00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020 #include "avcodec.h"
00021 #include "get_bits.h"
00022 #include "put_bits.h"
00023 #include "bytestream.h"
00024 #include "adpcm.h"
00025 #include "adpcm_data.h"
00026
00059
00060 static const int xa_adpcm_table[5][2] = {
00061 { 0, 0 },
00062 { 60, 0 },
00063 { 115, -52 },
00064 { 98, -55 },
00065 { 122, -60 }
00066 };
00067
00068 static const int ea_adpcm_table[] = {
00069 0, 240, 460, 392,
00070 0, 0, -208, -220,
00071 0, 1, 3, 4,
00072 7, 8, 10, 11,
00073 0, -1, -3, -4
00074 };
00075
00076
00077 static const int swf_index_tables[4][16] = {
00078 { -1, 2 },
00079 { -1, -1, 2, 4 },
00080 { -1, -1, -1, -1, 2, 4, 6, 8 },
00081 { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
00082 };
00083
00084
00085
00086 typedef struct ADPCMDecodeContext {
00087 AVFrame frame;
00088 ADPCMChannelStatus status[6];
00089 } ADPCMDecodeContext;
00090
00091 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
00092 {
00093 ADPCMDecodeContext *c = avctx->priv_data;
00094 unsigned int min_channels = 1;
00095 unsigned int max_channels = 2;
00096
00097 switch(avctx->codec->id) {
00098 case CODEC_ID_ADPCM_EA:
00099 min_channels = 2;
00100 break;
00101 case CODEC_ID_ADPCM_EA_R1:
00102 case CODEC_ID_ADPCM_EA_R2:
00103 case CODEC_ID_ADPCM_EA_R3:
00104 case CODEC_ID_ADPCM_EA_XAS:
00105 max_channels = 6;
00106 break;
00107 }
00108 if (avctx->channels < min_channels || avctx->channels > max_channels) {
00109 av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
00110 return AVERROR(EINVAL);
00111 }
00112
00113 switch(avctx->codec->id) {
00114 case CODEC_ID_ADPCM_CT:
00115 c->status[0].step = c->status[1].step = 511;
00116 break;
00117 case CODEC_ID_ADPCM_IMA_WAV:
00118 if (avctx->bits_per_coded_sample != 4) {
00119 av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
00120 return -1;
00121 }
00122 break;
00123 case CODEC_ID_ADPCM_IMA_WS:
00124 if (avctx->extradata && avctx->extradata_size == 2 * 4) {
00125 c->status[0].predictor = AV_RL32(avctx->extradata);
00126 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
00127 }
00128 break;
00129 default:
00130 break;
00131 }
00132 avctx->sample_fmt = AV_SAMPLE_FMT_S16;
00133
00134 avcodec_get_frame_defaults(&c->frame);
00135 avctx->coded_frame = &c->frame;
00136
00137 return 0;
00138 }
00139
00140 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
00141 {
00142 int step_index;
00143 int predictor;
00144 int sign, delta, diff, step;
00145
00146 step = ff_adpcm_step_table[c->step_index];
00147 step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
00148 if (step_index < 0) step_index = 0;
00149 else if (step_index > 88) step_index = 88;
00150
00151 sign = nibble & 8;
00152 delta = nibble & 7;
00153
00154
00155
00156 diff = ((2 * delta + 1) * step) >> shift;
00157 predictor = c->predictor;
00158 if (sign) predictor -= diff;
00159 else predictor += diff;
00160
00161 c->predictor = av_clip_int16(predictor);
00162 c->step_index = step_index;
00163
00164 return (short)c->predictor;
00165 }
00166
00167 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
00168 {
00169 int step_index;
00170 int predictor;
00171 int diff, step;
00172
00173 step = ff_adpcm_step_table[c->step_index];
00174 step_index = c->step_index + ff_adpcm_index_table[nibble];
00175 step_index = av_clip(step_index, 0, 88);
00176
00177 diff = step >> 3;
00178 if (nibble & 4) diff += step;
00179 if (nibble & 2) diff += step >> 1;
00180 if (nibble & 1) diff += step >> 2;
00181
00182 if (nibble & 8)
00183 predictor = c->predictor - diff;
00184 else
00185 predictor = c->predictor + diff;
00186
00187 c->predictor = av_clip_int16(predictor);
00188 c->step_index = step_index;
00189
00190 return c->predictor;
00191 }
00192
00193 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
00194 {
00195 int predictor;
00196
00197 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
00198 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
00199
00200 c->sample2 = c->sample1;
00201 c->sample1 = av_clip_int16(predictor);
00202 c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
00203 if (c->idelta < 16) c->idelta = 16;
00204
00205 return c->sample1;
00206 }
00207
00208 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
00209 {
00210 int sign, delta, diff;
00211 int new_step;
00212
00213 sign = nibble & 8;
00214 delta = nibble & 7;
00215
00216
00217
00218 diff = ((2 * delta + 1) * c->step) >> 3;
00219
00220 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
00221 c->predictor = av_clip_int16(c->predictor);
00222
00223 new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
00224 c->step = av_clip(new_step, 511, 32767);
00225
00226 return (short)c->predictor;
00227 }
00228
00229 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
00230 {
00231 int sign, delta, diff;
00232
00233 sign = nibble & (1<<(size-1));
00234 delta = nibble & ((1<<(size-1))-1);
00235 diff = delta << (7 + c->step + shift);
00236
00237
00238 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
00239
00240
00241 if (delta >= (2*size - 3) && c->step < 3)
00242 c->step++;
00243 else if (delta == 0 && c->step > 0)
00244 c->step--;
00245
00246 return (short) c->predictor;
00247 }
00248
00249 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
00250 {
00251 if(!c->step) {
00252 c->predictor = 0;
00253 c->step = 127;
00254 }
00255
00256 c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
00257 c->predictor = av_clip_int16(c->predictor);
00258 c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
00259 c->step = av_clip(c->step, 127, 24567);
00260 return c->predictor;
00261 }
00262
00263 static int xa_decode(AVCodecContext *avctx,
00264 short *out, const unsigned char *in,
00265 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
00266 {
00267 int i, j;
00268 int shift,filter,f0,f1;
00269 int s_1,s_2;
00270 int d,s,t;
00271
00272 for(i=0;i<4;i++) {
00273
00274 shift = 12 - (in[4+i*2] & 15);
00275 filter = in[4+i*2] >> 4;
00276 if (filter > 4) {
00277 av_log(avctx, AV_LOG_ERROR,
00278 "Invalid XA-ADPCM filter %d (max. allowed is 4)\n",
00279 filter);
00280 return AVERROR_INVALIDDATA;
00281 }
00282 f0 = xa_adpcm_table[filter][0];
00283 f1 = xa_adpcm_table[filter][1];
00284
00285 s_1 = left->sample1;
00286 s_2 = left->sample2;
00287
00288 for(j=0;j<28;j++) {
00289 d = in[16+i+j*4];
00290
00291 t = (signed char)(d<<4)>>4;
00292 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
00293 s_2 = s_1;
00294 s_1 = av_clip_int16(s);
00295 *out = s_1;
00296 out += inc;
00297 }
00298
00299 if (inc==2) {
00300 left->sample1 = s_1;
00301 left->sample2 = s_2;
00302 s_1 = right->sample1;
00303 s_2 = right->sample2;
00304 out = out + 1 - 28*2;
00305 }
00306
00307 shift = 12 - (in[5+i*2] & 15);
00308 filter = in[5+i*2] >> 4;
00309 if (filter > 4) {
00310 av_log(avctx, AV_LOG_ERROR,
00311 "Invalid XA-ADPCM filter %d (max. allowed is 4)\n",
00312 filter);
00313 return AVERROR_INVALIDDATA;
00314 }
00315 f0 = xa_adpcm_table[filter][0];
00316 f1 = xa_adpcm_table[filter][1];
00317
00318 for(j=0;j<28;j++) {
00319 d = in[16+i+j*4];
00320
00321 t = (signed char)d >> 4;
00322 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
00323 s_2 = s_1;
00324 s_1 = av_clip_int16(s);
00325 *out = s_1;
00326 out += inc;
00327 }
00328
00329 if (inc==2) {
00330 right->sample1 = s_1;
00331 right->sample2 = s_2;
00332 out -= 1;
00333 } else {
00334 left->sample1 = s_1;
00335 left->sample2 = s_2;
00336 }
00337 }
00338
00339 return 0;
00340 }
00341
00351 static int get_nb_samples(AVCodecContext *avctx, const uint8_t *buf,
00352 int buf_size, int *coded_samples)
00353 {
00354 ADPCMDecodeContext *s = avctx->priv_data;
00355 int nb_samples = 0;
00356 int ch = avctx->channels;
00357 int has_coded_samples = 0;
00358 int header_size;
00359
00360 *coded_samples = 0;
00361
00362 switch (avctx->codec->id) {
00363
00364 case CODEC_ID_ADPCM_EA_XAS:
00365 if (buf_size < 76 * ch)
00366 return 0;
00367 nb_samples = 128;
00368 break;
00369 case CODEC_ID_ADPCM_IMA_QT:
00370 if (buf_size < 34 * ch)
00371 return 0;
00372 nb_samples = 64;
00373 break;
00374
00375 case CODEC_ID_ADPCM_CT:
00376 case CODEC_ID_ADPCM_IMA_EA_SEAD:
00377 case CODEC_ID_ADPCM_IMA_WS:
00378 case CODEC_ID_ADPCM_YAMAHA:
00379 nb_samples = buf_size * 2 / ch;
00380 break;
00381 }
00382 if (nb_samples)
00383 return nb_samples;
00384
00385
00386 header_size = 0;
00387 switch (avctx->codec->id) {
00388 case CODEC_ID_ADPCM_4XM:
00389 case CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
00390 case CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
00391 case CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4; break;
00392 }
00393 if (header_size > 0)
00394 return (buf_size - header_size) * 2 / ch;
00395
00396
00397 switch (avctx->codec->id) {
00398 case CODEC_ID_ADPCM_EA:
00399 has_coded_samples = 1;
00400 if (buf_size < 4)
00401 return 0;
00402 *coded_samples = AV_RL32(buf);
00403 *coded_samples -= *coded_samples % 28;
00404 nb_samples = (buf_size - 12) / 30 * 28;
00405 break;
00406 case CODEC_ID_ADPCM_IMA_EA_EACS:
00407 has_coded_samples = 1;
00408 if (buf_size < 4)
00409 return 0;
00410 *coded_samples = AV_RL32(buf);
00411 nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
00412 break;
00413 case CODEC_ID_ADPCM_EA_MAXIS_XA:
00414 nb_samples = ((buf_size - ch) / (2 * ch)) * 2 * ch;
00415 break;
00416 case CODEC_ID_ADPCM_EA_R1:
00417 case CODEC_ID_ADPCM_EA_R2:
00418 case CODEC_ID_ADPCM_EA_R3:
00419
00420
00421 has_coded_samples = 1;
00422 if (buf_size < 4)
00423 return 0;
00424 switch (avctx->codec->id) {
00425 case CODEC_ID_ADPCM_EA_R1:
00426 header_size = 4 + 9 * ch;
00427 *coded_samples = AV_RL32(buf);
00428 break;
00429 case CODEC_ID_ADPCM_EA_R2:
00430 header_size = 4 + 5 * ch;
00431 *coded_samples = AV_RL32(buf);
00432 break;
00433 case CODEC_ID_ADPCM_EA_R3:
00434 header_size = 4 + 5 * ch;
00435 *coded_samples = AV_RB32(buf);
00436 break;
00437 }
00438 *coded_samples -= *coded_samples % 28;
00439 nb_samples = (buf_size - header_size) * 2 / ch;
00440 nb_samples -= nb_samples % 28;
00441 break;
00442 case CODEC_ID_ADPCM_IMA_DK3:
00443 if (avctx->block_align > 0)
00444 buf_size = FFMIN(buf_size, avctx->block_align);
00445 nb_samples = ((buf_size - 16) * 8 / 3) / ch;
00446 break;
00447 case CODEC_ID_ADPCM_IMA_DK4:
00448 nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
00449 break;
00450 case CODEC_ID_ADPCM_IMA_WAV:
00451 if (avctx->block_align > 0)
00452 buf_size = FFMIN(buf_size, avctx->block_align);
00453 nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8;
00454 break;
00455 case CODEC_ID_ADPCM_MS:
00456 if (avctx->block_align > 0)
00457 buf_size = FFMIN(buf_size, avctx->block_align);
00458 nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
00459 break;
00460 case CODEC_ID_ADPCM_SBPRO_2:
00461 case CODEC_ID_ADPCM_SBPRO_3:
00462 case CODEC_ID_ADPCM_SBPRO_4:
00463 {
00464 int samples_per_byte;
00465 switch (avctx->codec->id) {
00466 case CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
00467 case CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
00468 case CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
00469 }
00470 if (!s->status[0].step_index) {
00471 nb_samples++;
00472 buf_size -= ch;
00473 }
00474 nb_samples += buf_size * samples_per_byte / ch;
00475 break;
00476 }
00477 case CODEC_ID_ADPCM_SWF:
00478 {
00479 int buf_bits = buf_size * 8 - 2;
00480 int nbits = (buf[0] >> 6) + 2;
00481 int block_hdr_size = 22 * ch;
00482 int block_size = block_hdr_size + nbits * ch * 4095;
00483 int nblocks = buf_bits / block_size;
00484 int bits_left = buf_bits - nblocks * block_size;
00485 nb_samples = nblocks * 4096;
00486 if (bits_left >= block_hdr_size)
00487 nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
00488 break;
00489 }
00490 case CODEC_ID_ADPCM_THP:
00491 has_coded_samples = 1;
00492 if (buf_size < 8)
00493 return 0;
00494 *coded_samples = AV_RB32(&buf[4]);
00495 *coded_samples -= *coded_samples % 14;
00496 nb_samples = (buf_size - 80) / (8 * ch) * 14;
00497 break;
00498 case CODEC_ID_ADPCM_XA:
00499 nb_samples = (buf_size / 128) * 224 / ch;
00500 break;
00501 }
00502
00503
00504 if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
00505 return AVERROR_INVALIDDATA;
00506
00507 return nb_samples;
00508 }
00509
00510
00511 #define DK3_GET_NEXT_NIBBLE() \
00512 if (decode_top_nibble_next) \
00513 { \
00514 nibble = last_byte >> 4; \
00515 decode_top_nibble_next = 0; \
00516 } \
00517 else \
00518 { \
00519 if (end_of_packet) \
00520 break; \
00521 last_byte = *src++; \
00522 if (src >= buf + buf_size) \
00523 end_of_packet = 1; \
00524 nibble = last_byte & 0x0F; \
00525 decode_top_nibble_next = 1; \
00526 }
00527
00528 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
00529 int *got_frame_ptr, AVPacket *avpkt)
00530 {
00531 const uint8_t *buf = avpkt->data;
00532 int buf_size = avpkt->size;
00533 ADPCMDecodeContext *c = avctx->priv_data;
00534 ADPCMChannelStatus *cs;
00535 int n, m, channel, i;
00536 short *samples;
00537 const uint8_t *src;
00538 int st;
00539 int count1, count2;
00540 int nb_samples, coded_samples, ret;
00541
00542 nb_samples = get_nb_samples(avctx, buf, buf_size, &coded_samples);
00543 if (nb_samples <= 0) {
00544 av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
00545 return AVERROR_INVALIDDATA;
00546 }
00547
00548
00549 c->frame.nb_samples = nb_samples;
00550 if ((ret = avctx->get_buffer(avctx, &c->frame)) < 0) {
00551 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
00552 return ret;
00553 }
00554 samples = (short *)c->frame.data[0];
00555
00556
00557
00558 if (coded_samples) {
00559 if (coded_samples != nb_samples)
00560 av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
00561 c->frame.nb_samples = nb_samples = coded_samples;
00562 }
00563
00564 src = buf;
00565
00566 st = avctx->channels == 2 ? 1 : 0;
00567
00568 switch(avctx->codec->id) {
00569 case CODEC_ID_ADPCM_IMA_QT:
00570
00571
00572 for (channel = 0; channel < avctx->channels; channel++) {
00573 int16_t predictor;
00574 int step_index;
00575 cs = &(c->status[channel]);
00576
00577
00578
00579 predictor = AV_RB16(src);
00580 step_index = predictor & 0x7F;
00581 predictor &= 0xFF80;
00582
00583 src += 2;
00584
00585 if (cs->step_index == step_index) {
00586 int diff = (int)predictor - cs->predictor;
00587 if (diff < 0)
00588 diff = - diff;
00589 if (diff > 0x7f)
00590 goto update;
00591 } else {
00592 update:
00593 cs->step_index = step_index;
00594 cs->predictor = predictor;
00595 }
00596
00597 if (cs->step_index > 88){
00598 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
00599 cs->step_index = 88;
00600 }
00601
00602 samples = (short *)c->frame.data[0] + channel;
00603
00604 for (m = 0; m < 32; m++) {
00605 *samples = adpcm_ima_qt_expand_nibble(cs, src[0] & 0x0F, 3);
00606 samples += avctx->channels;
00607 *samples = adpcm_ima_qt_expand_nibble(cs, src[0] >> 4 , 3);
00608 samples += avctx->channels;
00609 src ++;
00610 }
00611 }
00612 break;
00613 case CODEC_ID_ADPCM_IMA_WAV:
00614 if (avctx->block_align != 0 && buf_size > avctx->block_align)
00615 buf_size = avctx->block_align;
00616
00617 for(i=0; i<avctx->channels; i++){
00618 cs = &(c->status[i]);
00619 cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
00620
00621 cs->step_index = *src++;
00622 if (cs->step_index > 88){
00623 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
00624 cs->step_index = 88;
00625 }
00626 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]);
00627 }
00628
00629 for (n = (nb_samples - 1) / 8; n > 0; n--) {
00630 for (i = 0; i < avctx->channels; i++) {
00631 cs = &c->status[i];
00632 for (m = 0; m < 4; m++) {
00633 uint8_t v = *src++;
00634 *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
00635 samples += avctx->channels;
00636 *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
00637 samples += avctx->channels;
00638 }
00639 samples -= 8 * avctx->channels - 1;
00640 }
00641 samples += 7 * avctx->channels;
00642 }
00643 break;
00644 case CODEC_ID_ADPCM_4XM:
00645 for (i = 0; i < avctx->channels; i++)
00646 c->status[i].predictor= (int16_t)bytestream_get_le16(&src);
00647
00648 for (i = 0; i < avctx->channels; i++) {
00649 c->status[i].step_index= (int16_t)bytestream_get_le16(&src);
00650 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
00651 }
00652
00653 for (i = 0; i < avctx->channels; i++) {
00654 samples = (short *)c->frame.data[0] + i;
00655 cs = &c->status[i];
00656 for (n = nb_samples >> 1; n > 0; n--, src++) {
00657 uint8_t v = *src;
00658 *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
00659 samples += avctx->channels;
00660 *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
00661 samples += avctx->channels;
00662 }
00663 }
00664 break;
00665 case CODEC_ID_ADPCM_MS:
00666 {
00667 int block_predictor;
00668
00669 if (avctx->block_align != 0 && buf_size > avctx->block_align)
00670 buf_size = avctx->block_align;
00671
00672 block_predictor = av_clip(*src++, 0, 6);
00673 c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
00674 c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
00675 if (st) {
00676 block_predictor = av_clip(*src++, 0, 6);
00677 c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
00678 c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
00679 }
00680 c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
00681 if (st){
00682 c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
00683 }
00684
00685 c->status[0].sample1 = bytestream_get_le16(&src);
00686 if (st) c->status[1].sample1 = bytestream_get_le16(&src);
00687 c->status[0].sample2 = bytestream_get_le16(&src);
00688 if (st) c->status[1].sample2 = bytestream_get_le16(&src);
00689
00690 *samples++ = c->status[0].sample2;
00691 if (st) *samples++ = c->status[1].sample2;
00692 *samples++ = c->status[0].sample1;
00693 if (st) *samples++ = c->status[1].sample1;
00694 for(n = (nb_samples - 2) >> (1 - st); n > 0; n--, src++) {
00695 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
00696 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
00697 }
00698 break;
00699 }
00700 case CODEC_ID_ADPCM_IMA_DK4:
00701 if (avctx->block_align != 0 && buf_size > avctx->block_align)
00702 buf_size = avctx->block_align;
00703
00704 for (channel = 0; channel < avctx->channels; channel++) {
00705 cs = &c->status[channel];
00706 cs->predictor = (int16_t)bytestream_get_le16(&src);
00707 cs->step_index = av_clip(*src++, 0, 88);
00708 src++;
00709 *samples++ = cs->predictor;
00710 }
00711 for (n = (nb_samples >> (1 - st)) - 1; n > 0; n--, src++) {
00712 uint8_t v = *src;
00713 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
00714 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
00715 }
00716 break;
00717 case CODEC_ID_ADPCM_IMA_DK3:
00718 {
00719 unsigned char last_byte = 0;
00720 unsigned char nibble;
00721 int decode_top_nibble_next = 0;
00722 int end_of_packet = 0;
00723 int diff_channel;
00724
00725 if (avctx->block_align != 0 && buf_size > avctx->block_align)
00726 buf_size = avctx->block_align;
00727
00728 c->status[0].predictor = (int16_t)AV_RL16(src + 10);
00729 c->status[1].predictor = (int16_t)AV_RL16(src + 12);
00730 c->status[0].step_index = av_clip(src[14], 0, 88);
00731 c->status[1].step_index = av_clip(src[15], 0, 88);
00732
00733 src += 16;
00734 diff_channel = c->status[1].predictor;
00735
00736
00737
00738 while (1) {
00739
00740
00741
00742
00743
00744 DK3_GET_NEXT_NIBBLE();
00745 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
00746
00747
00748 DK3_GET_NEXT_NIBBLE();
00749 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
00750
00751
00752 diff_channel = (diff_channel + c->status[1].predictor) / 2;
00753 *samples++ = c->status[0].predictor + c->status[1].predictor;
00754 *samples++ = c->status[0].predictor - c->status[1].predictor;
00755
00756
00757 DK3_GET_NEXT_NIBBLE();
00758 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
00759
00760
00761 diff_channel = (diff_channel + c->status[1].predictor) / 2;
00762 *samples++ = c->status[0].predictor + c->status[1].predictor;
00763 *samples++ = c->status[0].predictor - c->status[1].predictor;
00764 }
00765 break;
00766 }
00767 case CODEC_ID_ADPCM_IMA_ISS:
00768 for (channel = 0; channel < avctx->channels; channel++) {
00769 cs = &c->status[channel];
00770 cs->predictor = (int16_t)bytestream_get_le16(&src);
00771 cs->step_index = av_clip(*src++, 0, 88);
00772 src++;
00773 }
00774
00775 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
00776 uint8_t v1, v2;
00777 uint8_t v = *src;
00778
00779 if (st) {
00780 v1 = v >> 4;
00781 v2 = v & 0x0F;
00782 } else {
00783 v2 = v >> 4;
00784 v1 = v & 0x0F;
00785 }
00786 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
00787 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
00788 }
00789 break;
00790 case CODEC_ID_ADPCM_IMA_WS:
00791 while (src < buf + buf_size) {
00792 uint8_t v = *src++;
00793 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
00794 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
00795 }
00796 break;
00797 case CODEC_ID_ADPCM_XA:
00798 while (buf_size >= 128) {
00799 if ((ret = xa_decode(avctx, samples, src, &c->status[0],
00800 &c->status[1], avctx->channels)) < 0)
00801 return ret;
00802 src += 128;
00803 samples += 28 * 8;
00804 buf_size -= 128;
00805 }
00806 break;
00807 case CODEC_ID_ADPCM_IMA_EA_EACS:
00808 src += 4;
00809
00810 for (i=0; i<=st; i++)
00811 c->status[i].step_index = av_clip(bytestream_get_le32(&src), 0, 88);
00812 for (i=0; i<=st; i++)
00813 c->status[i].predictor = bytestream_get_le32(&src);
00814
00815 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
00816 *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
00817 *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
00818 }
00819 break;
00820 case CODEC_ID_ADPCM_IMA_EA_SEAD:
00821 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
00822 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
00823 *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
00824 }
00825 break;
00826 case CODEC_ID_ADPCM_EA:
00827 {
00828 int32_t previous_left_sample, previous_right_sample;
00829 int32_t current_left_sample, current_right_sample;
00830 int32_t next_left_sample, next_right_sample;
00831 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
00832 uint8_t shift_left, shift_right;
00833
00834
00835
00836
00837 src += 4;
00838
00839 current_left_sample = (int16_t)bytestream_get_le16(&src);
00840 previous_left_sample = (int16_t)bytestream_get_le16(&src);
00841 current_right_sample = (int16_t)bytestream_get_le16(&src);
00842 previous_right_sample = (int16_t)bytestream_get_le16(&src);
00843
00844 for (count1 = 0; count1 < nb_samples / 28; count1++) {
00845 coeff1l = ea_adpcm_table[ *src >> 4 ];
00846 coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
00847 coeff1r = ea_adpcm_table[*src & 0x0F];
00848 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
00849 src++;
00850
00851 shift_left = 20 - (*src >> 4);
00852 shift_right = 20 - (*src & 0x0F);
00853 src++;
00854
00855 for (count2 = 0; count2 < 28; count2++) {
00856 next_left_sample = sign_extend(*src >> 4, 4) << shift_left;
00857 next_right_sample = sign_extend(*src, 4) << shift_right;
00858 src++;
00859
00860 next_left_sample = (next_left_sample +
00861 (current_left_sample * coeff1l) +
00862 (previous_left_sample * coeff2l) + 0x80) >> 8;
00863 next_right_sample = (next_right_sample +
00864 (current_right_sample * coeff1r) +
00865 (previous_right_sample * coeff2r) + 0x80) >> 8;
00866
00867 previous_left_sample = current_left_sample;
00868 current_left_sample = av_clip_int16(next_left_sample);
00869 previous_right_sample = current_right_sample;
00870 current_right_sample = av_clip_int16(next_right_sample);
00871 *samples++ = (unsigned short)current_left_sample;
00872 *samples++ = (unsigned short)current_right_sample;
00873 }
00874 }
00875
00876 if (src - buf == buf_size - 2)
00877 src += 2;
00878
00879 break;
00880 }
00881 case CODEC_ID_ADPCM_EA_MAXIS_XA:
00882 {
00883 int coeff[2][2], shift[2];
00884
00885 for(channel = 0; channel < avctx->channels; channel++) {
00886 for (i=0; i<2; i++)
00887 coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
00888 shift[channel] = 20 - (*src & 0x0F);
00889 src++;
00890 }
00891 for (count1 = 0; count1 < nb_samples / 2; count1++) {
00892 for(i = 4; i >= 0; i-=4) {
00893 for(channel = 0; channel < avctx->channels; channel++) {
00894 int32_t sample = sign_extend(src[channel] >> i, 4) << shift[channel];
00895 sample = (sample +
00896 c->status[channel].sample1 * coeff[channel][0] +
00897 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
00898 c->status[channel].sample2 = c->status[channel].sample1;
00899 c->status[channel].sample1 = av_clip_int16(sample);
00900 *samples++ = c->status[channel].sample1;
00901 }
00902 }
00903 src+=avctx->channels;
00904 }
00905
00906 src = buf + buf_size;
00907 break;
00908 }
00909 case CODEC_ID_ADPCM_EA_R1:
00910 case CODEC_ID_ADPCM_EA_R2:
00911 case CODEC_ID_ADPCM_EA_R3: {
00912
00913
00914
00915
00916 const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
00917 int32_t previous_sample, current_sample, next_sample;
00918 int32_t coeff1, coeff2;
00919 uint8_t shift;
00920 unsigned int channel;
00921 uint16_t *samplesC;
00922 const uint8_t *srcC;
00923 const uint8_t *src_end = buf + buf_size;
00924 int count = 0;
00925
00926 src += 4;
00927
00928 for (channel=0; channel<avctx->channels; channel++) {
00929 int32_t offset = (big_endian ? bytestream_get_be32(&src)
00930 : bytestream_get_le32(&src))
00931 + (avctx->channels-channel-1) * 4;
00932
00933 if ((offset < 0) || (offset >= src_end - src - 4)) break;
00934 srcC = src + offset;
00935 samplesC = samples + channel;
00936
00937 if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
00938 current_sample = (int16_t)bytestream_get_le16(&srcC);
00939 previous_sample = (int16_t)bytestream_get_le16(&srcC);
00940 } else {
00941 current_sample = c->status[channel].predictor;
00942 previous_sample = c->status[channel].prev_sample;
00943 }
00944
00945 for (count1 = 0; count1 < nb_samples / 28; count1++) {
00946 if (*srcC == 0xEE) {
00947 srcC++;
00948 if (srcC > src_end - 30*2) break;
00949 current_sample = (int16_t)bytestream_get_be16(&srcC);
00950 previous_sample = (int16_t)bytestream_get_be16(&srcC);
00951
00952 for (count2=0; count2<28; count2++) {
00953 *samplesC = (int16_t)bytestream_get_be16(&srcC);
00954 samplesC += avctx->channels;
00955 }
00956 } else {
00957 coeff1 = ea_adpcm_table[ *srcC>>4 ];
00958 coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
00959 shift = 20 - (*srcC++ & 0x0F);
00960
00961 if (srcC > src_end - 14) break;
00962 for (count2=0; count2<28; count2++) {
00963 if (count2 & 1)
00964 next_sample = sign_extend(*srcC++, 4) << shift;
00965 else
00966 next_sample = sign_extend(*srcC >> 4, 4) << shift;
00967
00968 next_sample += (current_sample * coeff1) +
00969 (previous_sample * coeff2);
00970 next_sample = av_clip_int16(next_sample >> 8);
00971
00972 previous_sample = current_sample;
00973 current_sample = next_sample;
00974 *samplesC = current_sample;
00975 samplesC += avctx->channels;
00976 }
00977 }
00978 }
00979 if (!count) {
00980 count = count1;
00981 } else if (count != count1) {
00982 av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
00983 count = FFMAX(count, count1);
00984 }
00985
00986 if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
00987 c->status[channel].predictor = current_sample;
00988 c->status[channel].prev_sample = previous_sample;
00989 }
00990 }
00991
00992 c->frame.nb_samples = count * 28;
00993 src = src_end;
00994 break;
00995 }
00996 case CODEC_ID_ADPCM_EA_XAS:
00997 for (channel=0; channel<avctx->channels; channel++) {
00998 int coeff[2][4], shift[4];
00999 short *s2, *s = &samples[channel];
01000 for (n=0; n<4; n++, s+=32*avctx->channels) {
01001 for (i=0; i<2; i++)
01002 coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
01003 shift[n] = 20 - (src[2] & 0x0F);
01004 for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
01005 s2[0] = (src[0]&0xF0) + (src[1]<<8);
01006 }
01007
01008 for (m=2; m<32; m+=2) {
01009 s = &samples[m*avctx->channels + channel];
01010 for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
01011 for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
01012 int level = sign_extend(*src >> (4 - i), 4) << shift[n];
01013 int pred = s2[-1*avctx->channels] * coeff[0][n]
01014 + s2[-2*avctx->channels] * coeff[1][n];
01015 s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
01016 }
01017 }
01018 }
01019 }
01020 break;
01021 case CODEC_ID_ADPCM_IMA_AMV:
01022 case CODEC_ID_ADPCM_IMA_SMJPEG:
01023 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) {
01024 c->status[0].predictor = sign_extend(bytestream_get_le16(&src), 16);
01025 c->status[0].step_index = av_clip(bytestream_get_le16(&src), 0, 88);
01026 src += 4;
01027 } else {
01028 c->status[0].predictor = sign_extend(bytestream_get_be16(&src), 16);
01029 c->status[0].step_index = av_clip(bytestream_get_byte(&src), 0, 88);
01030 src += 1;
01031 }
01032
01033 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
01034 char hi, lo;
01035 lo = *src & 0x0F;
01036 hi = *src >> 4;
01037
01038 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
01039 FFSWAP(char, hi, lo);
01040
01041 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
01042 lo, 3);
01043 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
01044 hi, 3);
01045 }
01046 break;
01047 case CODEC_ID_ADPCM_CT:
01048 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
01049 uint8_t v = *src;
01050 *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
01051 *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
01052 }
01053 break;
01054 case CODEC_ID_ADPCM_SBPRO_4:
01055 case CODEC_ID_ADPCM_SBPRO_3:
01056 case CODEC_ID_ADPCM_SBPRO_2:
01057 if (!c->status[0].step_index) {
01058
01059 *samples++ = 128 * (*src++ - 0x80);
01060 if (st)
01061 *samples++ = 128 * (*src++ - 0x80);
01062 c->status[0].step_index = 1;
01063 nb_samples--;
01064 }
01065 if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
01066 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
01067 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01068 src[0] >> 4, 4, 0);
01069 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
01070 src[0] & 0x0F, 4, 0);
01071 }
01072 } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
01073 for (n = nb_samples / 3; n > 0; n--, src++) {
01074 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01075 src[0] >> 5 , 3, 0);
01076 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01077 (src[0] >> 2) & 0x07, 3, 0);
01078 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01079 src[0] & 0x03, 2, 0);
01080 }
01081 } else {
01082 for (n = nb_samples >> (2 - st); n > 0; n--, src++) {
01083 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01084 src[0] >> 6 , 2, 2);
01085 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
01086 (src[0] >> 4) & 0x03, 2, 2);
01087 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01088 (src[0] >> 2) & 0x03, 2, 2);
01089 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
01090 src[0] & 0x03, 2, 2);
01091 }
01092 }
01093 break;
01094 case CODEC_ID_ADPCM_SWF:
01095 {
01096 GetBitContext gb;
01097 const int *table;
01098 int k0, signmask, nb_bits, count;
01099 int size = buf_size*8;
01100
01101 init_get_bits(&gb, buf, size);
01102
01103
01104 nb_bits = get_bits(&gb, 2)+2;
01105
01106 table = swf_index_tables[nb_bits-2];
01107 k0 = 1 << (nb_bits-2);
01108 signmask = 1 << (nb_bits-1);
01109
01110 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
01111 for (i = 0; i < avctx->channels; i++) {
01112 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
01113 c->status[i].step_index = get_bits(&gb, 6);
01114 }
01115
01116 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
01117 int i;
01118
01119 for (i = 0; i < avctx->channels; i++) {
01120
01121 int delta = get_bits(&gb, nb_bits);
01122 int step = ff_adpcm_step_table[c->status[i].step_index];
01123 long vpdiff = 0;
01124 int k = k0;
01125
01126 do {
01127 if (delta & k)
01128 vpdiff += step;
01129 step >>= 1;
01130 k >>= 1;
01131 } while(k);
01132 vpdiff += step;
01133
01134 if (delta & signmask)
01135 c->status[i].predictor -= vpdiff;
01136 else
01137 c->status[i].predictor += vpdiff;
01138
01139 c->status[i].step_index += table[delta & (~signmask)];
01140
01141 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
01142 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
01143
01144 *samples++ = c->status[i].predictor;
01145 }
01146 }
01147 }
01148 src += buf_size;
01149 break;
01150 }
01151 case CODEC_ID_ADPCM_YAMAHA:
01152 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
01153 uint8_t v = *src;
01154 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
01155 *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
01156 }
01157 break;
01158 case CODEC_ID_ADPCM_THP:
01159 {
01160 int table[2][16];
01161 int prev[2][2];
01162 int ch;
01163
01164 src += 4;
01165 src += 4;
01166
01167 for (i = 0; i < 32; i++)
01168 table[0][i] = (int16_t)bytestream_get_be16(&src);
01169
01170
01171 for (i = 0; i < 4; i++)
01172 prev[0][i] = (int16_t)bytestream_get_be16(&src);
01173
01174 for (ch = 0; ch <= st; ch++) {
01175 samples = (short *)c->frame.data[0] + ch;
01176
01177
01178 for (i = 0; i < nb_samples / 14; i++) {
01179 int index = (*src >> 4) & 7;
01180 unsigned int exp = *src++ & 15;
01181 int factor1 = table[ch][index * 2];
01182 int factor2 = table[ch][index * 2 + 1];
01183
01184
01185 for (n = 0; n < 14; n++) {
01186 int32_t sampledat;
01187 if(n&1) sampledat = sign_extend(*src++, 4);
01188 else sampledat = sign_extend(*src >> 4, 4);
01189
01190 sampledat = ((prev[ch][0]*factor1
01191 + prev[ch][1]*factor2) >> 11) + (sampledat << exp);
01192 *samples = av_clip_int16(sampledat);
01193 prev[ch][1] = prev[ch][0];
01194 prev[ch][0] = *samples++;
01195
01196
01197
01198 samples += st;
01199 }
01200 }
01201 }
01202 break;
01203 }
01204
01205 default:
01206 return -1;
01207 }
01208
01209 *got_frame_ptr = 1;
01210 *(AVFrame *)data = c->frame;
01211
01212 return src - buf;
01213 }
01214
01215
01216 #define ADPCM_DECODER(id_, name_, long_name_) \
01217 AVCodec ff_ ## name_ ## _decoder = { \
01218 .name = #name_, \
01219 .type = AVMEDIA_TYPE_AUDIO, \
01220 .id = id_, \
01221 .priv_data_size = sizeof(ADPCMDecodeContext), \
01222 .init = adpcm_decode_init, \
01223 .decode = adpcm_decode_frame, \
01224 .capabilities = CODEC_CAP_DR1, \
01225 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
01226 }
01227
01228
01229 ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
01230 ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
01231 ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
01232 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
01233 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
01234 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
01235 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
01236 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
01237 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
01238 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
01239 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
01240 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
01241 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
01242 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
01243 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
01244 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
01245 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
01246 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
01247 ADPCM_DECODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
01248 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
01249 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
01250 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
01251 ADPCM_DECODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
01252 ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
01253 ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
01254 ADPCM_DECODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");