libavcodec/dnxhdenc.c
Go to the documentation of this file.
00001 /*
00002  * VC3/DNxHD encoder
00003  * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
00004  * Copyright (c) 2011 MirriAd Ltd
00005  *
00006  * VC-3 encoder funded by the British Broadcasting Corporation
00007  * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
00008  *
00009  * This file is part of Libav.
00010  *
00011  * Libav is free software; you can redistribute it and/or
00012  * modify it under the terms of the GNU Lesser General Public
00013  * License as published by the Free Software Foundation; either
00014  * version 2.1 of the License, or (at your option) any later version.
00015  *
00016  * Libav is distributed in the hope that it will be useful,
00017  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00018  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00019  * Lesser General Public License for more details.
00020  *
00021  * You should have received a copy of the GNU Lesser General Public
00022  * License along with Libav; if not, write to the Free Software
00023  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
00024  */
00025 
00026 //#define DEBUG
00027 #define RC_VARIANCE 1 // use variance or ssd for fast rc
00028 
00029 #include "libavutil/opt.h"
00030 #include "avcodec.h"
00031 #include "dsputil.h"
00032 #include "mpegvideo.h"
00033 #include "mpegvideo_common.h"
00034 #include "dnxhdenc.h"
00035 
00036 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
00037 #define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples.
00038 
00039 static const AVOption options[]={
00040     {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.dbl = 0}, 0, 1, VE},
00041 {NULL}
00042 };
00043 static const AVClass class = { "dnxhd", av_default_item_name, options, LIBAVUTIL_VERSION_INT };
00044 
00045 #define LAMBDA_FRAC_BITS 10
00046 
00047 static void dnxhd_8bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
00048 {
00049     int i;
00050     for (i = 0; i < 4; i++) {
00051         block[0] = pixels[0]; block[1] = pixels[1];
00052         block[2] = pixels[2]; block[3] = pixels[3];
00053         block[4] = pixels[4]; block[5] = pixels[5];
00054         block[6] = pixels[6]; block[7] = pixels[7];
00055         pixels += line_size;
00056         block += 8;
00057     }
00058     memcpy(block,      block -  8, sizeof(*block) * 8);
00059     memcpy(block +  8, block - 16, sizeof(*block) * 8);
00060     memcpy(block + 16, block - 24, sizeof(*block) * 8);
00061     memcpy(block + 24, block - 32, sizeof(*block) * 8);
00062 }
00063 
00064 static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
00065 {
00066     int i;
00067 
00068     block += 32;
00069 
00070     for (i = 0; i < 4; i++) {
00071         memcpy(block + i     * 8, pixels + i * line_size, 8 * sizeof(*block));
00072         memcpy(block - (i+1) * 8, pixels + i * line_size, 8 * sizeof(*block));
00073     }
00074 }
00075 
00076 static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, DCTELEM *block,
00077                                     int n, int qscale, int *overflow)
00078 {
00079     const uint8_t *scantable= ctx->intra_scantable.scantable;
00080     const int *qmat = ctx->q_intra_matrix[qscale];
00081     int last_non_zero = 0;
00082     int i;
00083 
00084     ctx->dsp.fdct(block);
00085 
00086     // Divide by 4 with rounding, to compensate scaling of DCT coefficients
00087     block[0] = (block[0] + 2) >> 2;
00088 
00089     for (i = 1; i < 64; ++i) {
00090         int j = scantable[i];
00091         int sign = block[j] >> 31;
00092         int level = (block[j] ^ sign) - sign;
00093         level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
00094         block[j] = (level ^ sign) - sign;
00095         if (level)
00096             last_non_zero = i;
00097     }
00098 
00099     return last_non_zero;
00100 }
00101 
00102 static int dnxhd_init_vlc(DNXHDEncContext *ctx)
00103 {
00104     int i, j, level, run;
00105     int max_level = 1<<(ctx->cid_table->bit_depth+2);
00106 
00107     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
00108     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,  max_level*4*sizeof(*ctx->vlc_bits) , fail);
00109     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2,                                fail);
00110     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,  63,                                  fail);
00111 
00112     ctx->vlc_codes += max_level*2;
00113     ctx->vlc_bits  += max_level*2;
00114     for (level = -max_level; level < max_level; level++) {
00115         for (run = 0; run < 2; run++) {
00116             int index = (level<<1)|run;
00117             int sign, offset = 0, alevel = level;
00118 
00119             MASK_ABS(sign, alevel);
00120             if (alevel > 64) {
00121                 offset = (alevel-1)>>6;
00122                 alevel -= offset<<6;
00123             }
00124             for (j = 0; j < 257; j++) {
00125                 if (ctx->cid_table->ac_level[j] == alevel &&
00126                     (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
00127                     (!run    || (ctx->cid_table->ac_run_flag  [j] && run))) {
00128                     assert(!ctx->vlc_codes[index]);
00129                     if (alevel) {
00130                         ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
00131                         ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
00132                     } else {
00133                         ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
00134                         ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
00135                     }
00136                     break;
00137                 }
00138             }
00139             assert(!alevel || j < 257);
00140             if (offset) {
00141                 ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
00142                 ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
00143             }
00144         }
00145     }
00146     for (i = 0; i < 62; i++) {
00147         int run = ctx->cid_table->run[i];
00148         assert(run < 63);
00149         ctx->run_codes[run] = ctx->cid_table->run_codes[i];
00150         ctx->run_bits [run] = ctx->cid_table->run_bits[i];
00151     }
00152     return 0;
00153  fail:
00154     return -1;
00155 }
00156 
00157 static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
00158 {
00159     // init first elem to 1 to avoid div by 0 in convert_matrix
00160     uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
00161     int qscale, i;
00162     const uint8_t *luma_weight_table   = ctx->cid_table->luma_weight;
00163     const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
00164 
00165     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,   (ctx->m.avctx->qmax+1) * 64 *     sizeof(int),      fail);
00166     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,   (ctx->m.avctx->qmax+1) * 64 *     sizeof(int),      fail);
00167     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
00168     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
00169 
00170     if (ctx->cid_table->bit_depth == 8) {
00171         for (i = 1; i < 64; i++) {
00172             int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
00173             weight_matrix[j] = ctx->cid_table->luma_weight[i];
00174         }
00175         ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
00176                           ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
00177         for (i = 1; i < 64; i++) {
00178             int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
00179             weight_matrix[j] = ctx->cid_table->chroma_weight[i];
00180         }
00181         ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
00182                           ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
00183 
00184         for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
00185             for (i = 0; i < 64; i++) {
00186                 ctx->qmatrix_l  [qscale]   [i] <<= 2; ctx->qmatrix_c  [qscale]   [i] <<= 2;
00187                 ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
00188                 ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
00189             }
00190         }
00191     } else {
00192         // 10-bit
00193         for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
00194             for (i = 1; i < 64; i++) {
00195                 int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
00196 
00197                 // The quantization formula from the VC-3 standard is:
00198                 // quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i]))
00199                 // Where p is 32 for 8-bit samples and 8 for 10-bit ones.
00200                 // The s factor compensates scaling of DCT coefficients done by the DCT routines,
00201                 // and therefore is not present in standard.  It's 8 for 8-bit samples and 4 for 10-bit ones.
00202                 // We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
00203                 // ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i])
00204                 // For 10-bit samples, p / s == 2
00205                 ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]);
00206                 ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]);
00207             }
00208         }
00209     }
00210 
00211     return 0;
00212  fail:
00213     return -1;
00214 }
00215 
00216 static int dnxhd_init_rc(DNXHDEncContext *ctx)
00217 {
00218     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
00219     if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
00220         FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
00221 
00222     ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
00223     ctx->qscale = 1;
00224     ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
00225     return 0;
00226  fail:
00227     return -1;
00228 }
00229 
00230 static int dnxhd_encode_init(AVCodecContext *avctx)
00231 {
00232     DNXHDEncContext *ctx = avctx->priv_data;
00233     int i, index, bit_depth;
00234 
00235     switch (avctx->pix_fmt) {
00236     case PIX_FMT_YUV422P:
00237         bit_depth = 8;
00238         break;
00239     case PIX_FMT_YUV422P10:
00240         bit_depth = 10;
00241         break;
00242     default:
00243         av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n");
00244         return -1;
00245     }
00246 
00247     ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
00248     if (!ctx->cid) {
00249         av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
00250         return -1;
00251     }
00252     av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
00253 
00254     index = ff_dnxhd_get_cid_table(ctx->cid);
00255     ctx->cid_table = &ff_dnxhd_cid_table[index];
00256 
00257     ctx->m.avctx = avctx;
00258     ctx->m.mb_intra = 1;
00259     ctx->m.h263_aic = 1;
00260 
00261     avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
00262 
00263     dsputil_init(&ctx->m.dsp, avctx);
00264     ff_dct_common_init(&ctx->m);
00265     if (!ctx->m.dct_quantize)
00266         ctx->m.dct_quantize = dct_quantize_c;
00267 
00268     if (ctx->cid_table->bit_depth == 10) {
00269        ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
00270        ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
00271        ctx->block_width_l2 = 4;
00272     } else {
00273        ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
00274        ctx->block_width_l2 = 3;
00275     }
00276 
00277 #if HAVE_MMX
00278     ff_dnxhd_init_mmx(ctx);
00279 #endif
00280 
00281     ctx->m.mb_height = (avctx->height + 15) / 16;
00282     ctx->m.mb_width  = (avctx->width  + 15) / 16;
00283 
00284     if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
00285         ctx->interlaced = 1;
00286         ctx->m.mb_height /= 2;
00287     }
00288 
00289     ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
00290 
00291     if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
00292         ctx->m.intra_quant_bias = avctx->intra_quant_bias;
00293     if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
00294         return -1;
00295 
00296     // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
00297     if (ctx->nitris_compat)
00298         ctx->min_padding = 1600;
00299 
00300     if (dnxhd_init_vlc(ctx) < 0)
00301         return -1;
00302     if (dnxhd_init_rc(ctx) < 0)
00303         return -1;
00304 
00305     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
00306     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
00307     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,    ctx->m.mb_num   *sizeof(uint16_t), fail);
00308     FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,  ctx->m.mb_num   *sizeof(uint8_t),  fail);
00309 
00310     ctx->frame.key_frame = 1;
00311     ctx->frame.pict_type = AV_PICTURE_TYPE_I;
00312     ctx->m.avctx->coded_frame = &ctx->frame;
00313 
00314     if (avctx->thread_count > MAX_THREADS) {
00315         av_log(avctx, AV_LOG_ERROR, "too many threads\n");
00316         return -1;
00317     }
00318 
00319     ctx->thread[0] = ctx;
00320     for (i = 1; i < avctx->thread_count; i++) {
00321         ctx->thread[i] =  av_malloc(sizeof(DNXHDEncContext));
00322         memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
00323     }
00324 
00325     return 0;
00326  fail: //for FF_ALLOCZ_OR_GOTO
00327     return -1;
00328 }
00329 
00330 static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
00331 {
00332     DNXHDEncContext *ctx = avctx->priv_data;
00333     const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
00334 
00335     memset(buf, 0, 640);
00336 
00337     memcpy(buf, header_prefix, 5);
00338     buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
00339     buf[6] = 0x80; // crc flag off
00340     buf[7] = 0xa0; // reserved
00341     AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
00342     AV_WB16(buf + 0x1a, avctx->width);  // SPL
00343     AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
00344 
00345     buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
00346     buf[0x22] = 0x88 + (ctx->interlaced<<2);
00347     AV_WB32(buf + 0x28, ctx->cid); // CID
00348     buf[0x2c] = ctx->interlaced ? 0 : 0x80;
00349 
00350     buf[0x5f] = 0x01; // UDL
00351 
00352     buf[0x167] = 0x02; // reserved
00353     AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
00354     buf[0x16d] = ctx->m.mb_height; // Ns
00355     buf[0x16f] = 0x10; // reserved
00356 
00357     ctx->msip = buf + 0x170;
00358     return 0;
00359 }
00360 
00361 static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
00362 {
00363     int nbits;
00364     if (diff < 0) {
00365         nbits = av_log2_16bit(-2*diff);
00366         diff--;
00367     } else {
00368         nbits = av_log2_16bit(2*diff);
00369     }
00370     put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
00371              (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
00372 }
00373 
00374 static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
00375 {
00376     int last_non_zero = 0;
00377     int slevel, i, j;
00378 
00379     dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
00380     ctx->m.last_dc[n] = block[0];
00381 
00382     for (i = 1; i <= last_index; i++) {
00383         j = ctx->m.intra_scantable.permutated[i];
00384         slevel = block[j];
00385         if (slevel) {
00386             int run_level = i - last_non_zero - 1;
00387             int rlevel = (slevel<<1)|!!run_level;
00388             put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
00389             if (run_level)
00390                 put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
00391             last_non_zero = i;
00392         }
00393     }
00394     put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
00395 }
00396 
00397 static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
00398 {
00399     const uint8_t *weight_matrix;
00400     int level;
00401     int i;
00402 
00403     weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
00404 
00405     for (i = 1; i <= last_index; i++) {
00406         int j = ctx->m.intra_scantable.permutated[i];
00407         level = block[j];
00408         if (level) {
00409             if (level < 0) {
00410                 level = (1-2*level) * qscale * weight_matrix[i];
00411                 if (ctx->cid_table->bit_depth == 10) {
00412                     if (weight_matrix[i] != 8)
00413                         level += 8;
00414                     level >>= 4;
00415                 } else {
00416                     if (weight_matrix[i] != 32)
00417                         level += 32;
00418                     level >>= 6;
00419                 }
00420                 level = -level;
00421             } else {
00422                 level = (2*level+1) * qscale * weight_matrix[i];
00423                 if (ctx->cid_table->bit_depth == 10) {
00424                     if (weight_matrix[i] != 8)
00425                         level += 8;
00426                     level >>= 4;
00427                 } else {
00428                     if (weight_matrix[i] != 32)
00429                         level += 32;
00430                     level >>= 6;
00431                 }
00432             }
00433             block[j] = level;
00434         }
00435     }
00436 }
00437 
00438 static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
00439 {
00440     int score = 0;
00441     int i;
00442     for (i = 0; i < 64; i++)
00443         score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
00444     return score;
00445 }
00446 
00447 static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
00448 {
00449     int last_non_zero = 0;
00450     int bits = 0;
00451     int i, j, level;
00452     for (i = 1; i <= last_index; i++) {
00453         j = ctx->m.intra_scantable.permutated[i];
00454         level = block[j];
00455         if (level) {
00456             int run_level = i - last_non_zero - 1;
00457             bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
00458             last_non_zero = i;
00459         }
00460     }
00461     return bits;
00462 }
00463 
00464 static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
00465 {
00466     const int bs = ctx->block_width_l2;
00467     const int bw = 1 << bs;
00468     const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize)   + (mb_x << bs+1);
00469     const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
00470     const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
00471     DSPContext *dsp = &ctx->m.dsp;
00472 
00473     dsp->get_pixels(ctx->blocks[0], ptr_y,      ctx->m.linesize);
00474     dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
00475     dsp->get_pixels(ctx->blocks[2], ptr_u,      ctx->m.uvlinesize);
00476     dsp->get_pixels(ctx->blocks[3], ptr_v,      ctx->m.uvlinesize);
00477 
00478     if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
00479         if (ctx->interlaced) {
00480             ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset,      ctx->m.linesize);
00481             ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
00482             ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset,     ctx->m.uvlinesize);
00483             ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset,     ctx->m.uvlinesize);
00484         } else {
00485             dsp->clear_block(ctx->blocks[4]);
00486             dsp->clear_block(ctx->blocks[5]);
00487             dsp->clear_block(ctx->blocks[6]);
00488             dsp->clear_block(ctx->blocks[7]);
00489         }
00490     } else {
00491         dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset,      ctx->m.linesize);
00492         dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
00493         dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset,     ctx->m.uvlinesize);
00494         dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset,     ctx->m.uvlinesize);
00495     }
00496 }
00497 
00498 static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
00499 {
00500     if (i&2) {
00501         ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
00502         ctx->m.q_intra_matrix   = ctx->qmatrix_c;
00503         return 1 + (i&1);
00504     } else {
00505         ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
00506         ctx->m.q_intra_matrix   = ctx->qmatrix_l;
00507         return 0;
00508     }
00509 }
00510 
00511 static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
00512 {
00513     DNXHDEncContext *ctx = avctx->priv_data;
00514     int mb_y = jobnr, mb_x;
00515     int qscale = ctx->qscale;
00516     LOCAL_ALIGNED_16(DCTELEM, block, [64]);
00517     ctx = ctx->thread[threadnr];
00518 
00519     ctx->m.last_dc[0] =
00520     ctx->m.last_dc[1] =
00521     ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
00522 
00523     for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
00524         unsigned mb = mb_y * ctx->m.mb_width + mb_x;
00525         int ssd     = 0;
00526         int ac_bits = 0;
00527         int dc_bits = 0;
00528         int i;
00529 
00530         dnxhd_get_blocks(ctx, mb_x, mb_y);
00531 
00532         for (i = 0; i < 8; i++) {
00533             DCTELEM *src_block = ctx->blocks[i];
00534             int overflow, nbits, diff, last_index;
00535             int n = dnxhd_switch_matrix(ctx, i);
00536 
00537             memcpy(block, src_block, 64*sizeof(*block));
00538             last_index = ctx->m.dct_quantize(&ctx->m, block, i, qscale, &overflow);
00539             ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
00540 
00541             diff = block[0] - ctx->m.last_dc[n];
00542             if (diff < 0) nbits = av_log2_16bit(-2*diff);
00543             else          nbits = av_log2_16bit( 2*diff);
00544 
00545             assert(nbits < ctx->cid_table->bit_depth + 4);
00546             dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
00547 
00548             ctx->m.last_dc[n] = block[0];
00549 
00550             if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
00551                 dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
00552                 ctx->m.dsp.idct(block);
00553                 ssd += dnxhd_ssd_block(block, src_block);
00554             }
00555         }
00556         ctx->mb_rc[qscale][mb].ssd = ssd;
00557         ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
00558     }
00559     return 0;
00560 }
00561 
00562 static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
00563 {
00564     DNXHDEncContext *ctx = avctx->priv_data;
00565     int mb_y = jobnr, mb_x;
00566     ctx = ctx->thread[threadnr];
00567     init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
00568 
00569     ctx->m.last_dc[0] =
00570     ctx->m.last_dc[1] =
00571     ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
00572     for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
00573         unsigned mb = mb_y * ctx->m.mb_width + mb_x;
00574         int qscale = ctx->mb_qscale[mb];
00575         int i;
00576 
00577         put_bits(&ctx->m.pb, 12, qscale<<1);
00578 
00579         dnxhd_get_blocks(ctx, mb_x, mb_y);
00580 
00581         for (i = 0; i < 8; i++) {
00582             DCTELEM *block = ctx->blocks[i];
00583             int overflow, n = dnxhd_switch_matrix(ctx, i);
00584             int last_index = ctx->m.dct_quantize(&ctx->m, block, i,
00585                                                  qscale, &overflow);
00586             //START_TIMER;
00587             dnxhd_encode_block(ctx, block, last_index, n);
00588             //STOP_TIMER("encode_block");
00589         }
00590     }
00591     if (put_bits_count(&ctx->m.pb)&31)
00592         put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
00593     flush_put_bits(&ctx->m.pb);
00594     return 0;
00595 }
00596 
00597 static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
00598 {
00599     int mb_y, mb_x;
00600     int offset = 0;
00601     for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
00602         int thread_size;
00603         ctx->slice_offs[mb_y] = offset;
00604         ctx->slice_size[mb_y] = 0;
00605         for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
00606             unsigned mb = mb_y * ctx->m.mb_width + mb_x;
00607             ctx->slice_size[mb_y] += ctx->mb_bits[mb];
00608         }
00609         ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
00610         ctx->slice_size[mb_y] >>= 3;
00611         thread_size = ctx->slice_size[mb_y];
00612         offset += thread_size;
00613     }
00614 }
00615 
00616 static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
00617 {
00618     DNXHDEncContext *ctx = avctx->priv_data;
00619     int mb_y = jobnr, mb_x;
00620     ctx = ctx->thread[threadnr];
00621     if (ctx->cid_table->bit_depth == 8) {
00622         uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize);
00623         for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
00624             unsigned mb  = mb_y * ctx->m.mb_width + mb_x;
00625             int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
00626             int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)sum*sum)>>8)+128)>>8;
00627             ctx->mb_cmp[mb].value = varc;
00628             ctx->mb_cmp[mb].mb = mb;
00629         }
00630     } else { // 10-bit
00631         int const linesize = ctx->m.linesize >> 1;
00632         for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
00633             uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4);
00634             unsigned mb  = mb_y * ctx->m.mb_width + mb_x;
00635             int sum = 0;
00636             int sqsum = 0;
00637             int mean, sqmean;
00638             int i, j;
00639             // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
00640             for (i = 0; i < 16; ++i) {
00641                 for (j = 0; j < 16; ++j) {
00642                     // Turn 16-bit pixels into 10-bit ones.
00643                     int const sample = (unsigned)pix[j] >> 6;
00644                     sum += sample;
00645                     sqsum += sample * sample;
00646                     // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
00647                 }
00648                 pix += linesize;
00649             }
00650             mean = sum >> 8; // 16*16 == 2^8
00651             sqmean = sqsum >> 8;
00652             ctx->mb_cmp[mb].value = sqmean - mean * mean;
00653             ctx->mb_cmp[mb].mb = mb;
00654         }
00655     }
00656     return 0;
00657 }
00658 
00659 static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
00660 {
00661     int lambda, up_step, down_step;
00662     int last_lower = INT_MAX, last_higher = 0;
00663     int x, y, q;
00664 
00665     for (q = 1; q < avctx->qmax; q++) {
00666         ctx->qscale = q;
00667         avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
00668     }
00669     up_step = down_step = 2<<LAMBDA_FRAC_BITS;
00670     lambda = ctx->lambda;
00671 
00672     for (;;) {
00673         int bits = 0;
00674         int end = 0;
00675         if (lambda == last_higher) {
00676             lambda++;
00677             end = 1; // need to set final qscales/bits
00678         }
00679         for (y = 0; y < ctx->m.mb_height; y++) {
00680             for (x = 0; x < ctx->m.mb_width; x++) {
00681                 unsigned min = UINT_MAX;
00682                 int qscale = 1;
00683                 int mb = y*ctx->m.mb_width+x;
00684                 for (q = 1; q < avctx->qmax; q++) {
00685                     unsigned score = ctx->mb_rc[q][mb].bits*lambda+
00686                         ((unsigned)ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
00687                     if (score < min) {
00688                         min = score;
00689                         qscale = q;
00690                     }
00691                 }
00692                 bits += ctx->mb_rc[qscale][mb].bits;
00693                 ctx->mb_qscale[mb] = qscale;
00694                 ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
00695             }
00696             bits = (bits+31)&~31; // padding
00697             if (bits > ctx->frame_bits)
00698                 break;
00699         }
00700         //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
00701         //        lambda, last_higher, last_lower, bits, ctx->frame_bits);
00702         if (end) {
00703             if (bits > ctx->frame_bits)
00704                 return -1;
00705             break;
00706         }
00707         if (bits < ctx->frame_bits) {
00708             last_lower = FFMIN(lambda, last_lower);
00709             if (last_higher != 0)
00710                 lambda = (lambda+last_higher)>>1;
00711             else
00712                 lambda -= down_step;
00713             down_step = FFMIN((int64_t)down_step*5, INT_MAX);
00714             up_step = 1<<LAMBDA_FRAC_BITS;
00715             lambda = FFMAX(1, lambda);
00716             if (lambda == last_lower)
00717                 break;
00718         } else {
00719             last_higher = FFMAX(lambda, last_higher);
00720             if (last_lower != INT_MAX)
00721                 lambda = (lambda+last_lower)>>1;
00722             else if ((int64_t)lambda + up_step > INT_MAX)
00723                 return -1;
00724             else
00725                 lambda += up_step;
00726             up_step = FFMIN((int64_t)up_step*5, INT_MAX);
00727             down_step = 1<<LAMBDA_FRAC_BITS;
00728         }
00729     }
00730     //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
00731     ctx->lambda = lambda;
00732     return 0;
00733 }
00734 
00735 static int dnxhd_find_qscale(DNXHDEncContext *ctx)
00736 {
00737     int bits = 0;
00738     int up_step = 1;
00739     int down_step = 1;
00740     int last_higher = 0;
00741     int last_lower = INT_MAX;
00742     int qscale;
00743     int x, y;
00744 
00745     qscale = ctx->qscale;
00746     for (;;) {
00747         bits = 0;
00748         ctx->qscale = qscale;
00749         // XXX avoid recalculating bits
00750         ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
00751         for (y = 0; y < ctx->m.mb_height; y++) {
00752             for (x = 0; x < ctx->m.mb_width; x++)
00753                 bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
00754             bits = (bits+31)&~31; // padding
00755             if (bits > ctx->frame_bits)
00756                 break;
00757         }
00758         //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
00759         //        ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
00760         if (bits < ctx->frame_bits) {
00761             if (qscale == 1)
00762                 return 1;
00763             if (last_higher == qscale - 1) {
00764                 qscale = last_higher;
00765                 break;
00766             }
00767             last_lower = FFMIN(qscale, last_lower);
00768             if (last_higher != 0)
00769                 qscale = (qscale+last_higher)>>1;
00770             else
00771                 qscale -= down_step++;
00772             if (qscale < 1)
00773                 qscale = 1;
00774             up_step = 1;
00775         } else {
00776             if (last_lower == qscale + 1)
00777                 break;
00778             last_higher = FFMAX(qscale, last_higher);
00779             if (last_lower != INT_MAX)
00780                 qscale = (qscale+last_lower)>>1;
00781             else
00782                 qscale += up_step++;
00783             down_step = 1;
00784             if (qscale >= ctx->m.avctx->qmax)
00785                 return -1;
00786         }
00787     }
00788     //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
00789     ctx->qscale = qscale;
00790     return 0;
00791 }
00792 
00793 #define BUCKET_BITS 8
00794 #define RADIX_PASSES 4
00795 #define NBUCKETS (1 << BUCKET_BITS)
00796 
00797 static inline int get_bucket(int value, int shift)
00798 {
00799     value >>= shift;
00800     value &= NBUCKETS - 1;
00801     return NBUCKETS - 1 - value;
00802 }
00803 
00804 static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
00805 {
00806     int i, j;
00807     memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
00808     for (i = 0; i < size; i++) {
00809         int v = data[i].value;
00810         for (j = 0; j < RADIX_PASSES; j++) {
00811             buckets[j][get_bucket(v, 0)]++;
00812             v >>= BUCKET_BITS;
00813         }
00814         assert(!v);
00815     }
00816     for (j = 0; j < RADIX_PASSES; j++) {
00817         int offset = size;
00818         for (i = NBUCKETS - 1; i >= 0; i--)
00819             buckets[j][i] = offset -= buckets[j][i];
00820         assert(!buckets[j][0]);
00821     }
00822 }
00823 
00824 static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
00825 {
00826     int shift = pass * BUCKET_BITS;
00827     int i;
00828     for (i = 0; i < size; i++) {
00829         int v = get_bucket(data[i].value, shift);
00830         int pos = buckets[v]++;
00831         dst[pos] = data[i];
00832     }
00833 }
00834 
00835 static void radix_sort(RCCMPEntry *data, int size)
00836 {
00837     int buckets[RADIX_PASSES][NBUCKETS];
00838     RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
00839     radix_count(data, size, buckets);
00840     radix_sort_pass(tmp, data, size, buckets[0], 0);
00841     radix_sort_pass(data, tmp, size, buckets[1], 1);
00842     if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
00843         radix_sort_pass(tmp, data, size, buckets[2], 2);
00844         radix_sort_pass(data, tmp, size, buckets[3], 3);
00845     }
00846     av_free(tmp);
00847 }
00848 
00849 static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
00850 {
00851     int max_bits = 0;
00852     int ret, x, y;
00853     if ((ret = dnxhd_find_qscale(ctx)) < 0)
00854         return -1;
00855     for (y = 0; y < ctx->m.mb_height; y++) {
00856         for (x = 0; x < ctx->m.mb_width; x++) {
00857             int mb = y*ctx->m.mb_width+x;
00858             int delta_bits;
00859             ctx->mb_qscale[mb] = ctx->qscale;
00860             ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
00861             max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
00862             if (!RC_VARIANCE) {
00863                 delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
00864                 ctx->mb_cmp[mb].mb = mb;
00865                 ctx->mb_cmp[mb].value = delta_bits ?
00866                     ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
00867                     : INT_MIN; //avoid increasing qscale
00868             }
00869         }
00870         max_bits += 31; //worst padding
00871     }
00872     if (!ret) {
00873         if (RC_VARIANCE)
00874             avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
00875         radix_sort(ctx->mb_cmp, ctx->m.mb_num);
00876         for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
00877             int mb = ctx->mb_cmp[x].mb;
00878             max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
00879             ctx->mb_qscale[mb] = ctx->qscale+1;
00880             ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
00881         }
00882     }
00883     return 0;
00884 }
00885 
00886 static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
00887 {
00888     int i;
00889 
00890     for (i = 0; i < 3; i++) {
00891         ctx->frame.data[i]     = frame->data[i];
00892         ctx->frame.linesize[i] = frame->linesize[i];
00893     }
00894 
00895     for (i = 0; i < ctx->m.avctx->thread_count; i++) {
00896         ctx->thread[i]->m.linesize    = ctx->frame.linesize[0]<<ctx->interlaced;
00897         ctx->thread[i]->m.uvlinesize  = ctx->frame.linesize[1]<<ctx->interlaced;
00898         ctx->thread[i]->dct_y_offset  = ctx->m.linesize  *8;
00899         ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
00900     }
00901 
00902     ctx->frame.interlaced_frame = frame->interlaced_frame;
00903     ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
00904 }
00905 
00906 static int dnxhd_encode_picture(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data)
00907 {
00908     DNXHDEncContext *ctx = avctx->priv_data;
00909     int first_field = 1;
00910     int offset, i, ret;
00911 
00912     if (buf_size < ctx->cid_table->frame_size) {
00913         av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
00914         return -1;
00915     }
00916 
00917     dnxhd_load_picture(ctx, data);
00918 
00919  encode_coding_unit:
00920     for (i = 0; i < 3; i++) {
00921         ctx->src[i] = ctx->frame.data[i];
00922         if (ctx->interlaced && ctx->cur_field)
00923             ctx->src[i] += ctx->frame.linesize[i];
00924     }
00925 
00926     dnxhd_write_header(avctx, buf);
00927 
00928     if (avctx->mb_decision == FF_MB_DECISION_RD)
00929         ret = dnxhd_encode_rdo(avctx, ctx);
00930     else
00931         ret = dnxhd_encode_fast(avctx, ctx);
00932     if (ret < 0) {
00933         av_log(avctx, AV_LOG_ERROR,
00934                "picture could not fit ratecontrol constraints, increase qmax\n");
00935         return -1;
00936     }
00937 
00938     dnxhd_setup_threads_slices(ctx);
00939 
00940     offset = 0;
00941     for (i = 0; i < ctx->m.mb_height; i++) {
00942         AV_WB32(ctx->msip + i * 4, offset);
00943         offset += ctx->slice_size[i];
00944         assert(!(ctx->slice_size[i] & 3));
00945     }
00946 
00947     avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
00948 
00949     assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
00950     memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
00951 
00952     AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
00953 
00954     if (ctx->interlaced && first_field) {
00955         first_field     = 0;
00956         ctx->cur_field ^= 1;
00957         buf      += ctx->cid_table->coding_unit_size;
00958         buf_size -= ctx->cid_table->coding_unit_size;
00959         goto encode_coding_unit;
00960     }
00961 
00962     ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
00963 
00964     return ctx->cid_table->frame_size;
00965 }
00966 
00967 static int dnxhd_encode_end(AVCodecContext *avctx)
00968 {
00969     DNXHDEncContext *ctx = avctx->priv_data;
00970     int max_level = 1<<(ctx->cid_table->bit_depth+2);
00971     int i;
00972 
00973     av_free(ctx->vlc_codes-max_level*2);
00974     av_free(ctx->vlc_bits -max_level*2);
00975     av_freep(&ctx->run_codes);
00976     av_freep(&ctx->run_bits);
00977 
00978     av_freep(&ctx->mb_bits);
00979     av_freep(&ctx->mb_qscale);
00980     av_freep(&ctx->mb_rc);
00981     av_freep(&ctx->mb_cmp);
00982     av_freep(&ctx->slice_size);
00983     av_freep(&ctx->slice_offs);
00984 
00985     av_freep(&ctx->qmatrix_c);
00986     av_freep(&ctx->qmatrix_l);
00987     av_freep(&ctx->qmatrix_c16);
00988     av_freep(&ctx->qmatrix_l16);
00989 
00990     for (i = 1; i < avctx->thread_count; i++)
00991         av_freep(&ctx->thread[i]);
00992 
00993     return 0;
00994 }
00995 
00996 AVCodec ff_dnxhd_encoder = {
00997     .name           = "dnxhd",
00998     .type           = AVMEDIA_TYPE_VIDEO,
00999     .id             = CODEC_ID_DNXHD,
01000     .priv_data_size = sizeof(DNXHDEncContext),
01001     .init           = dnxhd_encode_init,
01002     .encode         = dnxhd_encode_picture,
01003     .close          = dnxhd_encode_end,
01004     .capabilities = CODEC_CAP_SLICE_THREADS,
01005     .pix_fmts = (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_YUV422P10, PIX_FMT_NONE},
01006     .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
01007     .priv_class = &class,
01008 };