00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00043 #include <string.h>
00044 #include <math.h>
00045
00046 #include "avcodec.h"
00047 #include "internal.h"
00048 #include "get_bits.h"
00049 #include "libavutil/common.h"
00050 #include "celp_math.h"
00051 #include "celp_filters.h"
00052 #include "acelp_filters.h"
00053 #include "acelp_vectors.h"
00054 #include "acelp_pitch_delay.h"
00055 #include "lsp.h"
00056 #include "amr.h"
00057
00058 #include "amrnbdata.h"
00059
00060 #define AMR_BLOCK_SIZE 160 ///< samples per frame
00061 #define AMR_SAMPLE_BOUND 32768.0 ///< threshold for synthesis overflow
00062
00072 #define AMR_SAMPLE_SCALE (2.0 / 32768.0)
00073
00075 #define PRED_FAC_MODE_12k2 0.65
00076
00077 #define LSF_R_FAC (8000.0 / 32768.0) ///< LSF residual tables to Hertz
00078 #define MIN_LSF_SPACING (50.0488 / 8000.0) ///< Ensures stability of LPC filter
00079 #define PITCH_LAG_MIN_MODE_12k2 18 ///< Lower bound on decoded lag search in 12.2kbit/s mode
00080
00082 #define MIN_ENERGY -14.0
00083
00089 #define SHARP_MAX 0.79449462890625
00090
00092 #define AMR_TILT_RESPONSE 22
00093
00094 #define AMR_TILT_GAMMA_T 0.8
00095
00096 #define AMR_AGC_ALPHA 0.9
00097
00098 typedef struct AMRContext {
00099 AVFrame avframe;
00100 AMRNBFrame frame;
00101 uint8_t bad_frame_indicator;
00102 enum Mode cur_frame_mode;
00103
00104 int16_t prev_lsf_r[LP_FILTER_ORDER];
00105 double lsp[4][LP_FILTER_ORDER];
00106 double prev_lsp_sub4[LP_FILTER_ORDER];
00107
00108 float lsf_q[4][LP_FILTER_ORDER];
00109 float lsf_avg[LP_FILTER_ORDER];
00110
00111 float lpc[4][LP_FILTER_ORDER];
00112
00113 uint8_t pitch_lag_int;
00114
00115 float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE];
00116 float *excitation;
00117
00118 float pitch_vector[AMR_SUBFRAME_SIZE];
00119 float fixed_vector[AMR_SUBFRAME_SIZE];
00120
00121 float prediction_error[4];
00122 float pitch_gain[5];
00123 float fixed_gain[5];
00124
00125 float beta;
00126 uint8_t diff_count;
00127 uint8_t hang_count;
00128
00129 float prev_sparse_fixed_gain;
00130 uint8_t prev_ir_filter_nr;
00131 uint8_t ir_filter_onset;
00132
00133 float postfilter_mem[10];
00134 float tilt_mem;
00135 float postfilter_agc;
00136 float high_pass_mem[2];
00137
00138 float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE];
00139
00140 } AMRContext;
00141
00143 static void weighted_vector_sumd(double *out, const double *in_a,
00144 const double *in_b, double weight_coeff_a,
00145 double weight_coeff_b, int length)
00146 {
00147 int i;
00148
00149 for (i = 0; i < length; i++)
00150 out[i] = weight_coeff_a * in_a[i]
00151 + weight_coeff_b * in_b[i];
00152 }
00153
00154 static av_cold int amrnb_decode_init(AVCodecContext *avctx)
00155 {
00156 AMRContext *p = avctx->priv_data;
00157 int i;
00158
00159 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
00160
00161
00162 p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
00163
00164 for (i = 0; i < LP_FILTER_ORDER; i++) {
00165 p->prev_lsp_sub4[i] = lsp_sub4_init[i] * 1000 / (float)(1 << 15);
00166 p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
00167 }
00168
00169 for (i = 0; i < 4; i++)
00170 p->prediction_error[i] = MIN_ENERGY;
00171
00172 avcodec_get_frame_defaults(&p->avframe);
00173 avctx->coded_frame = &p->avframe;
00174
00175 return 0;
00176 }
00177
00178
00190 static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
00191 int buf_size)
00192 {
00193 GetBitContext gb;
00194 enum Mode mode;
00195
00196 init_get_bits(&gb, buf, buf_size * 8);
00197
00198
00199 skip_bits(&gb, 1);
00200 mode = get_bits(&gb, 4);
00201 p->bad_frame_indicator = !get_bits1(&gb);
00202 skip_bits(&gb, 2);
00203
00204 if (mode >= N_MODES || buf_size < frame_sizes_nb[mode] + 1) {
00205 return NO_DATA;
00206 }
00207
00208 if (mode < MODE_DTX)
00209 ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
00210 amr_unpacking_bitmaps_per_mode[mode]);
00211
00212 return mode;
00213 }
00214
00215
00218
00226 static void interpolate_lsf(float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
00227 {
00228 int i;
00229
00230 for (i = 0; i < 4; i++)
00231 ff_weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
00232 0.25 * (3 - i), 0.25 * (i + 1),
00233 LP_FILTER_ORDER);
00234 }
00235
00247 static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
00248 const float lsf_no_r[LP_FILTER_ORDER],
00249 const int16_t *lsf_quantizer[5],
00250 const int quantizer_offset,
00251 const int sign, const int update)
00252 {
00253 int16_t lsf_r[LP_FILTER_ORDER];
00254 float lsf_q[LP_FILTER_ORDER];
00255 int i;
00256
00257 for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
00258 memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
00259 2 * sizeof(*lsf_r));
00260
00261 if (sign) {
00262 lsf_r[4] *= -1;
00263 lsf_r[5] *= -1;
00264 }
00265
00266 if (update)
00267 memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
00268
00269 for (i = 0; i < LP_FILTER_ORDER; i++)
00270 lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
00271
00272 ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
00273
00274 if (update)
00275 interpolate_lsf(p->lsf_q, lsf_q);
00276
00277 ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
00278 }
00279
00285 static void lsf2lsp_5(AMRContext *p)
00286 {
00287 const uint16_t *lsf_param = p->frame.lsf;
00288 float lsf_no_r[LP_FILTER_ORDER];
00289 const int16_t *lsf_quantizer[5];
00290 int i;
00291
00292 lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
00293 lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
00294 lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
00295 lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
00296 lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
00297
00298 for (i = 0; i < LP_FILTER_ORDER; i++)
00299 lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
00300
00301 lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
00302 lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
00303
00304
00305 weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
00306 weighted_vector_sumd(p->lsp[2], p->lsp[1] , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
00307 }
00308
00314 static void lsf2lsp_3(AMRContext *p)
00315 {
00316 const uint16_t *lsf_param = p->frame.lsf;
00317 int16_t lsf_r[LP_FILTER_ORDER];
00318 float lsf_q[LP_FILTER_ORDER];
00319 const int16_t *lsf_quantizer;
00320 int i, j;
00321
00322 lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
00323 memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
00324
00325 lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
00326 memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
00327
00328 lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
00329 memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
00330
00331
00332 for (i = 0; i < LP_FILTER_ORDER; i++)
00333 lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
00334
00335 ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
00336
00337
00338 interpolate_lsf(p->lsf_q, lsf_q);
00339 memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
00340
00341 ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
00342
00343
00344 for (i = 1; i <= 3; i++)
00345 for(j = 0; j < LP_FILTER_ORDER; j++)
00346 p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
00347 (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
00348 }
00349
00351
00352
00355
00359 static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
00360 const int prev_lag_int, const int subframe)
00361 {
00362 if (subframe == 0 || subframe == 2) {
00363 if (pitch_index < 463) {
00364 *lag_int = (pitch_index + 107) * 10923 >> 16;
00365 *lag_frac = pitch_index - *lag_int * 6 + 105;
00366 } else {
00367 *lag_int = pitch_index - 368;
00368 *lag_frac = 0;
00369 }
00370 } else {
00371 *lag_int = ((pitch_index + 5) * 10923 >> 16) - 1;
00372 *lag_frac = pitch_index - *lag_int * 6 - 3;
00373 *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
00374 PITCH_DELAY_MAX - 9);
00375 }
00376 }
00377
00378 static void decode_pitch_vector(AMRContext *p,
00379 const AMRNBSubframe *amr_subframe,
00380 const int subframe)
00381 {
00382 int pitch_lag_int, pitch_lag_frac;
00383 enum Mode mode = p->cur_frame_mode;
00384
00385 if (p->cur_frame_mode == MODE_12k2) {
00386 decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
00387 amr_subframe->p_lag, p->pitch_lag_int,
00388 subframe);
00389 } else
00390 ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
00391 amr_subframe->p_lag,
00392 p->pitch_lag_int, subframe,
00393 mode != MODE_4k75 && mode != MODE_5k15,
00394 mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
00395
00396 p->pitch_lag_int = pitch_lag_int;
00397
00398 pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2);
00399
00400 pitch_lag_int += pitch_lag_frac > 0;
00401
00402
00403
00404 ff_acelp_interpolatef(p->excitation, p->excitation + 1 - pitch_lag_int,
00405 ff_b60_sinc, 6,
00406 pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
00407 10, AMR_SUBFRAME_SIZE);
00408
00409 memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
00410 }
00411
00413
00414
00417
00421 static void decode_10bit_pulse(int code, int pulse_position[8],
00422 int i1, int i2, int i3)
00423 {
00424
00425
00426 const uint8_t *positions = base_five_table[code >> 3];
00427 pulse_position[i1] = (positions[2] << 1) + ( code & 1);
00428 pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
00429 pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
00430 }
00431
00439 static void decode_8_pulses_31bits(const int16_t *fixed_index,
00440 AMRFixed *fixed_sparse)
00441 {
00442 int pulse_position[8];
00443 int i, temp;
00444
00445 decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
00446 decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
00447
00448
00449
00450 temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
00451 pulse_position[3] = temp % 5;
00452 pulse_position[7] = temp / 5;
00453 if (pulse_position[7] & 1)
00454 pulse_position[3] = 4 - pulse_position[3];
00455 pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1);
00456 pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
00457
00458 fixed_sparse->n = 8;
00459 for (i = 0; i < 4; i++) {
00460 const int pos1 = (pulse_position[i] << 2) + i;
00461 const int pos2 = (pulse_position[i + 4] << 2) + i;
00462 const float sign = fixed_index[i] ? -1.0 : 1.0;
00463 fixed_sparse->x[i ] = pos1;
00464 fixed_sparse->x[i + 4] = pos2;
00465 fixed_sparse->y[i ] = sign;
00466 fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
00467 }
00468 }
00469
00485 static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
00486 const enum Mode mode, const int subframe)
00487 {
00488 assert(MODE_4k75 <= mode && mode <= MODE_12k2);
00489
00490 if (mode == MODE_12k2) {
00491 ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
00492 } else if (mode == MODE_10k2) {
00493 decode_8_pulses_31bits(pulses, fixed_sparse);
00494 } else {
00495 int *pulse_position = fixed_sparse->x;
00496 int i, pulse_subset;
00497 const int fixed_index = pulses[0];
00498
00499 if (mode <= MODE_5k15) {
00500 pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1);
00501 pulse_position[0] = ( fixed_index & 7) * 5 + track_position[pulse_subset];
00502 pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
00503 fixed_sparse->n = 2;
00504 } else if (mode == MODE_5k9) {
00505 pulse_subset = ((fixed_index & 1) << 1) + 1;
00506 pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
00507 pulse_subset = (fixed_index >> 4) & 3;
00508 pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
00509 fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
00510 } else if (mode == MODE_6k7) {
00511 pulse_position[0] = (fixed_index & 7) * 5;
00512 pulse_subset = (fixed_index >> 2) & 2;
00513 pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
00514 pulse_subset = (fixed_index >> 6) & 2;
00515 pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
00516 fixed_sparse->n = 3;
00517 } else {
00518 pulse_position[0] = gray_decode[ fixed_index & 7];
00519 pulse_position[1] = gray_decode[(fixed_index >> 3) & 7] + 1;
00520 pulse_position[2] = gray_decode[(fixed_index >> 6) & 7] + 2;
00521 pulse_subset = (fixed_index >> 9) & 1;
00522 pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
00523 fixed_sparse->n = 4;
00524 }
00525 for (i = 0; i < fixed_sparse->n; i++)
00526 fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
00527 }
00528 }
00529
00538 static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
00539 AMRFixed *fixed_sparse)
00540 {
00541
00542
00543
00544 if (mode == MODE_12k2)
00545 p->beta = FFMIN(p->pitch_gain[4], 1.0);
00546
00547 fixed_sparse->pitch_lag = p->pitch_lag_int;
00548 fixed_sparse->pitch_fac = p->beta;
00549
00550
00551
00552
00553 if (mode != MODE_4k75 || subframe & 1)
00554 p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
00555 }
00557
00558
00561
00574 static float fixed_gain_smooth(AMRContext *p , const float *lsf,
00575 const float *lsf_avg, const enum Mode mode)
00576 {
00577 float diff = 0.0;
00578 int i;
00579
00580 for (i = 0; i < LP_FILTER_ORDER; i++)
00581 diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
00582
00583
00584
00585 p->diff_count++;
00586 if (diff <= 0.65)
00587 p->diff_count = 0;
00588
00589 if (p->diff_count > 10) {
00590 p->hang_count = 0;
00591 p->diff_count--;
00592 }
00593
00594 if (p->hang_count < 40) {
00595 p->hang_count++;
00596 } else if (mode < MODE_7k4 || mode == MODE_10k2) {
00597 const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
00598 const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
00599 p->fixed_gain[2] + p->fixed_gain[3] +
00600 p->fixed_gain[4]) * 0.2;
00601 return smoothing_factor * p->fixed_gain[4] +
00602 (1.0 - smoothing_factor) * fixed_gain_mean;
00603 }
00604 return p->fixed_gain[4];
00605 }
00606
00616 static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
00617 const enum Mode mode, const int subframe,
00618 float *fixed_gain_factor)
00619 {
00620 if (mode == MODE_12k2 || mode == MODE_7k95) {
00621 p->pitch_gain[4] = qua_gain_pit [amr_subframe->p_gain ]
00622 * (1.0 / 16384.0);
00623 *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
00624 * (1.0 / 2048.0);
00625 } else {
00626 const uint16_t *gains;
00627
00628 if (mode >= MODE_6k7) {
00629 gains = gains_high[amr_subframe->p_gain];
00630 } else if (mode >= MODE_5k15) {
00631 gains = gains_low [amr_subframe->p_gain];
00632 } else {
00633
00634 gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
00635 }
00636
00637 p->pitch_gain[4] = gains[0] * (1.0 / 16384.0);
00638 *fixed_gain_factor = gains[1] * (1.0 / 4096.0);
00639 }
00640 }
00641
00643
00644
00647
00658 static void apply_ir_filter(float *out, const AMRFixed *in,
00659 const float *filter)
00660 {
00661 float filter1[AMR_SUBFRAME_SIZE],
00662 filter2[AMR_SUBFRAME_SIZE];
00663 int lag = in->pitch_lag;
00664 float fac = in->pitch_fac;
00665 int i;
00666
00667 if (lag < AMR_SUBFRAME_SIZE) {
00668 ff_celp_circ_addf(filter1, filter, filter, lag, fac,
00669 AMR_SUBFRAME_SIZE);
00670
00671 if (lag < AMR_SUBFRAME_SIZE >> 1)
00672 ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
00673 AMR_SUBFRAME_SIZE);
00674 }
00675
00676 memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
00677 for (i = 0; i < in->n; i++) {
00678 int x = in->x[i];
00679 float y = in->y[i];
00680 const float *filterp;
00681
00682 if (x >= AMR_SUBFRAME_SIZE - lag) {
00683 filterp = filter;
00684 } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
00685 filterp = filter1;
00686 } else
00687 filterp = filter2;
00688
00689 ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
00690 }
00691 }
00692
00705 static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
00706 const float *fixed_vector,
00707 float fixed_gain, float *out)
00708 {
00709 int ir_filter_nr;
00710
00711 if (p->pitch_gain[4] < 0.6) {
00712 ir_filter_nr = 0;
00713 } else if (p->pitch_gain[4] < 0.9) {
00714 ir_filter_nr = 1;
00715 } else
00716 ir_filter_nr = 2;
00717
00718
00719 if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
00720 p->ir_filter_onset = 2;
00721 } else if (p->ir_filter_onset)
00722 p->ir_filter_onset--;
00723
00724 if (!p->ir_filter_onset) {
00725 int i, count = 0;
00726
00727 for (i = 0; i < 5; i++)
00728 if (p->pitch_gain[i] < 0.6)
00729 count++;
00730 if (count > 2)
00731 ir_filter_nr = 0;
00732
00733 if (ir_filter_nr > p->prev_ir_filter_nr + 1)
00734 ir_filter_nr--;
00735 } else if (ir_filter_nr < 2)
00736 ir_filter_nr++;
00737
00738
00739
00740
00741 if (fixed_gain < 5.0)
00742 ir_filter_nr = 2;
00743
00744 if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
00745 && ir_filter_nr < 2) {
00746 apply_ir_filter(out, fixed_sparse,
00747 (p->cur_frame_mode == MODE_7k95 ?
00748 ir_filters_lookup_MODE_7k95 :
00749 ir_filters_lookup)[ir_filter_nr]);
00750 fixed_vector = out;
00751 }
00752
00753
00754 p->prev_ir_filter_nr = ir_filter_nr;
00755 p->prev_sparse_fixed_gain = fixed_gain;
00756
00757 return fixed_vector;
00758 }
00759
00761
00762
00765
00776 static int synthesis(AMRContext *p, float *lpc,
00777 float fixed_gain, const float *fixed_vector,
00778 float *samples, uint8_t overflow)
00779 {
00780 int i;
00781 float excitation[AMR_SUBFRAME_SIZE];
00782
00783
00784
00785 if (overflow)
00786 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
00787 p->pitch_vector[i] *= 0.25;
00788
00789 ff_weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
00790 p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
00791
00792
00793 if (p->pitch_gain[4] > 0.5 && !overflow) {
00794 float energy = ff_dot_productf(excitation, excitation,
00795 AMR_SUBFRAME_SIZE);
00796 float pitch_factor =
00797 p->pitch_gain[4] *
00798 (p->cur_frame_mode == MODE_12k2 ?
00799 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
00800 0.5 * FFMIN(p->pitch_gain[4], SHARP_MAX));
00801
00802 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
00803 excitation[i] += pitch_factor * p->pitch_vector[i];
00804
00805 ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
00806 AMR_SUBFRAME_SIZE);
00807 }
00808
00809 ff_celp_lp_synthesis_filterf(samples, lpc, excitation, AMR_SUBFRAME_SIZE,
00810 LP_FILTER_ORDER);
00811
00812
00813 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
00814 if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
00815 return 1;
00816 }
00817
00818 return 0;
00819 }
00820
00822
00823
00826
00832 static void update_state(AMRContext *p)
00833 {
00834 memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
00835
00836 memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
00837 (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
00838
00839 memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
00840 memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
00841
00842 memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
00843 LP_FILTER_ORDER * sizeof(float));
00844 }
00845
00847
00848
00851
00858 static float tilt_factor(float *lpc_n, float *lpc_d)
00859 {
00860 float rh0, rh1;
00861
00862
00863 float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
00864 float *hf = impulse_buffer + LP_FILTER_ORDER;
00865
00866 hf[0] = 1.0;
00867 memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
00868 ff_celp_lp_synthesis_filterf(hf, lpc_d, hf, AMR_TILT_RESPONSE,
00869 LP_FILTER_ORDER);
00870
00871 rh0 = ff_dot_productf(hf, hf, AMR_TILT_RESPONSE);
00872 rh1 = ff_dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);
00873
00874
00875
00876 return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
00877 }
00878
00887 static void postfilter(AMRContext *p, float *lpc, float *buf_out)
00888 {
00889 int i;
00890 float *samples = p->samples_in + LP_FILTER_ORDER;
00891
00892 float speech_gain = ff_dot_productf(samples, samples,
00893 AMR_SUBFRAME_SIZE);
00894
00895 float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER];
00896 const float *gamma_n, *gamma_d;
00897 float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER];
00898
00899 if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
00900 gamma_n = ff_pow_0_7;
00901 gamma_d = ff_pow_0_75;
00902 } else {
00903 gamma_n = ff_pow_0_55;
00904 gamma_d = ff_pow_0_7;
00905 }
00906
00907 for (i = 0; i < LP_FILTER_ORDER; i++) {
00908 lpc_n[i] = lpc[i] * gamma_n[i];
00909 lpc_d[i] = lpc[i] * gamma_d[i];
00910 }
00911
00912 memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
00913 ff_celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
00914 AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
00915 memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
00916 sizeof(float) * LP_FILTER_ORDER);
00917
00918 ff_celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
00919 pole_out + LP_FILTER_ORDER,
00920 AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
00921
00922 ff_tilt_compensation(&p->tilt_mem, tilt_factor(lpc_n, lpc_d), buf_out,
00923 AMR_SUBFRAME_SIZE);
00924
00925 ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
00926 AMR_AGC_ALPHA, &p->postfilter_agc);
00927 }
00928
00930
00931 static int amrnb_decode_frame(AVCodecContext *avctx, void *data,
00932 int *got_frame_ptr, AVPacket *avpkt)
00933 {
00934
00935 AMRContext *p = avctx->priv_data;
00936 const uint8_t *buf = avpkt->data;
00937 int buf_size = avpkt->size;
00938 float *buf_out;
00939 int i, subframe, ret;
00940 float fixed_gain_factor;
00941 AMRFixed fixed_sparse = {0};
00942 float spare_vector[AMR_SUBFRAME_SIZE];
00943 float synth_fixed_gain;
00944 const float *synth_fixed_vector;
00945
00946
00947 p->avframe.nb_samples = AMR_BLOCK_SIZE;
00948 if ((ret = ff_get_buffer(avctx, &p->avframe)) < 0) {
00949 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
00950 return ret;
00951 }
00952 buf_out = (float *)p->avframe.data[0];
00953
00954 p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
00955 if (p->cur_frame_mode == NO_DATA) {
00956 av_log(avctx, AV_LOG_ERROR, "Corrupt bitstream\n");
00957 return AVERROR_INVALIDDATA;
00958 }
00959 if (p->cur_frame_mode == MODE_DTX) {
00960 av_log_missing_feature(avctx, "dtx mode", 1);
00961 return -1;
00962 }
00963
00964 if (p->cur_frame_mode == MODE_12k2) {
00965 lsf2lsp_5(p);
00966 } else
00967 lsf2lsp_3(p);
00968
00969 for (i = 0; i < 4; i++)
00970 ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
00971
00972 for (subframe = 0; subframe < 4; subframe++) {
00973 const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
00974
00975 decode_pitch_vector(p, amr_subframe, subframe);
00976
00977 decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
00978 p->cur_frame_mode, subframe);
00979
00980
00981
00982
00983
00984 decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
00985 &fixed_gain_factor);
00986
00987 pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
00988
00989 if (fixed_sparse.pitch_lag == 0) {
00990 av_log(avctx, AV_LOG_ERROR, "The file is corrupted, pitch_lag = 0 is not allowed\n");
00991 return AVERROR_INVALIDDATA;
00992 }
00993 ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
00994 AMR_SUBFRAME_SIZE);
00995
00996 p->fixed_gain[4] =
00997 ff_amr_set_fixed_gain(fixed_gain_factor,
00998 ff_dot_productf(p->fixed_vector, p->fixed_vector,
00999 AMR_SUBFRAME_SIZE)/AMR_SUBFRAME_SIZE,
01000 p->prediction_error,
01001 energy_mean[p->cur_frame_mode], energy_pred_fac);
01002
01003
01004
01005 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
01006 p->excitation[i] *= p->pitch_gain[4];
01007 ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
01008 AMR_SUBFRAME_SIZE);
01009
01010
01011
01012
01013
01014
01015 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
01016 p->excitation[i] = truncf(p->excitation[i]);
01017
01018
01019
01020
01021 synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
01022 p->lsf_avg, p->cur_frame_mode);
01023
01024 synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
01025 synth_fixed_gain, spare_vector);
01026
01027 if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
01028 synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
01029
01030
01031
01032 synthesis(p, p->lpc[subframe], synth_fixed_gain,
01033 synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
01034
01035 postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
01036
01037
01038 ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
01039 update_state(p);
01040 }
01041
01042 ff_acelp_apply_order_2_transfer_function(buf_out, buf_out, highpass_zeros,
01043 highpass_poles,
01044 highpass_gain * AMR_SAMPLE_SCALE,
01045 p->high_pass_mem, AMR_BLOCK_SIZE);
01046
01047
01048
01049
01050
01051
01052
01053 ff_weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
01054 0.84, 0.16, LP_FILTER_ORDER);
01055
01056 *got_frame_ptr = 1;
01057 *(AVFrame *)data = p->avframe;
01058
01059
01060 return frame_sizes_nb[p->cur_frame_mode] + 1;
01061 }
01062
01063
01064 AVCodec ff_amrnb_decoder = {
01065 .name = "amrnb",
01066 .type = AVMEDIA_TYPE_AUDIO,
01067 .id = CODEC_ID_AMR_NB,
01068 .priv_data_size = sizeof(AMRContext),
01069 .init = amrnb_decode_init,
01070 .decode = amrnb_decode_frame,
01071 .capabilities = CODEC_CAP_DR1,
01072 .long_name = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate NarrowBand"),
01073 .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_FLT,AV_SAMPLE_FMT_NONE},
01074 };