libavcodec/sipr.c
Go to the documentation of this file.
00001 /*
00002  * SIPR / ACELP.NET decoder
00003  *
00004  * Copyright (c) 2008 Vladimir Voroshilov
00005  * Copyright (c) 2009 Vitor Sessak
00006  *
00007  * This file is part of Libav.
00008  *
00009  * Libav is free software; you can redistribute it and/or
00010  * modify it under the terms of the GNU Lesser General Public
00011  * License as published by the Free Software Foundation; either
00012  * version 2.1 of the License, or (at your option) any later version.
00013  *
00014  * Libav is distributed in the hope that it will be useful,
00015  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00016  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00017  * Lesser General Public License for more details.
00018  *
00019  * You should have received a copy of the GNU Lesser General Public
00020  * License along with Libav; if not, write to the Free Software
00021  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
00022  */
00023 
00024 #include <math.h>
00025 #include <stdint.h>
00026 #include <string.h>
00027 
00028 #include "libavutil/mathematics.h"
00029 #include "avcodec.h"
00030 #include "internal.h"
00031 #define BITSTREAM_READER_LE
00032 #include "get_bits.h"
00033 #include "dsputil.h"
00034 
00035 #include "lsp.h"
00036 #include "celp_math.h"
00037 #include "acelp_vectors.h"
00038 #include "acelp_pitch_delay.h"
00039 #include "acelp_filters.h"
00040 #include "celp_filters.h"
00041 
00042 #define MAX_SUBFRAME_COUNT   5
00043 
00044 #include "sipr.h"
00045 #include "siprdata.h"
00046 
00047 typedef struct {
00048     const char *mode_name;
00049     uint16_t bits_per_frame;
00050     uint8_t subframe_count;
00051     uint8_t frames_per_packet;
00052     float pitch_sharp_factor;
00053 
00054     /* bitstream parameters */
00055     uint8_t number_of_fc_indexes;
00056     uint8_t ma_predictor_bits;  
00057 
00059     uint8_t vq_indexes_bits[5];
00060 
00062     uint8_t pitch_delay_bits[5];
00063 
00064     uint8_t gp_index_bits;
00065     uint8_t fc_index_bits[10]; 
00066     uint8_t gc_index_bits;     
00067 } SiprModeParam;
00068 
00069 static const SiprModeParam modes[MODE_COUNT] = {
00070     [MODE_16k] = {
00071         .mode_name          = "16k",
00072         .bits_per_frame     = 160,
00073         .subframe_count     = SUBFRAME_COUNT_16k,
00074         .frames_per_packet  = 1,
00075         .pitch_sharp_factor = 0.00,
00076 
00077         .number_of_fc_indexes = 10,
00078         .ma_predictor_bits    = 1,
00079         .vq_indexes_bits      = {7, 8, 7, 7, 7},
00080         .pitch_delay_bits     = {9, 6},
00081         .gp_index_bits        = 4,
00082         .fc_index_bits        = {4, 5, 4, 5, 4, 5, 4, 5, 4, 5},
00083         .gc_index_bits        = 5
00084     },
00085 
00086     [MODE_8k5] = {
00087         .mode_name          = "8k5",
00088         .bits_per_frame     = 152,
00089         .subframe_count     = 3,
00090         .frames_per_packet  = 1,
00091         .pitch_sharp_factor = 0.8,
00092 
00093         .number_of_fc_indexes = 3,
00094         .ma_predictor_bits    = 0,
00095         .vq_indexes_bits      = {6, 7, 7, 7, 5},
00096         .pitch_delay_bits     = {8, 5, 5},
00097         .gp_index_bits        = 0,
00098         .fc_index_bits        = {9, 9, 9},
00099         .gc_index_bits        = 7
00100     },
00101 
00102     [MODE_6k5] = {
00103         .mode_name          = "6k5",
00104         .bits_per_frame     = 232,
00105         .subframe_count     = 3,
00106         .frames_per_packet  = 2,
00107         .pitch_sharp_factor = 0.8,
00108 
00109         .number_of_fc_indexes = 3,
00110         .ma_predictor_bits    = 0,
00111         .vq_indexes_bits      = {6, 7, 7, 7, 5},
00112         .pitch_delay_bits     = {8, 5, 5},
00113         .gp_index_bits        = 0,
00114         .fc_index_bits        = {5, 5, 5},
00115         .gc_index_bits        = 7
00116     },
00117 
00118     [MODE_5k0] = {
00119         .mode_name          = "5k0",
00120         .bits_per_frame     = 296,
00121         .subframe_count     = 5,
00122         .frames_per_packet  = 2,
00123         .pitch_sharp_factor = 0.85,
00124 
00125         .number_of_fc_indexes = 1,
00126         .ma_predictor_bits    = 0,
00127         .vq_indexes_bits      = {6, 7, 7, 7, 5},
00128         .pitch_delay_bits     = {8, 5, 8, 5, 5},
00129         .gp_index_bits        = 0,
00130         .fc_index_bits        = {10},
00131         .gc_index_bits        = 7
00132     }
00133 };
00134 
00135 const float ff_pow_0_5[] = {
00136     1.0/(1 <<  1), 1.0/(1 <<  2), 1.0/(1 <<  3), 1.0/(1 <<  4),
00137     1.0/(1 <<  5), 1.0/(1 <<  6), 1.0/(1 <<  7), 1.0/(1 <<  8),
00138     1.0/(1 <<  9), 1.0/(1 << 10), 1.0/(1 << 11), 1.0/(1 << 12),
00139     1.0/(1 << 13), 1.0/(1 << 14), 1.0/(1 << 15), 1.0/(1 << 16)
00140 };
00141 
00142 static void dequant(float *out, const int *idx, const float *cbs[])
00143 {
00144     int i;
00145     int stride  = 2;
00146     int num_vec = 5;
00147 
00148     for (i = 0; i < num_vec; i++)
00149         memcpy(out + stride*i, cbs[i] + stride*idx[i], stride*sizeof(float));
00150 
00151 }
00152 
00153 static void lsf_decode_fp(float *lsfnew, float *lsf_history,
00154                           const SiprParameters *parm)
00155 {
00156     int i;
00157     float lsf_tmp[LP_FILTER_ORDER];
00158 
00159     dequant(lsf_tmp, parm->vq_indexes, lsf_codebooks);
00160 
00161     for (i = 0; i < LP_FILTER_ORDER; i++)
00162         lsfnew[i] = lsf_history[i] * 0.33 + lsf_tmp[i] + mean_lsf[i];
00163 
00164     ff_sort_nearly_sorted_floats(lsfnew, LP_FILTER_ORDER - 1);
00165 
00166     /* Note that a minimum distance is not enforced between the last value and
00167        the previous one, contrary to what is done in ff_acelp_reorder_lsf() */
00168     ff_set_min_dist_lsf(lsfnew, LSFQ_DIFF_MIN, LP_FILTER_ORDER - 1);
00169     lsfnew[9] = FFMIN(lsfnew[LP_FILTER_ORDER - 1], 1.3 * M_PI);
00170 
00171     memcpy(lsf_history, lsf_tmp, LP_FILTER_ORDER * sizeof(*lsf_history));
00172 
00173     for (i = 0; i < LP_FILTER_ORDER - 1; i++)
00174         lsfnew[i] = cos(lsfnew[i]);
00175     lsfnew[LP_FILTER_ORDER - 1] *= 6.153848 / M_PI;
00176 }
00177 
00179 static void pitch_sharpening(int pitch_lag_int, float beta,
00180                              float *fixed_vector)
00181 {
00182     int i;
00183 
00184     for (i = pitch_lag_int; i < SUBFR_SIZE; i++)
00185         fixed_vector[i] += beta * fixed_vector[i - pitch_lag_int];
00186 }
00187 
00193 static void decode_parameters(SiprParameters* parms, GetBitContext *pgb,
00194                               const SiprModeParam *p)
00195 {
00196     int i, j;
00197 
00198     if (p->ma_predictor_bits)
00199         parms->ma_pred_switch       = get_bits(pgb, p->ma_predictor_bits);
00200 
00201     for (i = 0; i < 5; i++)
00202         parms->vq_indexes[i]        = get_bits(pgb, p->vq_indexes_bits[i]);
00203 
00204     for (i = 0; i < p->subframe_count; i++) {
00205         parms->pitch_delay[i]       = get_bits(pgb, p->pitch_delay_bits[i]);
00206         if (p->gp_index_bits)
00207             parms->gp_index[i]      = get_bits(pgb, p->gp_index_bits);
00208 
00209         for (j = 0; j < p->number_of_fc_indexes; j++)
00210             parms->fc_indexes[i][j] = get_bits(pgb, p->fc_index_bits[j]);
00211 
00212         parms->gc_index[i]          = get_bits(pgb, p->gc_index_bits);
00213     }
00214 }
00215 
00216 static void sipr_decode_lp(float *lsfnew, const float *lsfold, float *Az,
00217                            int num_subfr)
00218 {
00219     double lsfint[LP_FILTER_ORDER];
00220     int i,j;
00221     float t, t0 = 1.0 / num_subfr;
00222 
00223     t = t0 * 0.5;
00224     for (i = 0; i < num_subfr; i++) {
00225         for (j = 0; j < LP_FILTER_ORDER; j++)
00226             lsfint[j] = lsfold[j] * (1 - t) + t * lsfnew[j];
00227 
00228         ff_amrwb_lsp2lpc(lsfint, Az, LP_FILTER_ORDER);
00229         Az += LP_FILTER_ORDER;
00230         t += t0;
00231     }
00232 }
00233 
00237 static void eval_ir(const float *Az, int pitch_lag, float *freq,
00238                     float pitch_sharp_factor)
00239 {
00240     float tmp1[SUBFR_SIZE+1], tmp2[LP_FILTER_ORDER+1];
00241     int i;
00242 
00243     tmp1[0] = 1.;
00244     for (i = 0; i < LP_FILTER_ORDER; i++) {
00245         tmp1[i+1] = Az[i] * ff_pow_0_55[i];
00246         tmp2[i  ] = Az[i] * ff_pow_0_7 [i];
00247     }
00248     memset(tmp1 + 11, 0, 37 * sizeof(float));
00249 
00250     ff_celp_lp_synthesis_filterf(freq, tmp2, tmp1, SUBFR_SIZE,
00251                                  LP_FILTER_ORDER);
00252 
00253     pitch_sharpening(pitch_lag, pitch_sharp_factor, freq);
00254 }
00255 
00259 static void convolute_with_sparse(float *out, const AMRFixed *pulses,
00260                                   const float *shape, int length)
00261 {
00262     int i, j;
00263 
00264     memset(out, 0, length*sizeof(float));
00265     for (i = 0; i < pulses->n; i++)
00266         for (j = pulses->x[i]; j < length; j++)
00267             out[j] += pulses->y[i] * shape[j - pulses->x[i]];
00268 }
00269 
00273 static void postfilter_5k0(SiprContext *ctx, const float *lpc, float *samples)
00274 {
00275     float buf[SUBFR_SIZE + LP_FILTER_ORDER];
00276     float *pole_out = buf + LP_FILTER_ORDER;
00277     float lpc_n[LP_FILTER_ORDER];
00278     float lpc_d[LP_FILTER_ORDER];
00279     int i;
00280 
00281     for (i = 0; i < LP_FILTER_ORDER; i++) {
00282         lpc_d[i] = lpc[i] * ff_pow_0_75[i];
00283         lpc_n[i] = lpc[i] * ff_pow_0_5 [i];
00284     };
00285 
00286     memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem,
00287            LP_FILTER_ORDER*sizeof(float));
00288 
00289     ff_celp_lp_synthesis_filterf(pole_out, lpc_d, samples, SUBFR_SIZE,
00290                                  LP_FILTER_ORDER);
00291 
00292     memcpy(ctx->postfilter_mem, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
00293            LP_FILTER_ORDER*sizeof(float));
00294 
00295     ff_tilt_compensation(&ctx->tilt_mem, 0.4, pole_out, SUBFR_SIZE);
00296 
00297     memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem5k0,
00298            LP_FILTER_ORDER*sizeof(*pole_out));
00299 
00300     memcpy(ctx->postfilter_mem5k0, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
00301            LP_FILTER_ORDER*sizeof(*pole_out));
00302 
00303     ff_celp_lp_zero_synthesis_filterf(samples, lpc_n, pole_out, SUBFR_SIZE,
00304                                       LP_FILTER_ORDER);
00305 
00306 }
00307 
00308 static void decode_fixed_sparse(AMRFixed *fixed_sparse, const int16_t *pulses,
00309                                 SiprMode mode, int low_gain)
00310 {
00311     int i;
00312 
00313     switch (mode) {
00314     case MODE_6k5:
00315         for (i = 0; i < 3; i++) {
00316             fixed_sparse->x[i] = 3 * (pulses[i] & 0xf) + i;
00317             fixed_sparse->y[i] = pulses[i] & 0x10 ? -1 : 1;
00318         }
00319         fixed_sparse->n = 3;
00320         break;
00321     case MODE_8k5:
00322         for (i = 0; i < 3; i++) {
00323             fixed_sparse->x[2*i    ] = 3 * ((pulses[i] >> 4) & 0xf) + i;
00324             fixed_sparse->x[2*i + 1] = 3 * ( pulses[i]       & 0xf) + i;
00325 
00326             fixed_sparse->y[2*i    ] = (pulses[i] & 0x100) ? -1.0: 1.0;
00327 
00328             fixed_sparse->y[2*i + 1] =
00329                 (fixed_sparse->x[2*i + 1] < fixed_sparse->x[2*i]) ?
00330                 -fixed_sparse->y[2*i    ] : fixed_sparse->y[2*i];
00331         }
00332 
00333         fixed_sparse->n = 6;
00334         break;
00335     case MODE_5k0:
00336     default:
00337         if (low_gain) {
00338             int offset = (pulses[0] & 0x200) ? 2 : 0;
00339             int val = pulses[0];
00340 
00341             for (i = 0; i < 3; i++) {
00342                 int index = (val & 0x7) * 6 + 4 - i*2;
00343 
00344                 fixed_sparse->y[i] = (offset + index) & 0x3 ? -1 : 1;
00345                 fixed_sparse->x[i] = index;
00346 
00347                 val >>= 3;
00348             }
00349             fixed_sparse->n = 3;
00350         } else {
00351             int pulse_subset = (pulses[0] >> 8) & 1;
00352 
00353             fixed_sparse->x[0] = ((pulses[0] >> 4) & 15) * 3 + pulse_subset;
00354             fixed_sparse->x[1] = ( pulses[0]       & 15) * 3 + pulse_subset + 1;
00355 
00356             fixed_sparse->y[0] = pulses[0] & 0x200 ? -1 : 1;
00357             fixed_sparse->y[1] = -fixed_sparse->y[0];
00358             fixed_sparse->n = 2;
00359         }
00360         break;
00361     }
00362 }
00363 
00364 static void decode_frame(SiprContext *ctx, SiprParameters *params,
00365                          float *out_data)
00366 {
00367     int i, j;
00368     int subframe_count = modes[ctx->mode].subframe_count;
00369     int frame_size = subframe_count * SUBFR_SIZE;
00370     float Az[LP_FILTER_ORDER * MAX_SUBFRAME_COUNT];
00371     float *excitation;
00372     float ir_buf[SUBFR_SIZE + LP_FILTER_ORDER];
00373     float lsf_new[LP_FILTER_ORDER];
00374     float *impulse_response = ir_buf + LP_FILTER_ORDER;
00375     float *synth = ctx->synth_buf + 16; // 16 instead of LP_FILTER_ORDER for
00376                                         // memory alignment
00377     int t0_first = 0;
00378     AMRFixed fixed_cb;
00379 
00380     memset(ir_buf, 0, LP_FILTER_ORDER * sizeof(float));
00381     lsf_decode_fp(lsf_new, ctx->lsf_history, params);
00382 
00383     sipr_decode_lp(lsf_new, ctx->lsp_history, Az, subframe_count);
00384 
00385     memcpy(ctx->lsp_history, lsf_new, LP_FILTER_ORDER * sizeof(float));
00386 
00387     excitation = ctx->excitation + PITCH_DELAY_MAX + L_INTERPOL;
00388 
00389     for (i = 0; i < subframe_count; i++) {
00390         float *pAz = Az + i*LP_FILTER_ORDER;
00391         float fixed_vector[SUBFR_SIZE];
00392         int T0,T0_frac;
00393         float pitch_gain, gain_code, avg_energy;
00394 
00395         ff_decode_pitch_lag(&T0, &T0_frac, params->pitch_delay[i], t0_first, i,
00396                             ctx->mode == MODE_5k0, 6);
00397 
00398         if (i == 0 || (i == 2 && ctx->mode == MODE_5k0))
00399             t0_first = T0;
00400 
00401         ff_acelp_interpolatef(excitation, excitation - T0 + (T0_frac <= 0),
00402                               ff_b60_sinc, 6,
00403                               2 * ((2 + T0_frac)%3 + 1), LP_FILTER_ORDER,
00404                               SUBFR_SIZE);
00405 
00406         decode_fixed_sparse(&fixed_cb, params->fc_indexes[i], ctx->mode,
00407                             ctx->past_pitch_gain < 0.8);
00408 
00409         eval_ir(pAz, T0, impulse_response, modes[ctx->mode].pitch_sharp_factor);
00410 
00411         convolute_with_sparse(fixed_vector, &fixed_cb, impulse_response,
00412                               SUBFR_SIZE);
00413 
00414         avg_energy =
00415             (0.01 + ff_dot_productf(fixed_vector, fixed_vector, SUBFR_SIZE))/
00416                 SUBFR_SIZE;
00417 
00418         ctx->past_pitch_gain = pitch_gain = gain_cb[params->gc_index[i]][0];
00419 
00420         gain_code = ff_amr_set_fixed_gain(gain_cb[params->gc_index[i]][1],
00421                                           avg_energy, ctx->energy_history,
00422                                           34 - 15.0/(0.05*M_LN10/M_LN2),
00423                                           pred);
00424 
00425         ff_weighted_vector_sumf(excitation, excitation, fixed_vector,
00426                                 pitch_gain, gain_code, SUBFR_SIZE);
00427 
00428         pitch_gain *= 0.5 * pitch_gain;
00429         pitch_gain = FFMIN(pitch_gain, 0.4);
00430 
00431         ctx->gain_mem = 0.7 * ctx->gain_mem + 0.3 * pitch_gain;
00432         ctx->gain_mem = FFMIN(ctx->gain_mem, pitch_gain);
00433         gain_code *= ctx->gain_mem;
00434 
00435         for (j = 0; j < SUBFR_SIZE; j++)
00436             fixed_vector[j] = excitation[j] - gain_code * fixed_vector[j];
00437 
00438         if (ctx->mode == MODE_5k0) {
00439             postfilter_5k0(ctx, pAz, fixed_vector);
00440 
00441             ff_celp_lp_synthesis_filterf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
00442                                          pAz, excitation, SUBFR_SIZE,
00443                                          LP_FILTER_ORDER);
00444         }
00445 
00446         ff_celp_lp_synthesis_filterf(synth + i*SUBFR_SIZE, pAz, fixed_vector,
00447                                      SUBFR_SIZE, LP_FILTER_ORDER);
00448 
00449         excitation += SUBFR_SIZE;
00450     }
00451 
00452     memcpy(synth - LP_FILTER_ORDER, synth + frame_size - LP_FILTER_ORDER,
00453            LP_FILTER_ORDER * sizeof(float));
00454 
00455     if (ctx->mode == MODE_5k0) {
00456         for (i = 0; i < subframe_count; i++) {
00457             float energy = ff_dot_productf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
00458                                            ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
00459                                            SUBFR_SIZE);
00460             ff_adaptive_gain_control(&synth[i * SUBFR_SIZE],
00461                                      &synth[i * SUBFR_SIZE], energy,
00462                                      SUBFR_SIZE, 0.9, &ctx->postfilter_agc);
00463         }
00464 
00465         memcpy(ctx->postfilter_syn5k0, ctx->postfilter_syn5k0 + frame_size,
00466                LP_FILTER_ORDER*sizeof(float));
00467     }
00468     memmove(ctx->excitation, excitation - PITCH_DELAY_MAX - L_INTERPOL,
00469            (PITCH_DELAY_MAX + L_INTERPOL) * sizeof(float));
00470 
00471     ff_acelp_apply_order_2_transfer_function(out_data, synth,
00472                                              (const float[2]) {-1.99997   , 1.000000000},
00473                                              (const float[2]) {-1.93307352, 0.935891986},
00474                                              0.939805806,
00475                                              ctx->highpass_filt_mem,
00476                                              frame_size);
00477 }
00478 
00479 static av_cold int sipr_decoder_init(AVCodecContext * avctx)
00480 {
00481     SiprContext *ctx = avctx->priv_data;
00482     int i;
00483 
00484     switch (avctx->block_align) {
00485     case 20: ctx->mode = MODE_16k; break;
00486     case 19: ctx->mode = MODE_8k5; break;
00487     case 29: ctx->mode = MODE_6k5; break;
00488     case 37: ctx->mode = MODE_5k0; break;
00489     default:
00490         if      (avctx->bit_rate > 12200) ctx->mode = MODE_16k;
00491         else if (avctx->bit_rate > 7500 ) ctx->mode = MODE_8k5;
00492         else if (avctx->bit_rate > 5750 ) ctx->mode = MODE_6k5;
00493         else                              ctx->mode = MODE_5k0;
00494         av_log(avctx, AV_LOG_WARNING,
00495                "Invalid block_align: %d. Mode %s guessed based on bitrate: %d\n",
00496                avctx->block_align, modes[ctx->mode].mode_name, avctx->bit_rate);
00497     }
00498 
00499     av_log(avctx, AV_LOG_DEBUG, "Mode: %s\n", modes[ctx->mode].mode_name);
00500 
00501     if (ctx->mode == MODE_16k) {
00502         ff_sipr_init_16k(ctx);
00503         ctx->decode_frame = ff_sipr_decode_frame_16k;
00504     } else {
00505         ctx->decode_frame = decode_frame;
00506     }
00507 
00508     for (i = 0; i < LP_FILTER_ORDER; i++)
00509         ctx->lsp_history[i] = cos((i+1) * M_PI / (LP_FILTER_ORDER + 1));
00510 
00511     for (i = 0; i < 4; i++)
00512         ctx->energy_history[i] = -14;
00513 
00514     avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
00515 
00516     avcodec_get_frame_defaults(&ctx->frame);
00517     avctx->coded_frame = &ctx->frame;
00518 
00519     return 0;
00520 }
00521 
00522 static int sipr_decode_frame(AVCodecContext *avctx, void *data,
00523                              int *got_frame_ptr, AVPacket *avpkt)
00524 {
00525     SiprContext *ctx = avctx->priv_data;
00526     const uint8_t *buf=avpkt->data;
00527     SiprParameters parm;
00528     const SiprModeParam *mode_par = &modes[ctx->mode];
00529     GetBitContext gb;
00530     float *samples;
00531     int subframe_size = ctx->mode == MODE_16k ? L_SUBFR_16k : SUBFR_SIZE;
00532     int i, ret;
00533 
00534     ctx->avctx = avctx;
00535     if (avpkt->size < (mode_par->bits_per_frame >> 3)) {
00536         av_log(avctx, AV_LOG_ERROR,
00537                "Error processing packet: packet size (%d) too small\n",
00538                avpkt->size);
00539         return -1;
00540     }
00541 
00542     /* get output buffer */
00543     ctx->frame.nb_samples = mode_par->frames_per_packet * subframe_size *
00544                             mode_par->subframe_count;
00545     if ((ret = ff_get_buffer(avctx, &ctx->frame)) < 0) {
00546         av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
00547         return ret;
00548     }
00549     samples = (float *)ctx->frame.data[0];
00550 
00551     init_get_bits(&gb, buf, mode_par->bits_per_frame);
00552 
00553     for (i = 0; i < mode_par->frames_per_packet; i++) {
00554         decode_parameters(&parm, &gb, mode_par);
00555 
00556         ctx->decode_frame(ctx, &parm, samples);
00557 
00558         samples += subframe_size * mode_par->subframe_count;
00559     }
00560 
00561     *got_frame_ptr   = 1;
00562     *(AVFrame *)data = ctx->frame;
00563 
00564     return mode_par->bits_per_frame >> 3;
00565 }
00566 
00567 AVCodec ff_sipr_decoder = {
00568     .name           = "sipr",
00569     .type           = AVMEDIA_TYPE_AUDIO,
00570     .id             = CODEC_ID_SIPR,
00571     .priv_data_size = sizeof(SiprContext),
00572     .init           = sipr_decoder_init,
00573     .decode         = sipr_decode_frame,
00574     .capabilities   = CODEC_CAP_DR1,
00575     .long_name = NULL_IF_CONFIG_SMALL("RealAudio SIPR / ACELP.NET"),
00576 };