00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00034 #include <math.h>
00035 #include <stddef.h>
00036 #include <stdio.h>
00037
00038 #include "avcodec.h"
00039 #include "internal.h"
00040 #include "get_bits.h"
00041 #include "dsputil.h"
00042 #include "fft.h"
00043 #include "libavutil/audioconvert.h"
00044 #include "sinewin.h"
00045
00046 #include "imcdata.h"
00047
00048 #define IMC_BLOCK_SIZE 64
00049 #define IMC_FRAME_ID 0x21
00050 #define BANDS 32
00051 #define COEFFS 256
00052
00053 typedef struct {
00054 AVFrame frame;
00055
00056 float old_floor[BANDS];
00057 float flcoeffs1[BANDS];
00058 float flcoeffs2[BANDS];
00059 float flcoeffs3[BANDS];
00060 float flcoeffs4[BANDS];
00061 float flcoeffs5[BANDS];
00062 float flcoeffs6[BANDS];
00063 float CWdecoded[COEFFS];
00064
00067 float mdct_sine_window[COEFFS];
00068 float post_cos[COEFFS];
00069 float post_sin[COEFFS];
00070 float pre_coef1[COEFFS];
00071 float pre_coef2[COEFFS];
00072 float last_fft_im[COEFFS];
00074
00075 int bandWidthT[BANDS];
00076 int bitsBandT[BANDS];
00077 int CWlengthT[COEFFS];
00078 int levlCoeffBuf[BANDS];
00079 int bandFlagsBuf[BANDS];
00080 int sumLenArr[BANDS];
00081 int skipFlagRaw[BANDS];
00082 int skipFlagBits[BANDS];
00083 int skipFlagCount[BANDS];
00084 int skipFlags[COEFFS];
00085 int codewords[COEFFS];
00086 float sqrt_tab[30];
00087 GetBitContext gb;
00088 int decoder_reset;
00089 float one_div_log2;
00090
00091 DSPContext dsp;
00092 FFTContext fft;
00093 DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS/2];
00094 float *out_samples;
00095 } IMCContext;
00096
00097 static VLC huffman_vlc[4][4];
00098
00099 #define VLC_TABLES_SIZE 9512
00100
00101 static const int vlc_offsets[17] = {
00102 0, 640, 1156, 1732, 2308, 2852, 3396, 3924,
00103 4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE};
00104
00105 static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2];
00106
00107 static av_cold int imc_decode_init(AVCodecContext * avctx)
00108 {
00109 int i, j, ret;
00110 IMCContext *q = avctx->priv_data;
00111 double r1, r2;
00112
00113 if (avctx->channels != 1) {
00114 av_log_ask_for_sample(avctx, "Number of channels is not supported\n");
00115 return AVERROR_PATCHWELCOME;
00116 }
00117
00118 q->decoder_reset = 1;
00119
00120 for(i = 0; i < BANDS; i++)
00121 q->old_floor[i] = 1.0;
00122
00123
00124 ff_sine_window_init(q->mdct_sine_window, COEFFS);
00125 for(i = 0; i < COEFFS; i++)
00126 q->mdct_sine_window[i] *= sqrt(2.0);
00127 for(i = 0; i < COEFFS/2; i++){
00128 q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
00129 q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
00130
00131 r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
00132 r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
00133
00134 if (i & 0x1)
00135 {
00136 q->pre_coef1[i] = (r1 + r2) * sqrt(2.0);
00137 q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
00138 }
00139 else
00140 {
00141 q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
00142 q->pre_coef2[i] = (r1 - r2) * sqrt(2.0);
00143 }
00144
00145 q->last_fft_im[i] = 0;
00146 }
00147
00148
00149
00150 for(i = 0; i < 30; i++) {
00151 q->sqrt_tab[i] = sqrt(i);
00152 }
00153
00154
00155 for(i = 0; i < 4 ; i++) {
00156 for(j = 0; j < 4; j++) {
00157 huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
00158 huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
00159 init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
00160 imc_huffman_lens[i][j], 1, 1,
00161 imc_huffman_bits[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
00162 }
00163 }
00164 q->one_div_log2 = 1/log(2);
00165
00166 if ((ret = ff_fft_init(&q->fft, 7, 1))) {
00167 av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
00168 return ret;
00169 }
00170 dsputil_init(&q->dsp, avctx);
00171 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
00172 avctx->channel_layout = AV_CH_LAYOUT_MONO;
00173
00174 avcodec_get_frame_defaults(&q->frame);
00175 avctx->coded_frame = &q->frame;
00176
00177 return 0;
00178 }
00179
00180 static void imc_calculate_coeffs(IMCContext* q, float* flcoeffs1, float* flcoeffs2, int* bandWidthT,
00181 float* flcoeffs3, float* flcoeffs5)
00182 {
00183 float workT1[BANDS];
00184 float workT2[BANDS];
00185 float workT3[BANDS];
00186 float snr_limit = 1.e-30;
00187 float accum = 0.0;
00188 int i, cnt2;
00189
00190 for(i = 0; i < BANDS; i++) {
00191 flcoeffs5[i] = workT2[i] = 0.0;
00192 if (bandWidthT[i]){
00193 workT1[i] = flcoeffs1[i] * flcoeffs1[i];
00194 flcoeffs3[i] = 2.0 * flcoeffs2[i];
00195 } else {
00196 workT1[i] = 0.0;
00197 flcoeffs3[i] = -30000.0;
00198 }
00199 workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
00200 if (workT3[i] <= snr_limit)
00201 workT3[i] = 0.0;
00202 }
00203
00204 for(i = 0; i < BANDS; i++) {
00205 for(cnt2 = i; cnt2 < cyclTab[i]; cnt2++)
00206 flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
00207 workT2[cnt2-1] = workT2[cnt2-1] + workT3[i];
00208 }
00209
00210 for(i = 1; i < BANDS; i++) {
00211 accum = (workT2[i-1] + accum) * imc_weights1[i-1];
00212 flcoeffs5[i] += accum;
00213 }
00214
00215 for(i = 0; i < BANDS; i++)
00216 workT2[i] = 0.0;
00217
00218 for(i = 0; i < BANDS; i++) {
00219 for(cnt2 = i-1; cnt2 > cyclTab2[i]; cnt2--)
00220 flcoeffs5[cnt2] += workT3[i];
00221 workT2[cnt2+1] += workT3[i];
00222 }
00223
00224 accum = 0.0;
00225
00226 for(i = BANDS-2; i >= 0; i--) {
00227 accum = (workT2[i+1] + accum) * imc_weights2[i];
00228 flcoeffs5[i] += accum;
00229
00230 }
00231 }
00232
00233
00234 static void imc_read_level_coeffs(IMCContext* q, int stream_format_code, int* levlCoeffs)
00235 {
00236 int i;
00237 VLC *hufftab[4];
00238 int start = 0;
00239 const uint8_t *cb_sel;
00240 int s;
00241
00242 s = stream_format_code >> 1;
00243 hufftab[0] = &huffman_vlc[s][0];
00244 hufftab[1] = &huffman_vlc[s][1];
00245 hufftab[2] = &huffman_vlc[s][2];
00246 hufftab[3] = &huffman_vlc[s][3];
00247 cb_sel = imc_cb_select[s];
00248
00249 if(stream_format_code & 4)
00250 start = 1;
00251 if(start)
00252 levlCoeffs[0] = get_bits(&q->gb, 7);
00253 for(i = start; i < BANDS; i++){
00254 levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table, hufftab[cb_sel[i]]->bits, 2);
00255 if(levlCoeffs[i] == 17)
00256 levlCoeffs[i] += get_bits(&q->gb, 4);
00257 }
00258 }
00259
00260 static void imc_decode_level_coefficients(IMCContext* q, int* levlCoeffBuf, float* flcoeffs1,
00261 float* flcoeffs2)
00262 {
00263 int i, level;
00264 float tmp, tmp2;
00265
00266
00267 flcoeffs1[0] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945);
00268 flcoeffs2[0] = log(flcoeffs1[0])/log(2);
00269 tmp = flcoeffs1[0];
00270 tmp2 = flcoeffs2[0];
00271
00272 for(i = 1; i < BANDS; i++) {
00273 level = levlCoeffBuf[i];
00274 if (level == 16) {
00275 flcoeffs1[i] = 1.0;
00276 flcoeffs2[i] = 0.0;
00277 } else {
00278 if (level < 17)
00279 level -=7;
00280 else if (level <= 24)
00281 level -=32;
00282 else
00283 level -=16;
00284
00285 tmp *= imc_exp_tab[15 + level];
00286 tmp2 += 0.83048 * level;
00287 flcoeffs1[i] = tmp;
00288 flcoeffs2[i] = tmp2;
00289 }
00290 }
00291 }
00292
00293
00294 static void imc_decode_level_coefficients2(IMCContext* q, int* levlCoeffBuf, float* old_floor, float* flcoeffs1,
00295 float* flcoeffs2) {
00296 int i;
00297
00298
00299
00300 for(i = 0; i < BANDS; i++) {
00301 flcoeffs1[i] = 0;
00302 if(levlCoeffBuf[i] < 16) {
00303 flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
00304 flcoeffs2[i] = (levlCoeffBuf[i]-7) * 0.83048 + flcoeffs2[i];
00305 } else {
00306 flcoeffs1[i] = old_floor[i];
00307 }
00308 }
00309 }
00310
00314 static int bit_allocation (IMCContext* q, int stream_format_code, int freebits, int flag) {
00315 int i, j;
00316 const float limit = -1.e20;
00317 float highest = 0.0;
00318 int indx;
00319 int t1 = 0;
00320 int t2 = 1;
00321 float summa = 0.0;
00322 int iacc = 0;
00323 int summer = 0;
00324 int rres, cwlen;
00325 float lowest = 1.e10;
00326 int low_indx = 0;
00327 float workT[32];
00328 int flg;
00329 int found_indx = 0;
00330
00331 for(i = 0; i < BANDS; i++)
00332 highest = FFMAX(highest, q->flcoeffs1[i]);
00333
00334 for(i = 0; i < BANDS-1; i++) {
00335 q->flcoeffs4[i] = q->flcoeffs3[i] - log(q->flcoeffs5[i])/log(2);
00336 }
00337 q->flcoeffs4[BANDS - 1] = limit;
00338
00339 highest = highest * 0.25;
00340
00341 for(i = 0; i < BANDS; i++) {
00342 indx = -1;
00343 if ((band_tab[i+1] - band_tab[i]) == q->bandWidthT[i])
00344 indx = 0;
00345
00346 if ((band_tab[i+1] - band_tab[i]) > q->bandWidthT[i])
00347 indx = 1;
00348
00349 if (((band_tab[i+1] - band_tab[i])/2) >= q->bandWidthT[i])
00350 indx = 2;
00351
00352 if (indx == -1)
00353 return AVERROR_INVALIDDATA;
00354
00355 q->flcoeffs4[i] = q->flcoeffs4[i] + xTab[(indx*2 + (q->flcoeffs1[i] < highest)) * 2 + flag];
00356 }
00357
00358 if (stream_format_code & 0x2) {
00359 q->flcoeffs4[0] = limit;
00360 q->flcoeffs4[1] = limit;
00361 q->flcoeffs4[2] = limit;
00362 q->flcoeffs4[3] = limit;
00363 }
00364
00365 for(i = (stream_format_code & 0x2)?4:0; i < BANDS-1; i++) {
00366 iacc += q->bandWidthT[i];
00367 summa += q->bandWidthT[i] * q->flcoeffs4[i];
00368 }
00369
00370 if (!iacc)
00371 return AVERROR_INVALIDDATA;
00372
00373 q->bandWidthT[BANDS-1] = 0;
00374 summa = (summa * 0.5 - freebits) / iacc;
00375
00376
00377 for(i = 0; i < BANDS/2; i++) {
00378 rres = summer - freebits;
00379 if((rres >= -8) && (rres <= 8)) break;
00380
00381 summer = 0;
00382 iacc = 0;
00383
00384 for(j = (stream_format_code & 0x2)?4:0; j < BANDS; j++) {
00385 cwlen = av_clipf(((q->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
00386
00387 q->bitsBandT[j] = cwlen;
00388 summer += q->bandWidthT[j] * cwlen;
00389
00390 if (cwlen > 0)
00391 iacc += q->bandWidthT[j];
00392 }
00393
00394 flg = t2;
00395 t2 = 1;
00396 if (freebits < summer)
00397 t2 = -1;
00398 if (i == 0)
00399 flg = t2;
00400 if(flg != t2)
00401 t1++;
00402
00403 summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
00404 }
00405
00406 for(i = (stream_format_code & 0x2)?4:0; i < BANDS; i++) {
00407 for(j = band_tab[i]; j < band_tab[i+1]; j++)
00408 q->CWlengthT[j] = q->bitsBandT[i];
00409 }
00410
00411 if (freebits > summer) {
00412 for(i = 0; i < BANDS; i++) {
00413 workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
00414 }
00415
00416 highest = 0.0;
00417
00418 do{
00419 if (highest <= -1.e20)
00420 break;
00421
00422 found_indx = 0;
00423 highest = -1.e20;
00424
00425 for(i = 0; i < BANDS; i++) {
00426 if (workT[i] > highest) {
00427 highest = workT[i];
00428 found_indx = i;
00429 }
00430 }
00431
00432 if (highest > -1.e20) {
00433 workT[found_indx] -= 2.0;
00434 if (++(q->bitsBandT[found_indx]) == 6)
00435 workT[found_indx] = -1.e20;
00436
00437 for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (freebits > summer); j++){
00438 q->CWlengthT[j]++;
00439 summer++;
00440 }
00441 }
00442 }while (freebits > summer);
00443 }
00444 if (freebits < summer) {
00445 for(i = 0; i < BANDS; i++) {
00446 workT[i] = q->bitsBandT[i] ? (q->bitsBandT[i] * -2 + q->flcoeffs4[i] + 1.585) : 1.e20;
00447 }
00448 if (stream_format_code & 0x2) {
00449 workT[0] = 1.e20;
00450 workT[1] = 1.e20;
00451 workT[2] = 1.e20;
00452 workT[3] = 1.e20;
00453 }
00454 while (freebits < summer){
00455 lowest = 1.e10;
00456 low_indx = 0;
00457 for(i = 0; i < BANDS; i++) {
00458 if (workT[i] < lowest) {
00459 lowest = workT[i];
00460 low_indx = i;
00461 }
00462 }
00463
00464 workT[low_indx] = lowest + 2.0;
00465
00466 if (!(--q->bitsBandT[low_indx]))
00467 workT[low_indx] = 1.e20;
00468
00469 for(j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++){
00470 if(q->CWlengthT[j] > 0){
00471 q->CWlengthT[j]--;
00472 summer--;
00473 }
00474 }
00475 }
00476 }
00477 return 0;
00478 }
00479
00480 static void imc_get_skip_coeff(IMCContext* q) {
00481 int i, j;
00482
00483 memset(q->skipFlagBits, 0, sizeof(q->skipFlagBits));
00484 memset(q->skipFlagCount, 0, sizeof(q->skipFlagCount));
00485 for(i = 0; i < BANDS; i++) {
00486 if (!q->bandFlagsBuf[i] || !q->bandWidthT[i])
00487 continue;
00488
00489 if (!q->skipFlagRaw[i]) {
00490 q->skipFlagBits[i] = band_tab[i+1] - band_tab[i];
00491
00492 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
00493 if ((q->skipFlags[j] = get_bits1(&q->gb)))
00494 q->skipFlagCount[i]++;
00495 }
00496 } else {
00497 for(j = band_tab[i]; j < (band_tab[i+1]-1); j += 2) {
00498 if(!get_bits1(&q->gb)){
00499 q->skipFlagBits[i]++;
00500 q->skipFlags[j]=1;
00501 q->skipFlags[j+1]=1;
00502 q->skipFlagCount[i] += 2;
00503 }else{
00504 if(get_bits1(&q->gb)){
00505 q->skipFlagBits[i] +=2;
00506 q->skipFlags[j]=0;
00507 q->skipFlags[j+1]=1;
00508 q->skipFlagCount[i]++;
00509 }else{
00510 q->skipFlagBits[i] +=3;
00511 q->skipFlags[j+1]=0;
00512 if(!get_bits1(&q->gb)){
00513 q->skipFlags[j]=1;
00514 q->skipFlagCount[i]++;
00515 }else{
00516 q->skipFlags[j]=0;
00517 }
00518 }
00519 }
00520 }
00521
00522 if (j < band_tab[i+1]) {
00523 q->skipFlagBits[i]++;
00524 if ((q->skipFlags[j] = get_bits1(&q->gb)))
00525 q->skipFlagCount[i]++;
00526 }
00527 }
00528 }
00529 }
00530
00534 static void imc_adjust_bit_allocation (IMCContext* q, int summer) {
00535 float workT[32];
00536 int corrected = 0;
00537 int i, j;
00538 float highest = 0;
00539 int found_indx=0;
00540
00541 for(i = 0; i < BANDS; i++) {
00542 workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
00543 }
00544
00545 while (corrected < summer) {
00546 if(highest <= -1.e20)
00547 break;
00548
00549 highest = -1.e20;
00550
00551 for(i = 0; i < BANDS; i++) {
00552 if (workT[i] > highest) {
00553 highest = workT[i];
00554 found_indx = i;
00555 }
00556 }
00557
00558 if (highest > -1.e20) {
00559 workT[found_indx] -= 2.0;
00560 if (++(q->bitsBandT[found_indx]) == 6)
00561 workT[found_indx] = -1.e20;
00562
00563 for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
00564 if (!q->skipFlags[j] && (q->CWlengthT[j] < 6)) {
00565 q->CWlengthT[j]++;
00566 corrected++;
00567 }
00568 }
00569 }
00570 }
00571 }
00572
00573 static void imc_imdct256(IMCContext *q) {
00574 int i;
00575 float re, im;
00576
00577
00578 for(i=0; i < COEFFS/2; i++){
00579 q->samples[i].re = -(q->pre_coef1[i] * q->CWdecoded[COEFFS-1-i*2]) -
00580 (q->pre_coef2[i] * q->CWdecoded[i*2]);
00581 q->samples[i].im = (q->pre_coef2[i] * q->CWdecoded[COEFFS-1-i*2]) -
00582 (q->pre_coef1[i] * q->CWdecoded[i*2]);
00583 }
00584
00585
00586 q->fft.fft_permute(&q->fft, q->samples);
00587 q->fft.fft_calc (&q->fft, q->samples);
00588
00589
00590 for(i = 0; i < COEFFS/2; i++){
00591 re = (q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
00592 im = (-q->samples[i].im * q->post_cos[i]) - (q->samples[i].re * q->post_sin[i]);
00593 q->out_samples[i*2] = (q->mdct_sine_window[COEFFS-1-i*2] * q->last_fft_im[i]) + (q->mdct_sine_window[i*2] * re);
00594 q->out_samples[COEFFS-1-i*2] = (q->mdct_sine_window[i*2] * q->last_fft_im[i]) - (q->mdct_sine_window[COEFFS-1-i*2] * re);
00595 q->last_fft_im[i] = im;
00596 }
00597 }
00598
00599 static int inverse_quant_coeff (IMCContext* q, int stream_format_code) {
00600 int i, j;
00601 int middle_value, cw_len, max_size;
00602 const float* quantizer;
00603
00604 for(i = 0; i < BANDS; i++) {
00605 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
00606 q->CWdecoded[j] = 0;
00607 cw_len = q->CWlengthT[j];
00608
00609 if (cw_len <= 0 || q->skipFlags[j])
00610 continue;
00611
00612 max_size = 1 << cw_len;
00613 middle_value = max_size >> 1;
00614
00615 if (q->codewords[j] >= max_size || q->codewords[j] < 0)
00616 return AVERROR_INVALIDDATA;
00617
00618 if (cw_len >= 4){
00619 quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
00620 if (q->codewords[j] >= middle_value)
00621 q->CWdecoded[j] = quantizer[q->codewords[j] - 8] * q->flcoeffs6[i];
00622 else
00623 q->CWdecoded[j] = -quantizer[max_size - q->codewords[j] - 8 - 1] * q->flcoeffs6[i];
00624 }else{
00625 quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (q->bandFlagsBuf[i] << 1)];
00626 if (q->codewords[j] >= middle_value)
00627 q->CWdecoded[j] = quantizer[q->codewords[j] - 1] * q->flcoeffs6[i];
00628 else
00629 q->CWdecoded[j] = -quantizer[max_size - 2 - q->codewords[j]] * q->flcoeffs6[i];
00630 }
00631 }
00632 }
00633 return 0;
00634 }
00635
00636
00637 static int imc_get_coeffs (IMCContext* q) {
00638 int i, j, cw_len, cw;
00639
00640 for(i = 0; i < BANDS; i++) {
00641 if(!q->sumLenArr[i]) continue;
00642 if (q->bandFlagsBuf[i] || q->bandWidthT[i]) {
00643 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
00644 cw_len = q->CWlengthT[j];
00645 cw = 0;
00646
00647 if (get_bits_count(&q->gb) + cw_len > 512){
00648
00649 return AVERROR_INVALIDDATA;
00650 }
00651
00652 if(cw_len && (!q->bandFlagsBuf[i] || !q->skipFlags[j]))
00653 cw = get_bits(&q->gb, cw_len);
00654
00655 q->codewords[j] = cw;
00656 }
00657 }
00658 }
00659 return 0;
00660 }
00661
00662 static int imc_decode_frame(AVCodecContext * avctx, void *data,
00663 int *got_frame_ptr, AVPacket *avpkt)
00664 {
00665 const uint8_t *buf = avpkt->data;
00666 int buf_size = avpkt->size;
00667
00668 IMCContext *q = avctx->priv_data;
00669
00670 int stream_format_code;
00671 int imc_hdr, i, j, ret;
00672 int flag;
00673 int bits, summer;
00674 int counter, bitscount;
00675 LOCAL_ALIGNED_16(uint16_t, buf16, [IMC_BLOCK_SIZE / 2]);
00676
00677 if (buf_size < IMC_BLOCK_SIZE) {
00678 av_log(avctx, AV_LOG_ERROR, "imc frame too small!\n");
00679 return AVERROR_INVALIDDATA;
00680 }
00681
00682
00683 q->frame.nb_samples = COEFFS;
00684 if ((ret = ff_get_buffer(avctx, &q->frame)) < 0) {
00685 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
00686 return ret;
00687 }
00688 q->out_samples = (float *)q->frame.data[0];
00689
00690 q->dsp.bswap16_buf(buf16, (const uint16_t*)buf, IMC_BLOCK_SIZE / 2);
00691
00692 init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
00693
00694
00695 imc_hdr = get_bits(&q->gb, 9);
00696 if (imc_hdr != IMC_FRAME_ID) {
00697 av_log(avctx, AV_LOG_ERROR, "imc frame header check failed!\n");
00698 av_log(avctx, AV_LOG_ERROR, "got %x instead of 0x21.\n", imc_hdr);
00699 return AVERROR_INVALIDDATA;
00700 }
00701 stream_format_code = get_bits(&q->gb, 3);
00702
00703 if(stream_format_code & 1){
00704 av_log(avctx, AV_LOG_ERROR, "Stream code format %X is not supported\n", stream_format_code);
00705 return AVERROR_INVALIDDATA;
00706 }
00707
00708
00709
00710 if (stream_format_code & 0x04)
00711 q->decoder_reset = 1;
00712
00713 if(q->decoder_reset) {
00714 memset(q->out_samples, 0, sizeof(q->out_samples));
00715 for(i = 0; i < BANDS; i++)q->old_floor[i] = 1.0;
00716 for(i = 0; i < COEFFS; i++)q->CWdecoded[i] = 0;
00717 q->decoder_reset = 0;
00718 }
00719
00720 flag = get_bits1(&q->gb);
00721 imc_read_level_coeffs(q, stream_format_code, q->levlCoeffBuf);
00722
00723 if (stream_format_code & 0x4)
00724 imc_decode_level_coefficients(q, q->levlCoeffBuf, q->flcoeffs1, q->flcoeffs2);
00725 else
00726 imc_decode_level_coefficients2(q, q->levlCoeffBuf, q->old_floor, q->flcoeffs1, q->flcoeffs2);
00727
00728 memcpy(q->old_floor, q->flcoeffs1, 32 * sizeof(float));
00729
00730 counter = 0;
00731 for (i=0 ; i<BANDS ; i++) {
00732 if (q->levlCoeffBuf[i] == 16) {
00733 q->bandWidthT[i] = 0;
00734 counter++;
00735 } else
00736 q->bandWidthT[i] = band_tab[i+1] - band_tab[i];
00737 }
00738 memset(q->bandFlagsBuf, 0, BANDS * sizeof(int));
00739 for(i = 0; i < BANDS-1; i++) {
00740 if (q->bandWidthT[i])
00741 q->bandFlagsBuf[i] = get_bits1(&q->gb);
00742 }
00743
00744 imc_calculate_coeffs(q, q->flcoeffs1, q->flcoeffs2, q->bandWidthT, q->flcoeffs3, q->flcoeffs5);
00745
00746 bitscount = 0;
00747
00748 if (stream_format_code & 0x2) {
00749 bitscount += 15;
00750
00751 q->bitsBandT[0] = 5;
00752 q->CWlengthT[0] = 5;
00753 q->CWlengthT[1] = 5;
00754 q->CWlengthT[2] = 5;
00755 for(i = 1; i < 4; i++){
00756 bits = (q->levlCoeffBuf[i] == 16) ? 0 : 5;
00757 q->bitsBandT[i] = bits;
00758 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
00759 q->CWlengthT[j] = bits;
00760 bitscount += bits;
00761 }
00762 }
00763 }
00764
00765 if((ret = bit_allocation (q, stream_format_code,
00766 512 - bitscount - get_bits_count(&q->gb), flag)) < 0) {
00767 av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
00768 q->decoder_reset = 1;
00769 return ret;
00770 }
00771
00772 for(i = 0; i < BANDS; i++) {
00773 q->sumLenArr[i] = 0;
00774 q->skipFlagRaw[i] = 0;
00775 for(j = band_tab[i]; j < band_tab[i+1]; j++)
00776 q->sumLenArr[i] += q->CWlengthT[j];
00777 if (q->bandFlagsBuf[i])
00778 if( (((band_tab[i+1] - band_tab[i]) * 1.5) > q->sumLenArr[i]) && (q->sumLenArr[i] > 0))
00779 q->skipFlagRaw[i] = 1;
00780 }
00781
00782 imc_get_skip_coeff(q);
00783
00784 for(i = 0; i < BANDS; i++) {
00785 q->flcoeffs6[i] = q->flcoeffs1[i];
00786
00787 if (q->bandFlagsBuf[i] && (band_tab[i+1] - band_tab[i]) != q->skipFlagCount[i]){
00788 q->flcoeffs6[i] *= q->sqrt_tab[band_tab[i+1] - band_tab[i]] /
00789 q->sqrt_tab[(band_tab[i+1] - band_tab[i] - q->skipFlagCount[i])];
00790 }
00791 }
00792
00793
00794 bits = summer = 0;
00795
00796 for(i = 0; i < BANDS; i++) {
00797 if (q->bandFlagsBuf[i]) {
00798 for(j = band_tab[i]; j < band_tab[i+1]; j++) {
00799 if(q->skipFlags[j]) {
00800 summer += q->CWlengthT[j];
00801 q->CWlengthT[j] = 0;
00802 }
00803 }
00804 bits += q->skipFlagBits[i];
00805 summer -= q->skipFlagBits[i];
00806 }
00807 }
00808 imc_adjust_bit_allocation(q, summer);
00809
00810 for(i = 0; i < BANDS; i++) {
00811 q->sumLenArr[i] = 0;
00812
00813 for(j = band_tab[i]; j < band_tab[i+1]; j++)
00814 if (!q->skipFlags[j])
00815 q->sumLenArr[i] += q->CWlengthT[j];
00816 }
00817
00818 memset(q->codewords, 0, sizeof(q->codewords));
00819
00820 if(imc_get_coeffs(q) < 0) {
00821 av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
00822 q->decoder_reset = 1;
00823 return AVERROR_INVALIDDATA;
00824 }
00825
00826 if(inverse_quant_coeff(q, stream_format_code) < 0) {
00827 av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
00828 q->decoder_reset = 1;
00829 return AVERROR_INVALIDDATA;
00830 }
00831
00832 memset(q->skipFlags, 0, sizeof(q->skipFlags));
00833
00834 imc_imdct256(q);
00835
00836 *got_frame_ptr = 1;
00837 *(AVFrame *)data = q->frame;
00838
00839 return IMC_BLOCK_SIZE;
00840 }
00841
00842
00843 static av_cold int imc_decode_close(AVCodecContext * avctx)
00844 {
00845 IMCContext *q = avctx->priv_data;
00846
00847 ff_fft_end(&q->fft);
00848
00849 return 0;
00850 }
00851
00852
00853 AVCodec ff_imc_decoder = {
00854 .name = "imc",
00855 .type = AVMEDIA_TYPE_AUDIO,
00856 .id = CODEC_ID_IMC,
00857 .priv_data_size = sizeof(IMCContext),
00858 .init = imc_decode_init,
00859 .close = imc_decode_close,
00860 .decode = imc_decode_frame,
00861 .capabilities = CODEC_CAP_DR1,
00862 .long_name = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
00863 };