libavcodec/truemotion1.c
Go to the documentation of this file.
00001 /*
00002  * Duck TrueMotion 1.0 Decoder
00003  * Copyright (C) 2003 Alex Beregszaszi & Mike Melanson
00004  *
00005  * This file is part of Libav.
00006  *
00007  * Libav is free software; you can redistribute it and/or
00008  * modify it under the terms of the GNU Lesser General Public
00009  * License as published by the Free Software Foundation; either
00010  * version 2.1 of the License, or (at your option) any later version.
00011  *
00012  * Libav is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00015  * Lesser General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU Lesser General Public
00018  * License along with Libav; if not, write to the Free Software
00019  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
00020  */
00021 
00032 #include <stdio.h>
00033 #include <stdlib.h>
00034 #include <string.h>
00035 
00036 #include "avcodec.h"
00037 #include "dsputil.h"
00038 #include "libavutil/imgutils.h"
00039 
00040 #include "truemotion1data.h"
00041 
00042 typedef struct TrueMotion1Context {
00043     AVCodecContext *avctx;
00044     AVFrame frame;
00045 
00046     const uint8_t *buf;
00047     int size;
00048 
00049     const uint8_t *mb_change_bits;
00050     int mb_change_bits_row_size;
00051     const uint8_t *index_stream;
00052     int index_stream_size;
00053 
00054     int flags;
00055     int x, y, w, h;
00056 
00057     uint32_t y_predictor_table[1024];
00058     uint32_t c_predictor_table[1024];
00059     uint32_t fat_y_predictor_table[1024];
00060     uint32_t fat_c_predictor_table[1024];
00061 
00062     int compression;
00063     int block_type;
00064     int block_width;
00065     int block_height;
00066 
00067     int16_t ydt[8];
00068     int16_t cdt[8];
00069     int16_t fat_ydt[8];
00070     int16_t fat_cdt[8];
00071 
00072     int last_deltaset, last_vectable;
00073 
00074     unsigned int *vert_pred;
00075     int vert_pred_size;
00076 
00077 } TrueMotion1Context;
00078 
00079 #define FLAG_SPRITE         32
00080 #define FLAG_KEYFRAME       16
00081 #define FLAG_INTERFRAME      8
00082 #define FLAG_INTERPOLATED    4
00083 
00084 struct frame_header {
00085     uint8_t header_size;
00086     uint8_t compression;
00087     uint8_t deltaset;
00088     uint8_t vectable;
00089     uint16_t ysize;
00090     uint16_t xsize;
00091     uint16_t checksum;
00092     uint8_t version;
00093     uint8_t header_type;
00094     uint8_t flags;
00095     uint8_t control;
00096     uint16_t xoffset;
00097     uint16_t yoffset;
00098     uint16_t width;
00099     uint16_t height;
00100 };
00101 
00102 #define ALGO_NOP        0
00103 #define ALGO_RGB16V     1
00104 #define ALGO_RGB16H     2
00105 #define ALGO_RGB24H     3
00106 
00107 /* these are the various block sizes that can occupy a 4x4 block */
00108 #define BLOCK_2x2  0
00109 #define BLOCK_2x4  1
00110 #define BLOCK_4x2  2
00111 #define BLOCK_4x4  3
00112 
00113 typedef struct comp_types {
00114     int algorithm;
00115     int block_width; // vres
00116     int block_height; // hres
00117     int block_type;
00118 } comp_types;
00119 
00120 /* { valid for metatype }, algorithm, num of deltas, vert res, horiz res */
00121 static const comp_types compression_types[17] = {
00122     { ALGO_NOP,    0, 0, 0 },
00123 
00124     { ALGO_RGB16V, 4, 4, BLOCK_4x4 },
00125     { ALGO_RGB16H, 4, 4, BLOCK_4x4 },
00126     { ALGO_RGB16V, 4, 2, BLOCK_4x2 },
00127     { ALGO_RGB16H, 4, 2, BLOCK_4x2 },
00128 
00129     { ALGO_RGB16V, 2, 4, BLOCK_2x4 },
00130     { ALGO_RGB16H, 2, 4, BLOCK_2x4 },
00131     { ALGO_RGB16V, 2, 2, BLOCK_2x2 },
00132     { ALGO_RGB16H, 2, 2, BLOCK_2x2 },
00133 
00134     { ALGO_NOP,    4, 4, BLOCK_4x4 },
00135     { ALGO_RGB24H, 4, 4, BLOCK_4x4 },
00136     { ALGO_NOP,    4, 2, BLOCK_4x2 },
00137     { ALGO_RGB24H, 4, 2, BLOCK_4x2 },
00138 
00139     { ALGO_NOP,    2, 4, BLOCK_2x4 },
00140     { ALGO_RGB24H, 2, 4, BLOCK_2x4 },
00141     { ALGO_NOP,    2, 2, BLOCK_2x2 },
00142     { ALGO_RGB24H, 2, 2, BLOCK_2x2 }
00143 };
00144 
00145 static void select_delta_tables(TrueMotion1Context *s, int delta_table_index)
00146 {
00147     int i;
00148 
00149     if (delta_table_index > 3)
00150         return;
00151 
00152     memcpy(s->ydt, ydts[delta_table_index], 8 * sizeof(int16_t));
00153     memcpy(s->cdt, cdts[delta_table_index], 8 * sizeof(int16_t));
00154     memcpy(s->fat_ydt, fat_ydts[delta_table_index], 8 * sizeof(int16_t));
00155     memcpy(s->fat_cdt, fat_cdts[delta_table_index], 8 * sizeof(int16_t));
00156 
00157     /* Y skinny deltas need to be halved for some reason; maybe the
00158      * skinny Y deltas should be modified */
00159     for (i = 0; i < 8; i++)
00160     {
00161         /* drop the lsb before dividing by 2-- net effect: round down
00162          * when dividing a negative number (e.g., -3/2 = -2, not -1) */
00163         s->ydt[i] &= 0xFFFE;
00164         s->ydt[i] /= 2;
00165     }
00166 }
00167 
00168 #if HAVE_BIGENDIAN
00169 static int make_ydt15_entry(int p2, int p1, int16_t *ydt)
00170 #else
00171 static int make_ydt15_entry(int p1, int p2, int16_t *ydt)
00172 #endif
00173 {
00174     int lo, hi;
00175 
00176     lo = ydt[p1];
00177     lo += (lo << 5) + (lo << 10);
00178     hi = ydt[p2];
00179     hi += (hi << 5) + (hi << 10);
00180     return (lo + (hi << 16)) << 1;
00181 }
00182 
00183 static int make_cdt15_entry(int p1, int p2, int16_t *cdt)
00184 {
00185     int r, b, lo;
00186 
00187     b = cdt[p2];
00188     r = cdt[p1] << 10;
00189     lo = b + r;
00190     return (lo + (lo << 16)) << 1;
00191 }
00192 
00193 #if HAVE_BIGENDIAN
00194 static int make_ydt16_entry(int p2, int p1, int16_t *ydt)
00195 #else
00196 static int make_ydt16_entry(int p1, int p2, int16_t *ydt)
00197 #endif
00198 {
00199     int lo, hi;
00200 
00201     lo = ydt[p1];
00202     lo += (lo << 6) + (lo << 11);
00203     hi = ydt[p2];
00204     hi += (hi << 6) + (hi << 11);
00205     return (lo + (hi << 16)) << 1;
00206 }
00207 
00208 static int make_cdt16_entry(int p1, int p2, int16_t *cdt)
00209 {
00210     int r, b, lo;
00211 
00212     b = cdt[p2];
00213     r = cdt[p1] << 11;
00214     lo = b + r;
00215     return (lo + (lo << 16)) << 1;
00216 }
00217 
00218 static int make_ydt24_entry(int p1, int p2, int16_t *ydt)
00219 {
00220     int lo, hi;
00221 
00222     lo = ydt[p1];
00223     hi = ydt[p2];
00224     return (lo + (hi << 8) + (hi << 16)) << 1;
00225 }
00226 
00227 static int make_cdt24_entry(int p1, int p2, int16_t *cdt)
00228 {
00229     int r, b;
00230 
00231     b = cdt[p2];
00232     r = cdt[p1]<<16;
00233     return (b+r) << 1;
00234 }
00235 
00236 static void gen_vector_table15(TrueMotion1Context *s, const uint8_t *sel_vector_table)
00237 {
00238     int len, i, j;
00239     unsigned char delta_pair;
00240 
00241     for (i = 0; i < 1024; i += 4)
00242     {
00243         len = *sel_vector_table++ / 2;
00244         for (j = 0; j < len; j++)
00245         {
00246             delta_pair = *sel_vector_table++;
00247             s->y_predictor_table[i+j] = 0xfffffffe &
00248                 make_ydt15_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
00249             s->c_predictor_table[i+j] = 0xfffffffe &
00250                 make_cdt15_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
00251         }
00252         s->y_predictor_table[i+(j-1)] |= 1;
00253         s->c_predictor_table[i+(j-1)] |= 1;
00254     }
00255 }
00256 
00257 static void gen_vector_table16(TrueMotion1Context *s, const uint8_t *sel_vector_table)
00258 {
00259     int len, i, j;
00260     unsigned char delta_pair;
00261 
00262     for (i = 0; i < 1024; i += 4)
00263     {
00264         len = *sel_vector_table++ / 2;
00265         for (j = 0; j < len; j++)
00266         {
00267             delta_pair = *sel_vector_table++;
00268             s->y_predictor_table[i+j] = 0xfffffffe &
00269                 make_ydt16_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
00270             s->c_predictor_table[i+j] = 0xfffffffe &
00271                 make_cdt16_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
00272         }
00273         s->y_predictor_table[i+(j-1)] |= 1;
00274         s->c_predictor_table[i+(j-1)] |= 1;
00275     }
00276 }
00277 
00278 static void gen_vector_table24(TrueMotion1Context *s, const uint8_t *sel_vector_table)
00279 {
00280     int len, i, j;
00281     unsigned char delta_pair;
00282 
00283     for (i = 0; i < 1024; i += 4)
00284     {
00285         len = *sel_vector_table++ / 2;
00286         for (j = 0; j < len; j++)
00287         {
00288             delta_pair = *sel_vector_table++;
00289             s->y_predictor_table[i+j] = 0xfffffffe &
00290                 make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
00291             s->c_predictor_table[i+j] = 0xfffffffe &
00292                 make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
00293             s->fat_y_predictor_table[i+j] = 0xfffffffe &
00294                 make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_ydt);
00295             s->fat_c_predictor_table[i+j] = 0xfffffffe &
00296                 make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_cdt);
00297         }
00298         s->y_predictor_table[i+(j-1)] |= 1;
00299         s->c_predictor_table[i+(j-1)] |= 1;
00300         s->fat_y_predictor_table[i+(j-1)] |= 1;
00301         s->fat_c_predictor_table[i+(j-1)] |= 1;
00302     }
00303 }
00304 
00305 /* Returns the number of bytes consumed from the bytestream. Returns -1 if
00306  * there was an error while decoding the header */
00307 static int truemotion1_decode_header(TrueMotion1Context *s)
00308 {
00309     int i;
00310     int width_shift = 0;
00311     int new_pix_fmt;
00312     struct frame_header header;
00313     uint8_t header_buffer[128];  /* logical maximum size of the header */
00314     const uint8_t *sel_vector_table;
00315 
00316     header.header_size = ((s->buf[0] >> 5) | (s->buf[0] << 3)) & 0x7f;
00317     if (s->buf[0] < 0x10)
00318     {
00319         av_log(s->avctx, AV_LOG_ERROR, "invalid header size (%d)\n", s->buf[0]);
00320         return -1;
00321     }
00322 
00323     if (header.header_size + 1 > s->size) {
00324         av_log(s->avctx, AV_LOG_ERROR, "Input packet too small.\n");
00325         return AVERROR_INVALIDDATA;
00326     }
00327 
00328     /* unscramble the header bytes with a XOR operation */
00329     memset(header_buffer, 0, 128);
00330     for (i = 1; i < header.header_size; i++)
00331         header_buffer[i - 1] = s->buf[i] ^ s->buf[i + 1];
00332 
00333     header.compression = header_buffer[0];
00334     header.deltaset = header_buffer[1];
00335     header.vectable = header_buffer[2];
00336     header.ysize = AV_RL16(&header_buffer[3]);
00337     header.xsize = AV_RL16(&header_buffer[5]);
00338     header.checksum = AV_RL16(&header_buffer[7]);
00339     header.version = header_buffer[9];
00340     header.header_type = header_buffer[10];
00341     header.flags = header_buffer[11];
00342     header.control = header_buffer[12];
00343 
00344     /* Version 2 */
00345     if (header.version >= 2)
00346     {
00347         if (header.header_type > 3)
00348         {
00349             av_log(s->avctx, AV_LOG_ERROR, "invalid header type (%d)\n", header.header_type);
00350             return -1;
00351         } else if ((header.header_type == 2) || (header.header_type == 3)) {
00352             s->flags = header.flags;
00353             if (!(s->flags & FLAG_INTERFRAME))
00354                 s->flags |= FLAG_KEYFRAME;
00355         } else
00356             s->flags = FLAG_KEYFRAME;
00357     } else /* Version 1 */
00358         s->flags = FLAG_KEYFRAME;
00359 
00360     if (s->flags & FLAG_SPRITE) {
00361         av_log_ask_for_sample(s->avctx, "SPRITE frame found.\n");
00362         /* FIXME header.width, height, xoffset and yoffset aren't initialized */
00363 #if 0
00364         s->w = header.width;
00365         s->h = header.height;
00366         s->x = header.xoffset;
00367         s->y = header.yoffset;
00368 #else
00369         return -1;
00370 #endif
00371     } else {
00372         s->w = header.xsize;
00373         s->h = header.ysize;
00374         if (header.header_type < 2) {
00375             if ((s->w < 213) && (s->h >= 176))
00376             {
00377                 s->flags |= FLAG_INTERPOLATED;
00378                 av_log_ask_for_sample(s->avctx, "INTERPOLATION selected.\n");
00379             }
00380         }
00381     }
00382 
00383     if (header.compression >= 17) {
00384         av_log(s->avctx, AV_LOG_ERROR, "invalid compression type (%d)\n", header.compression);
00385         return -1;
00386     }
00387 
00388     if ((header.deltaset != s->last_deltaset) ||
00389         (header.vectable != s->last_vectable))
00390         select_delta_tables(s, header.deltaset);
00391 
00392     if ((header.compression & 1) && header.header_type)
00393         sel_vector_table = pc_tbl2;
00394     else {
00395         if (header.vectable > 0 && header.vectable < 4)
00396             sel_vector_table = tables[header.vectable - 1];
00397         else {
00398             av_log(s->avctx, AV_LOG_ERROR, "invalid vector table id (%d)\n", header.vectable);
00399             return -1;
00400         }
00401     }
00402 
00403     if (compression_types[header.compression].algorithm == ALGO_RGB24H) {
00404         new_pix_fmt = PIX_FMT_RGB32;
00405         width_shift = 1;
00406     } else
00407         new_pix_fmt = PIX_FMT_RGB555; // RGB565 is supported as well
00408 
00409     s->w >>= width_shift;
00410     if (av_image_check_size(s->w, s->h, 0, s->avctx) < 0)
00411         return -1;
00412 
00413     if (s->w != s->avctx->width || s->h != s->avctx->height ||
00414         new_pix_fmt != s->avctx->pix_fmt) {
00415         if (s->frame.data[0])
00416             s->avctx->release_buffer(s->avctx, &s->frame);
00417         s->avctx->sample_aspect_ratio = (AVRational){ 1 << width_shift, 1 };
00418         s->avctx->pix_fmt = new_pix_fmt;
00419         avcodec_set_dimensions(s->avctx, s->w, s->h);
00420         av_fast_malloc(&s->vert_pred, &s->vert_pred_size, s->avctx->width * sizeof(unsigned int));
00421     }
00422 
00423     /* There is 1 change bit per 4 pixels, so each change byte represents
00424      * 32 pixels; divide width by 4 to obtain the number of change bits and
00425      * then round up to the nearest byte. */
00426     s->mb_change_bits_row_size = ((s->avctx->width >> (2 - width_shift)) + 7) >> 3;
00427 
00428     if ((header.deltaset != s->last_deltaset) || (header.vectable != s->last_vectable))
00429     {
00430         if (compression_types[header.compression].algorithm == ALGO_RGB24H)
00431             gen_vector_table24(s, sel_vector_table);
00432         else
00433         if (s->avctx->pix_fmt == PIX_FMT_RGB555)
00434             gen_vector_table15(s, sel_vector_table);
00435         else
00436             gen_vector_table16(s, sel_vector_table);
00437     }
00438 
00439     /* set up pointers to the other key data chunks */
00440     s->mb_change_bits = s->buf + header.header_size;
00441     if (s->flags & FLAG_KEYFRAME) {
00442         /* no change bits specified for a keyframe; only index bytes */
00443         s->index_stream = s->mb_change_bits;
00444     } else {
00445         /* one change bit per 4x4 block */
00446         s->index_stream = s->mb_change_bits +
00447             (s->mb_change_bits_row_size * (s->avctx->height >> 2));
00448     }
00449     s->index_stream_size = s->size - (s->index_stream - s->buf);
00450 
00451     s->last_deltaset = header.deltaset;
00452     s->last_vectable = header.vectable;
00453     s->compression = header.compression;
00454     s->block_width = compression_types[header.compression].block_width;
00455     s->block_height = compression_types[header.compression].block_height;
00456     s->block_type = compression_types[header.compression].block_type;
00457 
00458     if (s->avctx->debug & FF_DEBUG_PICT_INFO)
00459         av_log(s->avctx, AV_LOG_INFO, "tables: %d / %d c:%d %dx%d t:%d %s%s%s%s\n",
00460             s->last_deltaset, s->last_vectable, s->compression, s->block_width,
00461             s->block_height, s->block_type,
00462             s->flags & FLAG_KEYFRAME ? " KEY" : "",
00463             s->flags & FLAG_INTERFRAME ? " INTER" : "",
00464             s->flags & FLAG_SPRITE ? " SPRITE" : "",
00465             s->flags & FLAG_INTERPOLATED ? " INTERPOL" : "");
00466 
00467     return header.header_size;
00468 }
00469 
00470 static av_cold int truemotion1_decode_init(AVCodecContext *avctx)
00471 {
00472     TrueMotion1Context *s = avctx->priv_data;
00473 
00474     s->avctx = avctx;
00475 
00476     // FIXME: it may change ?
00477 //    if (avctx->bits_per_sample == 24)
00478 //        avctx->pix_fmt = PIX_FMT_RGB24;
00479 //    else
00480 //        avctx->pix_fmt = PIX_FMT_RGB555;
00481 
00482     s->frame.data[0] = NULL;
00483 
00484     /* there is a vertical predictor for each pixel in a line; each vertical
00485      * predictor is 0 to start with */
00486     av_fast_malloc(&s->vert_pred, &s->vert_pred_size, s->avctx->width * sizeof(unsigned int));
00487 
00488     return 0;
00489 }
00490 
00491 /*
00492 Block decoding order:
00493 
00494 dxi: Y-Y
00495 dxic: Y-C-Y
00496 dxic2: Y-C-Y-C
00497 
00498 hres,vres,i,i%vres (0 < i < 4)
00499 2x2 0: 0 dxic2
00500 2x2 1: 1 dxi
00501 2x2 2: 0 dxic2
00502 2x2 3: 1 dxi
00503 2x4 0: 0 dxic2
00504 2x4 1: 1 dxi
00505 2x4 2: 2 dxi
00506 2x4 3: 3 dxi
00507 4x2 0: 0 dxic
00508 4x2 1: 1 dxi
00509 4x2 2: 0 dxic
00510 4x2 3: 1 dxi
00511 4x4 0: 0 dxic
00512 4x4 1: 1 dxi
00513 4x4 2: 2 dxi
00514 4x4 3: 3 dxi
00515 */
00516 
00517 #define GET_NEXT_INDEX() \
00518 {\
00519     if (index_stream_index >= s->index_stream_size) { \
00520         av_log(s->avctx, AV_LOG_INFO, " help! truemotion1 decoder went out of bounds\n"); \
00521         return; \
00522     } \
00523     index = s->index_stream[index_stream_index++] * 4; \
00524 }
00525 
00526 #define APPLY_C_PREDICTOR() \
00527     predictor_pair = s->c_predictor_table[index]; \
00528     horiz_pred += (predictor_pair >> 1); \
00529     if (predictor_pair & 1) { \
00530         GET_NEXT_INDEX() \
00531         if (!index) { \
00532             GET_NEXT_INDEX() \
00533             predictor_pair = s->c_predictor_table[index]; \
00534             horiz_pred += ((predictor_pair >> 1) * 5); \
00535             if (predictor_pair & 1) \
00536                 GET_NEXT_INDEX() \
00537             else \
00538                 index++; \
00539         } \
00540     } else \
00541         index++;
00542 
00543 #define APPLY_C_PREDICTOR_24() \
00544     predictor_pair = s->c_predictor_table[index]; \
00545     horiz_pred += (predictor_pair >> 1); \
00546     if (predictor_pair & 1) { \
00547         GET_NEXT_INDEX() \
00548         if (!index) { \
00549             GET_NEXT_INDEX() \
00550             predictor_pair = s->fat_c_predictor_table[index]; \
00551             horiz_pred += (predictor_pair >> 1); \
00552             if (predictor_pair & 1) \
00553                 GET_NEXT_INDEX() \
00554             else \
00555                 index++; \
00556         } \
00557     } else \
00558         index++;
00559 
00560 
00561 #define APPLY_Y_PREDICTOR() \
00562     predictor_pair = s->y_predictor_table[index]; \
00563     horiz_pred += (predictor_pair >> 1); \
00564     if (predictor_pair & 1) { \
00565         GET_NEXT_INDEX() \
00566         if (!index) { \
00567             GET_NEXT_INDEX() \
00568             predictor_pair = s->y_predictor_table[index]; \
00569             horiz_pred += ((predictor_pair >> 1) * 5); \
00570             if (predictor_pair & 1) \
00571                 GET_NEXT_INDEX() \
00572             else \
00573                 index++; \
00574         } \
00575     } else \
00576         index++;
00577 
00578 #define APPLY_Y_PREDICTOR_24() \
00579     predictor_pair = s->y_predictor_table[index]; \
00580     horiz_pred += (predictor_pair >> 1); \
00581     if (predictor_pair & 1) { \
00582         GET_NEXT_INDEX() \
00583         if (!index) { \
00584             GET_NEXT_INDEX() \
00585             predictor_pair = s->fat_y_predictor_table[index]; \
00586             horiz_pred += (predictor_pair >> 1); \
00587             if (predictor_pair & 1) \
00588                 GET_NEXT_INDEX() \
00589             else \
00590                 index++; \
00591         } \
00592     } else \
00593         index++;
00594 
00595 #define OUTPUT_PIXEL_PAIR() \
00596     *current_pixel_pair = *vert_pred + horiz_pred; \
00597     *vert_pred++ = *current_pixel_pair++;
00598 
00599 static void truemotion1_decode_16bit(TrueMotion1Context *s)
00600 {
00601     int y;
00602     int pixels_left;  /* remaining pixels on this line */
00603     unsigned int predictor_pair;
00604     unsigned int horiz_pred;
00605     unsigned int *vert_pred;
00606     unsigned int *current_pixel_pair;
00607     unsigned char *current_line = s->frame.data[0];
00608     int keyframe = s->flags & FLAG_KEYFRAME;
00609 
00610     /* these variables are for managing the stream of macroblock change bits */
00611     const unsigned char *mb_change_bits = s->mb_change_bits;
00612     unsigned char mb_change_byte;
00613     unsigned char mb_change_byte_mask;
00614     int mb_change_index;
00615 
00616     /* these variables are for managing the main index stream */
00617     int index_stream_index = 0;  /* yes, the index into the index stream */
00618     int index;
00619 
00620     /* clean out the line buffer */
00621     memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int));
00622 
00623     GET_NEXT_INDEX();
00624 
00625     for (y = 0; y < s->avctx->height; y++) {
00626 
00627         /* re-init variables for the next line iteration */
00628         horiz_pred = 0;
00629         current_pixel_pair = (unsigned int *)current_line;
00630         vert_pred = s->vert_pred;
00631         mb_change_index = 0;
00632         mb_change_byte = mb_change_bits[mb_change_index++];
00633         mb_change_byte_mask = 0x01;
00634         pixels_left = s->avctx->width;
00635 
00636         while (pixels_left > 0) {
00637 
00638             if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) {
00639 
00640                 switch (y & 3) {
00641                 case 0:
00642                     /* if macroblock width is 2, apply C-Y-C-Y; else
00643                      * apply C-Y-Y */
00644                     if (s->block_width == 2) {
00645                         APPLY_C_PREDICTOR();
00646                         APPLY_Y_PREDICTOR();
00647                         OUTPUT_PIXEL_PAIR();
00648                         APPLY_C_PREDICTOR();
00649                         APPLY_Y_PREDICTOR();
00650                         OUTPUT_PIXEL_PAIR();
00651                     } else {
00652                         APPLY_C_PREDICTOR();
00653                         APPLY_Y_PREDICTOR();
00654                         OUTPUT_PIXEL_PAIR();
00655                         APPLY_Y_PREDICTOR();
00656                         OUTPUT_PIXEL_PAIR();
00657                     }
00658                     break;
00659 
00660                 case 1:
00661                 case 3:
00662                     /* always apply 2 Y predictors on these iterations */
00663                     APPLY_Y_PREDICTOR();
00664                     OUTPUT_PIXEL_PAIR();
00665                     APPLY_Y_PREDICTOR();
00666                     OUTPUT_PIXEL_PAIR();
00667                     break;
00668 
00669                 case 2:
00670                     /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y
00671                      * depending on the macroblock type */
00672                     if (s->block_type == BLOCK_2x2) {
00673                         APPLY_C_PREDICTOR();
00674                         APPLY_Y_PREDICTOR();
00675                         OUTPUT_PIXEL_PAIR();
00676                         APPLY_C_PREDICTOR();
00677                         APPLY_Y_PREDICTOR();
00678                         OUTPUT_PIXEL_PAIR();
00679                     } else if (s->block_type == BLOCK_4x2) {
00680                         APPLY_C_PREDICTOR();
00681                         APPLY_Y_PREDICTOR();
00682                         OUTPUT_PIXEL_PAIR();
00683                         APPLY_Y_PREDICTOR();
00684                         OUTPUT_PIXEL_PAIR();
00685                     } else {
00686                         APPLY_Y_PREDICTOR();
00687                         OUTPUT_PIXEL_PAIR();
00688                         APPLY_Y_PREDICTOR();
00689                         OUTPUT_PIXEL_PAIR();
00690                     }
00691                     break;
00692                 }
00693 
00694             } else {
00695 
00696                 /* skip (copy) four pixels, but reassign the horizontal
00697                  * predictor */
00698                 *vert_pred++ = *current_pixel_pair++;
00699                 horiz_pred = *current_pixel_pair - *vert_pred;
00700                 *vert_pred++ = *current_pixel_pair++;
00701 
00702             }
00703 
00704             if (!keyframe) {
00705                 mb_change_byte_mask <<= 1;
00706 
00707                 /* next byte */
00708                 if (!mb_change_byte_mask) {
00709                     mb_change_byte = mb_change_bits[mb_change_index++];
00710                     mb_change_byte_mask = 0x01;
00711                 }
00712             }
00713 
00714             pixels_left -= 4;
00715         }
00716 
00717         /* next change row */
00718         if (((y + 1) & 3) == 0)
00719             mb_change_bits += s->mb_change_bits_row_size;
00720 
00721         current_line += s->frame.linesize[0];
00722     }
00723 }
00724 
00725 static void truemotion1_decode_24bit(TrueMotion1Context *s)
00726 {
00727     int y;
00728     int pixels_left;  /* remaining pixels on this line */
00729     unsigned int predictor_pair;
00730     unsigned int horiz_pred;
00731     unsigned int *vert_pred;
00732     unsigned int *current_pixel_pair;
00733     unsigned char *current_line = s->frame.data[0];
00734     int keyframe = s->flags & FLAG_KEYFRAME;
00735 
00736     /* these variables are for managing the stream of macroblock change bits */
00737     const unsigned char *mb_change_bits = s->mb_change_bits;
00738     unsigned char mb_change_byte;
00739     unsigned char mb_change_byte_mask;
00740     int mb_change_index;
00741 
00742     /* these variables are for managing the main index stream */
00743     int index_stream_index = 0;  /* yes, the index into the index stream */
00744     int index;
00745 
00746     /* clean out the line buffer */
00747     memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int));
00748 
00749     GET_NEXT_INDEX();
00750 
00751     for (y = 0; y < s->avctx->height; y++) {
00752 
00753         /* re-init variables for the next line iteration */
00754         horiz_pred = 0;
00755         current_pixel_pair = (unsigned int *)current_line;
00756         vert_pred = s->vert_pred;
00757         mb_change_index = 0;
00758         mb_change_byte = mb_change_bits[mb_change_index++];
00759         mb_change_byte_mask = 0x01;
00760         pixels_left = s->avctx->width;
00761 
00762         while (pixels_left > 0) {
00763 
00764             if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) {
00765 
00766                 switch (y & 3) {
00767                 case 0:
00768                     /* if macroblock width is 2, apply C-Y-C-Y; else
00769                      * apply C-Y-Y */
00770                     if (s->block_width == 2) {
00771                         APPLY_C_PREDICTOR_24();
00772                         APPLY_Y_PREDICTOR_24();
00773                         OUTPUT_PIXEL_PAIR();
00774                         APPLY_C_PREDICTOR_24();
00775                         APPLY_Y_PREDICTOR_24();
00776                         OUTPUT_PIXEL_PAIR();
00777                     } else {
00778                         APPLY_C_PREDICTOR_24();
00779                         APPLY_Y_PREDICTOR_24();
00780                         OUTPUT_PIXEL_PAIR();
00781                         APPLY_Y_PREDICTOR_24();
00782                         OUTPUT_PIXEL_PAIR();
00783                     }
00784                     break;
00785 
00786                 case 1:
00787                 case 3:
00788                     /* always apply 2 Y predictors on these iterations */
00789                     APPLY_Y_PREDICTOR_24();
00790                     OUTPUT_PIXEL_PAIR();
00791                     APPLY_Y_PREDICTOR_24();
00792                     OUTPUT_PIXEL_PAIR();
00793                     break;
00794 
00795                 case 2:
00796                     /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y
00797                      * depending on the macroblock type */
00798                     if (s->block_type == BLOCK_2x2) {
00799                         APPLY_C_PREDICTOR_24();
00800                         APPLY_Y_PREDICTOR_24();
00801                         OUTPUT_PIXEL_PAIR();
00802                         APPLY_C_PREDICTOR_24();
00803                         APPLY_Y_PREDICTOR_24();
00804                         OUTPUT_PIXEL_PAIR();
00805                     } else if (s->block_type == BLOCK_4x2) {
00806                         APPLY_C_PREDICTOR_24();
00807                         APPLY_Y_PREDICTOR_24();
00808                         OUTPUT_PIXEL_PAIR();
00809                         APPLY_Y_PREDICTOR_24();
00810                         OUTPUT_PIXEL_PAIR();
00811                     } else {
00812                         APPLY_Y_PREDICTOR_24();
00813                         OUTPUT_PIXEL_PAIR();
00814                         APPLY_Y_PREDICTOR_24();
00815                         OUTPUT_PIXEL_PAIR();
00816                     }
00817                     break;
00818                 }
00819 
00820             } else {
00821 
00822                 /* skip (copy) four pixels, but reassign the horizontal
00823                  * predictor */
00824                 *vert_pred++ = *current_pixel_pair++;
00825                 horiz_pred = *current_pixel_pair - *vert_pred;
00826                 *vert_pred++ = *current_pixel_pair++;
00827 
00828             }
00829 
00830             if (!keyframe) {
00831                 mb_change_byte_mask <<= 1;
00832 
00833                 /* next byte */
00834                 if (!mb_change_byte_mask) {
00835                     mb_change_byte = mb_change_bits[mb_change_index++];
00836                     mb_change_byte_mask = 0x01;
00837                 }
00838             }
00839 
00840             pixels_left -= 2;
00841         }
00842 
00843         /* next change row */
00844         if (((y + 1) & 3) == 0)
00845             mb_change_bits += s->mb_change_bits_row_size;
00846 
00847         current_line += s->frame.linesize[0];
00848     }
00849 }
00850 
00851 
00852 static int truemotion1_decode_frame(AVCodecContext *avctx,
00853                                     void *data, int *data_size,
00854                                     AVPacket *avpkt)
00855 {
00856     const uint8_t *buf = avpkt->data;
00857     int buf_size = avpkt->size;
00858     TrueMotion1Context *s = avctx->priv_data;
00859 
00860     s->buf = buf;
00861     s->size = buf_size;
00862 
00863     if (truemotion1_decode_header(s) == -1)
00864         return -1;
00865 
00866     s->frame.reference = 1;
00867     s->frame.buffer_hints = FF_BUFFER_HINTS_VALID |
00868         FF_BUFFER_HINTS_PRESERVE | FF_BUFFER_HINTS_REUSABLE;
00869     if (avctx->reget_buffer(avctx, &s->frame) < 0) {
00870         av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
00871         return -1;
00872     }
00873 
00874     if (compression_types[s->compression].algorithm == ALGO_RGB24H) {
00875         truemotion1_decode_24bit(s);
00876     } else if (compression_types[s->compression].algorithm != ALGO_NOP) {
00877         truemotion1_decode_16bit(s);
00878     }
00879 
00880     *data_size = sizeof(AVFrame);
00881     *(AVFrame*)data = s->frame;
00882 
00883     /* report that the buffer was completely consumed */
00884     return buf_size;
00885 }
00886 
00887 static av_cold int truemotion1_decode_end(AVCodecContext *avctx)
00888 {
00889     TrueMotion1Context *s = avctx->priv_data;
00890 
00891     if (s->frame.data[0])
00892         avctx->release_buffer(avctx, &s->frame);
00893 
00894     av_free(s->vert_pred);
00895 
00896     return 0;
00897 }
00898 
00899 AVCodec ff_truemotion1_decoder = {
00900     .name           = "truemotion1",
00901     .type           = AVMEDIA_TYPE_VIDEO,
00902     .id             = CODEC_ID_TRUEMOTION1,
00903     .priv_data_size = sizeof(TrueMotion1Context),
00904     .init           = truemotion1_decode_init,
00905     .close          = truemotion1_decode_end,
00906     .decode         = truemotion1_decode_frame,
00907     .capabilities   = CODEC_CAP_DR1,
00908     .long_name = NULL_IF_CONFIG_SMALL("Duck TrueMotion 1.0"),
00909 };