;
00286         for (j = 0; j < len; j++)
00287         {
00288             delta_pair = *sel_vector_table++;
00289             s->y_predictor_table[i+j] = 0xfffffffe &
00290                 make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
00291             s->c_predictor_table[i+j] = 0xfffffffe &
00292                 make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
00293             s->fat_y_predictor_table[i+j] = 0xfffffffe &
00294                 make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_ydt);
00295             s->fat_c_predictor_table[i+j] = 0xfffffffe &
00296                 make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_cdt);
00297         }
00298         s->y_predictor_table[i+(j-1)] |= 1;
00299         s->c_predictor_table[i+(j-1)] |= 1;
00300         s->fat_y_predictor_table[i+(j-1)] |= 1;
00301         s->fat_c_predictor_table[i+(j-1)] |= 1;
00302     }
00303 }
00304 
00305 /* Returns the number of bytes consumed from the bytestream. Returns -1 if
00306  * there was an error while decoding the header */
00307 static int truemotion1_decode_header(TrueMotion1Context *s)
00308 {
00309     int i;
00310     int width_shift = 0;
00311     int new_pix_fmt;
00312     struct frame_header header;
00313     uint8_t header_buffer[128];  /* logical maximum size of the header */
00314     const uint8_t *sel_vector_table;
00315 
00316     header.header_size = ((s->buf[0] >> 5) | (s->buf[0] << 3)) & 0x7f;
00317     if (s->buf[0] < 0x10)
00318     {
00319         av_log(s->avctx, AV_LOG_ERROR, "invalid header size (%d)\n", s->buf[0]);
00320         return -1;
00321     }
00322 
00323     /* unscramble the header bytes with a XOR operation */
00324     memset(header_buffer, 0, 128);
00325     for (i = 1; i < header.header_size; i++)
00326         header_buffer[i - 1] = s->buf[i] ^ s->buf[i + 1];
00327 
00328     header.compression = header_buffer[0];
00329     header.deltaset = header_buffer[1];
00330     header.vectable = header_buffer[2];
00331     header.ysize = AV_RL16(&header_buffer[3]);
00332     header.xsize = AV_RL16(&header_buffer[5]);
00333     header.checksum = AV_RL16(&header_buffer[7]);
00334     header.version = header_buffer[9];
00335     header.header_type = header_buffer[10];
00336     header.flags = header_buffer[11];
00337     header.control = header_buffer[12];
00338 
00339     /* Version 2 */
00340     if (header.version >= 2)
00341     {
00342         if (header.header_type > 3)
00343         {
00344             av_log(s->avctx, AV_LOG_ERROR, "invalid header type (%d)\n", header.header_type);
00345             return -1;
00346         } else if ((header.header_type == 2) || (header.header_type == 3)) {
00347             s->flags = header.flags;
00348             if (!(s->flags & FLAG_INTERFRAME))
00349                 s->flags |= FLAG_KEYFRAME;
00350         } else
00351             s->flags = FLAG_KEYFRAME;
00352     } else /* Version 1 */
00353         s->flags = FLAG_KEYFRAME;
00354 
00355     if (s->flags & FLAG_SPRITE) {
00356         av_log_ask_for_sample(s->avctx, "SPRITE frame found.\n");
00357         /* FIXME header.width, height, xoffset and yoffset aren't initialized */
00358 #if 0
00359         s->w = header.width;
00360         s->h = header.height;
00361         s->x = header.xoffset;
00362         s->y = header.yoffset;
00363 #else
00364         return -1;
00365 #endif
00366     } else {
00367         s->w = header.xsize;
00368         s->h = header.ysize;
00369         if (header.header_type < 2) {
00370             if ((s->w < 213) && (s->h >= 176))
00371             {
00372                 s->flags |= FLAG_INTERPOLATED;
00373                 av_log_ask_for_sample(s->avctx, "INTERPOLATION selected.\n");
00374             }
00375         }
00376     }
00377 
00378     if (header.compression >= 17) {
00379         av_log(s->avctx, AV_LOG_ERROR, "invalid compression type (%d)\n", header.compression);
00380         return -1;
00381     }
00382 
00383     if ((header.deltaset != s->last_deltaset) ||
00384         (header.vectable != s->last_vectable))
00385         select_delta_tables(s, header.deltaset);
00386 
00387     if ((header.compression & 1) && header.header_type)
00388         sel_vector_table = pc_tbl2;
00389     else {
00390         if (header.vectable > 0 && header.vectable < 4)
00391             sel_vector_table = tables[header.vectable - 1];
00392         else {
00393             av_log(s->avctx, AV_LOG_ERROR, "invalid vector table id (%d)\n", header.vectable);
00394             return -1;
00395         }
00396     }
00397 
00398     if (compression_types[header.compression].algorithm == ALGO_RGB24H) {
00399         new_pix_fmt = PIX_FMT_RGB32;
00400         width_shift = 1;
00401     } else
00402         new_pix_fmt = PIX_FMT_RGB555; // RGB565 is supported as well
00403 
00404     s->w >>= width_shift;
00405     if (av_image_check_size(s->w, s->h, 0, s->avctx) < 0)
00406         return -1;
00407 
00408     if (s->w != s->avctx->width || s->h != s->avctx->height ||
00409         new_pix_fmt != s->avctx->pix_fmt) {
00410         if (s->frame.data[0])
00411             s->avctx->release_buffer(s->avctx, &s->frame);
00412         s->avctx->sample_aspect_ratio = (AVRational){ 1 << width_shift, 1 };
00413         s->avctx->pix_fmt = new_pix_fmt;
00414         avcodec_set_dimensions(s->avctx, s->w, s->h);
00415         av_fast_malloc(&s->vert_pred, &s->vert_pred_size, s->avctx->width * sizeof(unsigned int));
00416     }
00417 
00418     /* There is 1 change bit per 4 pixels, so each change byte represents
00419      * 32 pixels; divide width by 4 to obtain the number of change bits and
00420      * then round up to the nearest byte. */
00421     s->mb_change_bits_row_size = ((s->avctx->width >> (2 - width_shift)) + 7) >> 3;
00422 
00423     if ((header.deltaset != s->last_deltaset) || (header.vectable != s->last_vectable))
00424     {
00425         if (compression_types[header.compression].algorithm == ALGO_RGB24H)
00426             gen_vector_table24(s, sel_vector_table);
00427         else
00428         if (s->avctx->pix_fmt == PIX_FMT_RGB555)
00429             gen_vector_table15(s, sel_vector_table);
00430         else
00431             gen_vector_table16(s, sel_vector_table);
00432     }
00433 
00434     /* set up pointers to the other key data chunks */
00435     s->mb_change_bits = s->buf + header.header_size;
00436     if (s->flags & FLAG_KEYFRAME) {
00437         /* no change bits specified for a keyframe; only index bytes */
00438         s->index_stream = s->mb_change_bits;
00439     } else {
00440         /* one change bit per 4x4 block */
00441         s->index_stream = s->mb_change_bits +
00442             (s->mb_change_bits_row_size * (s->avctx->height >> 2));
00443     }
00444     s->index_stream_size = s->size - (s->index_stream - s->buf);
00445 
00446     s->last_deltaset = header.deltaset;
00447     s->last_vectable = header.vectable;
00448     s->compression = header.compression;
00449     s->block_width = compression_types[header.compression].block_width;
00450     s->block_height = compression_types[header.compression].block_height;
00451     s->block_type = compression_types[header.compression].block_type;
00452 
00453     if (s->avctx->debug & FF_DEBUG_PICT_INFO)
00454         av_log(s->avctx, AV_LOG_INFO, "tables: %d / %d c:%d %dx%d t:%d %s%s%s%s\n",
00455             s->last_deltaset, s->last_vectable, s->compression, s->block_width,
00456             s->block_height, s->block_type,
00457             s->flags & FLAG_KEYFRAME ? " KEY" : "",
00458             s->flags & FLAG_INTERFRAME ? " INTER" : "",
00459             s->flags & FLAG_SPRITE ? " SPRITE" : "",
00460             s->flags & FLAG_INTERPOLATED ? " INTERPOL" : "");
00461 
00462     return header.header_size;
00463 }
00464 
00465 static av_cold int truemotion1_decode_init(AVCodecContext *avctx)
00466 {
00467     TrueMotion1Context *s = avctx->priv_data;
00468 
00469     s->avctx = avctx;
00470 
00471     // FIXME: it may change ?
00472 //    if (avctx->bits_per_sample == 24)
00473 //        avctx->pix_fmt = PIX_FMT_RGB24;
00474 //    else
00475 //        avctx->pix_fmt = PIX_FMT_RGB555;
00476 
00477     s->frame.data[0] = NULL;
00478 
00479     /* there is a vertical predictor for each pixel in a line; each vertical
00480      * predictor is 0 to start with */
00481     av_fast_malloc(&s->vert_pred, &s->vert_pred_size, s->avctx->width * sizeof(unsigned int));
00482 
00483     return 0;
00484 }
00485 
00486 /*
00487 Block decoding order:
00488 
00489 dxi: Y-Y
00490 dxic: Y-C-Y
00491 dxic2: Y-C-Y-C
00492 
00493 hres,vres,i,i%vres (0 < i < 4)
00494 2x2 0: 0 dxic2
00495 2x2 1: 1 dxi
00496 2x2 2: 0 dxic2
00497 2x2 3: 1 dxi
00498 2x4 0: 0 dxic2
00499 2x4 1: 1 dxi
00500 2x4 2: 2 dxi
00501 2x4 3: 3 dxi
00502 4x2 0: 0 dxic
00503 4x2 1: 1 dxi
00504 4x2 2: 0 dxic
00505 4x2 3: 1 dxi
00506 4x4 0: 0 dxic
00507 4x4 1: 1 dxi
00508 4x4 2: 2 dxi
00509 4x4 3: 3 dxi
00510 */
00511 
00512 #define GET_NEXT_INDEX() \
00513 {\
00514     if (index_stream_index >= s->index_stream_size) { \
00515         av_log(s->avctx, AV_LOG_INFO, " help! truemotion1 decoder went out of bounds\n"); \
00516         return; \
00517     } \
00518     index = s->index_stream[index_stream_index++] * 4; \
00519 }
00520 
00521 #define APPLY_C_PREDICTOR() \
00522     predictor_pair = s->c_predictor_table[index]; \
00523     horiz_pred += (predictor_pair >> 1); \
00524     if (predictor_pair & 1) { \
00525         GET_NEXT_INDEX() \
00526         if (!index) { \
00527             GET_NEXT_INDEX() \
00528             predictor_pair = s->c_predictor_table[index]; \
00529             horiz_pred += ((predictor_pair >> 1) * 5); \
00530             if (predictor_pair & 1) \
00531                 GET_NEXT_INDEX() \
00532             else \
00533                 index++; \
00534         } \
00535     } else \
00536         index++;
00537 
00538 #define APPLY_C_PREDICTOR_24() \
00539     predictor_pair = s->c_predictor_table[index]; \
00540     horiz_pred += (predictor_pair >> 1); \
00541     if (predictor_pair & 1) { \
00542         GET_NEXT_INDEX() \
00543         if (!index) { \
00544             GET_NEXT_INDEX() \
00545             predictor_pair = s->fat_c_predictor_table[index]; \
00546             horiz_pred += (predictor_pair >> 1); \
00547             if (predictor_pair & 1) \
00548                 GET_NEXT_INDEX() \
00549             else \
00550                 index++; \
00551         } \
00552     } else \
00553         index++;
00554 
00555 
00556 #define APPLY_Y_PREDICTOR() \
00557     predictor_pair = s->y_predictor_table[index]; \
00558     horiz_pred += (predictor_pair >> 1); \
00559     if (predictor_pair & 1) { \
00560         GET_NEXT_INDEX() \
00561         if (!index) { \
00562             GET_NEXT_INDEX() \
00563             predictor_pair = s->y_predictor_table[index]; \
00564             horiz_pred += ((predictor_pair >> 1) * 5); \
00565             if (predictor_pair & 1) \
00566                 GET_NEXT_INDEX() \
00567             else \
00568                 index++; \
00569         } \
00570     } else \
00571         index++;
00572 
00573 #define APPLY_Y_PREDICTOR_24() \
00574     predictor_pair = s->y_predictor_table[index]; \
00575     horiz_pred += (predictor_pair >> 1); \
00576     if (predictor_pair & 1) { \
00577         GET_NEXT_INDEX() \
00578         if (!index) { \
00579             GET_NEXT_INDEX() \
00580             predictor_pair = s->fat_y_predictor_table[index]; \
00581             horiz_pred += (predictor_pair >> 1); \
00582             if (predictor_pair & 1) \
00583                 GET_NEXT_INDEX() \
00584             else \
00585                 index++; \
00586         } \
00587     } else \
00588         index++;
00589 
00590 #define OUTPUT_PIXEL_PAIR() \
00591     *current_pixel_pair = *vert_pred + horiz_pred; \
00592     *vert_pred++ = *current_pixel_pair++;
00593 
00594 static void truemotion1_decode_16bit(TrueMotion1Context *s)
00595 {
00596     int y;
00597     int pixels_left;  /* remaining pixels on this line */
00598     unsigned int predictor_pair;
00599     unsigned int horiz_pred;
00600     unsigned int *vert_pred;
00601     unsigned int *current_pixel_pair;
00602     unsigned char *current_line = s->frame.data[0];
00603     int keyframe = s->flags & FLAG_KEYFRAME;
00604 
00605     /* these variables are for managing the stream of macroblock change bits */
00606     const unsigned char *mb_change_bits = s->mb_change_bits;
00607     unsigned char mb_change_byte;
00608     unsigned char mb_change_byte_mask;
00609     int mb_change_index;
00610 
00611     /* these variables are for managing the main index stream */
00612     int index_stream_index = 0;  /* yes, the index into the index stream */
00613     int index;
00614 
00615     /* clean out the line buffer */
00616     memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int));
00617 
00618     GET_NEXT_INDEX();
00619 
00620     for (y = 0; y < s->avctx->height; y++) {
00621 
00622         /* re-init variables for the next line iteration */
00623         horiz_pred = 0;
00624         current_pixel_pair = (unsigned int *)current_line;
00625         vert_pred = s->vert_pred;
00626         mb_change_index = 0;
00627         mb_change_byte = mb_change_bits[mb_change_index++];
00628         mb_change_byte_mask = 0x01;
00629         pixels_left = s->avctx->width;
00630 
00631         while (pixels_left > 0) {
00632 
00633             if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) {
00634 
00635                 switch (y & 3) {
00636                 case 0:
00637                     /* if macroblock width is 2, apply C-Y-C-Y; else
00638                      * apply C-Y-Y */
00639                     if (s->block_width == 2) {
00640                         APPLY_C_PREDICTOR();
00641                         APPLY_Y_PREDICTOR();
00642                         OUTPUT_PIXEL_PAIR();
00643                         APPLY_C_PREDICTOR();
00644                         APPLY_Y_PREDICTOR();
00645                         OUTPUT_PIXEL_PAIR();
00646                     } else {
00647                         APPLY_C_PREDICTOR();
00648                         APPLY_Y_PREDICTOR();
00649                         OUTPUT_PIXEL_PAIR();
00650                         APPLY_Y_PREDICTOR();
00651                         OUTPUT_PIXEL_PAIR();
00652                     }
00653                     break;
00654 
00655                 case 1:
00656                 case 3:
00657                     /* always apply 2 Y predictors on these iterations */
00658                     APPLY_Y_PREDICTOR();
00659                     OUTPUT_PIXEL_PAIR();
00660                     APPLY_Y_PREDICTOR();
00661                     OUTPUT_PIXEL_PAIR();
00662                     break;
00663 
00664                 case 2:
00665                     /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y
00666                      * depending on the macroblock type */
00667                     if (s->block_type == BLOCK_2x2) {
00668                         APPLY_C_PREDICTOR();
00669                         APPLY_Y_PREDICTOR();
00670                         OUTPUT_PIXEL_PAIR();
00671                         APPLY_C_PREDICTOR();
00672                         APPLY_Y_PREDICTOR();
00673                         OUTPUT_PIXEL_PAIR();
00674                     } else if (s->block_type == BLOCK_4x2) {
00675                         APPLY_C_PREDICTOR();
00676                         APPLY_Y_PREDICTOR();
00677                         OUTPUT_PIXEL_PAIR();
00678                         APPLY_Y_PREDICTOR();
00679                         OUTPUT_PIXEL_PAIR();
00680                     } else {
00681                         APPLY_Y_PREDICTOR();
00682                         OUTPUT_PIXEL_PAIR();
00683                         APPLY_Y_PREDICTOR();
00684                         OUTPUT_PIXEL_PAIR();
00685                     }
00686                     break;
00687                 }
00688 
00689             } else {
00690 
00691                 /* skip (copy) four pixels, but reassign the horizontal
00692                  * predictor */
00693                 *vert_pred++ = *current_pixel_pair++;
00694                 horiz_pred = *current_pixel_pair - *vert_pred;
00695                 *vert_pred++ = *current_pixel_pair++;
00696 
00697             }
00698 
00699             if (!keyframe) {
00700                 mb_change_byte_mask <<= 1;
00701 
00702                 /* next byte */
00703                 if (!mb_change_byte_mask) {
00704                     mb_change_byte = mb_change_bits[mb_change_index++];
00705                     mb_change_byte_mask = 0x01;
00706                 }
00707             }
00708 
00709             pixels_left -= 4;
00710         }
00711 
00712         /* next change row */
00713         if (((y + 1) & 3) == 0)
00714             mb_change_bits += s->mb_change_bits_row_size;
00715 
00716         current_line += s->frame.linesize[0];
00717     }
00718 }
00719 
00720 static void truemotion1_decode_24bit(TrueMotion1Context *s)
00721 {
00722     int y;
00723     int pixels_left;  /* remaining pixels on this line */
00724     unsigned int predictor_pair;
00725     unsigned int horiz_pred;
00726     unsigned int *vert_pred;
00727     unsigned int *current_pixel_pair;
00728     unsigned char *current_line = s->frame.data[0];
00729     int keyframe = s->flags & FLAG_KEYFRAME;
00730 
00731     /* these variables are for managing the stream of macroblock change bits */
00732     const unsigned char *mb_change_bits = s->mb_change_bits;
00733     unsigned char mb_change_byte;
00734     unsigned char mb_change_byte_mask;
00735     int mb_change_index;
00736 
00737     /* these variables are for managing the main index stream */
00738     int index_stream_index = 0;  /* yes, the index into the index stream */
00739     int index;
00740 
00741     /* clean out the line buffer */
00742     memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int));
00743 
00744     GET_NEXT_INDEX();
00745 
00746     for (y = 0; y < s->avctx->height; y++) {
00747 
00748         /* re-init variables for the next line iteration */
00749         horiz_pred = 0;
00750         current_pixel_pair = (unsigned int *)current_line;
00751         vert_pred = s->vert_pred;
00752         mb_change_index = 0;
00753         mb_change_byte = mb_change_bits[mb_change_index++];
00754         mb_change_byte_mask = 0x01;
00755         pixels_left = s->avctx->width;
00756 
00757         while (pixels_left > 0) {
00758 
00759             if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) {
00760 
00761                 switch (y & 3) {
00762                 case 0:
00763                     /* if macroblock width is 2, apply C-Y-C-Y; else
00764                      * apply C-Y-Y */
00765                     if (s->block_width == 2) {
00766                         APPLY_C_PREDICTOR_24();
00767                         APPLY_Y_PREDICTOR_24();
00768                         OUTPUT_PIXEL_PAIR();
00769                         APPLY_C_PREDICTOR_24();
00770                         APPLY_Y_PREDICTOR_24();
00771                         OUTPUT_PIXEL_PAIR();
00772                     } else {
00773                         APPLY_C_PREDICTOR_24();
00774                         APPLY_Y_PREDICTOR_24();
00775                         OUTPUT_PIXEL_PAIR();
00776                         APPLY_Y_PREDICTOR_24();
00777                         OUTPUT_PIXEL_PAIR();
00778                     }
00779                     break;
00780 
00781                 case 1:
00782                 case 3:
00783                     /* always apply 2 Y predictors on these iterations */
00784                     APPLY_Y_PREDICTOR_24();
00785                     OUTPUT_PIXEL_PAIR();
00786                     APPLY_Y_PREDICTOR_24();
00787                     OUTPUT_PIXEL_PAIR();
00788                     break;
00789 
00790                 case 2:
00791                     /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y
00792                      * depending on the macroblock type */
00793                     if (s->block_type == BLOCK_2x2) {
00794                         APPLY_C_PREDICTOR_24();
00795                         APPLY_Y_PREDICTOR_24();
00796                         OUTPUT_PIXEL_PAIR();
00797                         APPLY_C_PREDICTOR_24();
00798                         APPLY_Y_PREDICTOR_24();
00799                         OUTPUT_PIXEL_PAIR();
00800                     } else if (s->block_type == BLOCK_4x2) {
00801                         APPLY_C_PREDICTOR_24();
00802                         APPLY_Y_PREDICTOR_24();
00803                         OUTPUT_PIXEL_PAIR();
00804                         APPLY_Y_PREDICTOR_24();
00805                         OUTPUT_PIXEL_PAIR();
00806                     } else {
00807                         APPLY_Y_PREDICTOR_24();
00808                         OUTPUT_PIXEL_PAIR();
00809                         APPLY_Y_PREDICTOR_24();
00810                         OUTPUT_PIXEL_PAIR();
00811                     }
00812                     break;
00813                 }
00814 
00815             } else {
00816 
00817                 /* skip (copy) four pixels, but reassign the horizontal
00818                  * predictor */
00819                 *vert_pred++ = *current_pixel_pair++;
00820                 horiz_pred = *current_pixel_pair - *vert_pred;
00821                 *vert_pred++ = *current_pixel_pair++;
00822 
00823             }
00824 
00825             if (!keyframe) {
00826                 mb_change_byte_mask <<= 1;
00827 
00828                 /* next byte */
00829                 if (!mb_change_byte_mask) {
00830                     mb_change_byte = mb_change_bits[mb_change_index++];
00831                     mb_change_byte_mask = 0x01;
00832                 }
00833             }
00834 
00835             pixels_left -= 2;
00836         }
00837 
00838         /* next change row */
00839         if (((y + 1) & 3) == 0)
00840             mb_change_bits += s->mb_change_bits_row_size;
00841 
00842         current_line += s->frame.linesize[0];
00843     }
00844 }
00845 
00846 
00847 static int truemotion1_decode_frame(AVCodecContext *avctx,
00848                                     void *data, int *data_size,
00849                                     AVPacket *avpkt)
00850 {
00851     const uint8_t *buf = avpkt->data;
00852     int buf_size = avpkt->size;
00853     TrueMotion1Context *s = avctx->priv_data;
00854 
00855     s->buf = buf;
00856     s->size = buf_size;
00857 
00858     if (truemotion1_decode_header(s) == -1)
00859         return -1;
00860 
00861     s->frame.reference = 1;
00862     s->frame.buffer_hints = FF_BUFFER_HINTS_VALID |
00863         FF_BUFFER_HINTS_PRESERVE | FF_BUFFER_HINTS_REUSABLE;
00864     if (avctx->reget_buffer(avctx, &s->frame) < 0) {
00865         av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
00866         return -1;
00867     }
00868 
00869     if (compression_types[s->compression].algorithm == ALGO_RGB24H) {
00870         truemotion1_decode_24bit(s);
00871     } else if (compression_types[s->compression].algorithm != ALGO_NOP) {
00872         truemotion1_decode_16bit(s);
00873     }
00874 
00875     *data_size = sizeof(AVFrame);
00876     *(AVFrame*)data = s->frame;
00877 
00878     /* report that the buffer was completely consumed */
00879     return buf_size;
00880 }
00881 
00882 static av_cold int truemotion1_decode_end(AVCodecContext *avctx)
00883 {
00884     TrueMotion1Context *s = avctx->priv_data;
00885 
00886     if (s->frame.data[0])
00887         avctx->release_buffer(avctx, &s->frame);
00888 
00889     av_free(s->vert_pred);
00890 
00891     return 0;
00892 }
00893 
00894 AVCodec ff_truemotion1_decoder = {
00895     .name           = "truemotion1",
00896     .type           = AVMEDIA_TYPE_VIDEO,
00897     .id             = CODEC_ID_TRUEMOTION1,
00898     .priv_data_size = sizeof(TrueMotion1Context),
00899     .init           = truemotion1_decode_init,
00900     .close          = truemotion1_decode_end,
00901     .decode         = truemotion1_decode_frame,
00902     .capabilities   = CODEC_CAP_DR1,
00903     .long_name = NULL_IF_CONFIG_SMALL("Duck TrueMotion 1.0"),
00904 };