Libav 0.7.1
|
00001 /* 00002 * Duck TrueMotion 1.0 Decoder 00003 * Copyright (C) 2003 Alex Beregszaszi & Mike Melanson 00004 * 00005 * This file is part of Libav. 00006 * 00007 * Libav is free software; you can redistribute it and/or 00008 * modify it under the terms of the GNU Lesser General Public 00009 * License as published by the Free Software Foundation; either 00010 * version 2.1 of the License, or (at your option) any later version. 00011 * 00012 * Libav is distributed in the hope that it will be useful, 00013 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00015 * Lesser General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU Lesser General Public 00018 * License along with Libav; if not, write to the Free Software 00019 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00020 */ 00021 00032 #include <stdio.h> 00033 #include <stdlib.h> 00034 #include <string.h> 00035 00036 #include "avcodec.h" 00037 #include "dsputil.h" 00038 #include "libavutil/imgutils.h" 00039 00040 #include "truemotion1data.h" 00041 00042 typedef struct TrueMotion1Context { 00043 AVCodecContext *avctx; 00044 AVFrame frame; 00045 00046 const uint8_t *buf; 00047 int size; 00048 00049 const uint8_t *mb_change_bits; 00050 int mb_change_bits_row_size; 00051 const uint8_t *index_stream; 00052 int index_stream_size; 00053 00054 int flags; 00055 int x, y, w, h; 00056 00057 uint32_t y_predictor_table[1024]; 00058 uint32_t c_predictor_table[1024]; 00059 uint32_t fat_y_predictor_table[1024]; 00060 uint32_t fat_c_predictor_table[1024]; 00061 00062 int compression; 00063 int block_type; 00064 int block_width; 00065 int block_height; 00066 00067 int16_t ydt[8]; 00068 int16_t cdt[8]; 00069 int16_t fat_ydt[8]; 00070 int16_t fat_cdt[8]; 00071 00072 int last_deltaset, last_vectable; 00073 00074 unsigned int *vert_pred; 00075 int vert_pred_size; 00076 00077 } TrueMotion1Context; 00078 00079 #define FLAG_SPRITE 32 00080 #define FLAG_KEYFRAME 16 00081 #define FLAG_INTERFRAME 8 00082 #define FLAG_INTERPOLATED 4 00083 00084 struct frame_header { 00085 uint8_t header_size; 00086 uint8_t compression; 00087 uint8_t deltaset; 00088 uint8_t vectable; 00089 uint16_t ysize; 00090 uint16_t xsize; 00091 uint16_t checksum; 00092 uint8_t version; 00093 uint8_t header_type; 00094 uint8_t flags; 00095 uint8_t control; 00096 uint16_t xoffset; 00097 uint16_t yoffset; 00098 uint16_t width; 00099 uint16_t height; 00100 }; 00101 00102 #define ALGO_NOP 0 00103 #define ALGO_RGB16V 1 00104 #define ALGO_RGB16H 2 00105 #define ALGO_RGB24H 3 00106 00107 /* these are the various block sizes that can occupy a 4x4 block */ 00108 #define BLOCK_2x2 0 00109 #define BLOCK_2x4 1 00110 #define BLOCK_4x2 2 00111 #define BLOCK_4x4 3 00112 00113 typedef struct comp_types { 00114 int algorithm; 00115 int block_width; // vres 00116 int block_height; // hres 00117 int block_type; 00118 } comp_types; 00119 00120 /* { valid for metatype }, algorithm, num of deltas, vert res, horiz res */ 00121 static const comp_types compression_types[17] = { 00122 { ALGO_NOP, 0, 0, 0 }, 00123 00124 { ALGO_RGB16V, 4, 4, BLOCK_4x4 }, 00125 { ALGO_RGB16H, 4, 4, BLOCK_4x4 }, 00126 { ALGO_RGB16V, 4, 2, BLOCK_4x2 }, 00127 { ALGO_RGB16H, 4, 2, BLOCK_4x2 }, 00128 00129 { ALGO_RGB16V, 2, 4, BLOCK_2x4 }, 00130 { ALGO_RGB16H, 2, 4, BLOCK_2x4 }, 00131 { ALGO_RGB16V, 2, 2, BLOCK_2x2 }, 00132 { ALGO_RGB16H, 2, 2, BLOCK_2x2 }, 00133 00134 { ALGO_NOP, 4, 4, BLOCK_4x4 }, 00135 { ALGO_RGB24H, 4, 4, BLOCK_4x4 }, 00136 { ALGO_NOP, 4, 2, BLOCK_4x2 }, 00137 { ALGO_RGB24H, 4, 2, BLOCK_4x2 }, 00138 00139 { ALGO_NOP, 2, 4, BLOCK_2x4 }, 00140 { ALGO_RGB24H, 2, 4, BLOCK_2x4 }, 00141 { ALGO_NOP, 2, 2, BLOCK_2x2 }, 00142 { ALGO_RGB24H, 2, 2, BLOCK_2x2 } 00143 }; 00144 00145 static void select_delta_tables(TrueMotion1Context *s, int delta_table_index) 00146 { 00147 int i; 00148 00149 if (delta_table_index > 3) 00150 return; 00151 00152 memcpy(s->ydt, ydts[delta_table_index], 8 * sizeof(int16_t)); 00153 memcpy(s->cdt, cdts[delta_table_index], 8 * sizeof(int16_t)); 00154 memcpy(s->fat_ydt, fat_ydts[delta_table_index], 8 * sizeof(int16_t)); 00155 memcpy(s->fat_cdt, fat_cdts[delta_table_index], 8 * sizeof(int16_t)); 00156 00157 /* Y skinny deltas need to be halved for some reason; maybe the 00158 * skinny Y deltas should be modified */ 00159 for (i = 0; i < 8; i++) 00160 { 00161 /* drop the lsb before dividing by 2-- net effect: round down 00162 * when dividing a negative number (e.g., -3/2 = -2, not -1) */ 00163 s->ydt[i] &= 0xFFFE; 00164 s->ydt[i] /= 2; 00165 } 00166 } 00167 00168 #if HAVE_BIGENDIAN 00169 static int make_ydt15_entry(int p2, int p1, int16_t *ydt) 00170 #else 00171 static int make_ydt15_entry(int p1, int p2, int16_t *ydt) 00172 #endif 00173 { 00174 int lo, hi; 00175 00176 lo = ydt[p1]; 00177 lo += (lo << 5) + (lo << 10); 00178 hi = ydt[p2]; 00179 hi += (hi << 5) + (hi << 10); 00180 return (lo + (hi << 16)) << 1; 00181 } 00182 00183 static int make_cdt15_entry(int p1, int p2, int16_t *cdt) 00184 { 00185 int r, b, lo; 00186 00187 b = cdt[p2]; 00188 r = cdt[p1] << 10; 00189 lo = b + r; 00190 return (lo + (lo << 16)) << 1; 00191 } 00192 00193 #if HAVE_BIGENDIAN 00194 static int make_ydt16_entry(int p2, int p1, int16_t *ydt) 00195 #else 00196 static int make_ydt16_entry(int p1, int p2, int16_t *ydt) 00197 #endif 00198 { 00199 int lo, hi; 00200 00201 lo = ydt[p1]; 00202 lo += (lo << 6) + (lo << 11); 00203 hi = ydt[p2]; 00204 hi += (hi << 6) + (hi << 11); 00205 return (lo + (hi << 16)) << 1; 00206 } 00207 00208 static int make_cdt16_entry(int p1, int p2, int16_t *cdt) 00209 { 00210 int r, b, lo; 00211 00212 b = cdt[p2]; 00213 r = cdt[p1] << 11; 00214 lo = b + r; 00215 return (lo + (lo << 16)) << 1; 00216 } 00217 00218 static int make_ydt24_entry(int p1, int p2, int16_t *ydt) 00219 { 00220 int lo, hi; 00221 00222 lo = ydt[p1]; 00223 hi = ydt[p2]; 00224 return (lo + (hi << 8) + (hi << 16)) << 1; 00225 } 00226 00227 static int make_cdt24_entry(int p1, int p2, int16_t *cdt) 00228 { 00229 int r, b; 00230 00231 b = cdt[p2]; 00232 r = cdt[p1]<<16; 00233 return (b+r) << 1; 00234 } 00235 00236 static void gen_vector_table15(TrueMotion1Context *s, const uint8_t *sel_vector_table) 00237 { 00238 int len, i, j; 00239 unsigned char delta_pair; 00240 00241 for (i = 0; i < 1024; i += 4) 00242 { 00243 len = *sel_vector_table++ / 2; 00244 for (j = 0; j < len; j++) 00245 { 00246 delta_pair = *sel_vector_table++; 00247 s->y_predictor_table[i+j] = 0xfffffffe & 00248 make_ydt15_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt); 00249 s->c_predictor_table[i+j] = 0xfffffffe & 00250 make_cdt15_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt); 00251 } 00252 s->y_predictor_table[i+(j-1)] |= 1; 00253 s->c_predictor_table[i+(j-1)] |= 1; 00254 } 00255 } 00256 00257 static void gen_vector_table16(TrueMotion1Context *s, const uint8_t *sel_vector_table) 00258 { 00259 int len, i, j; 00260 unsigned char delta_pair; 00261 00262 for (i = 0; i < 1024; i += 4) 00263 { 00264 len = *sel_vector_table++ / 2; 00265 for (j = 0; j < len; j++) 00266 { 00267 delta_pair = *sel_vector_table++; 00268 s->y_predictor_table[i+j] = 0xfffffffe & 00269 make_ydt16_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt); 00270 s->c_predictor_table[i+j] = 0xfffffffe & 00271 make_cdt16_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt); 00272 } 00273 s->y_predictor_table[i+(j-1)] |= 1; 00274 s->c_predictor_table[i+(j-1)] |= 1; 00275 } 00276 } 00277 00278 static void gen_vector_table24(TrueMotion1Context *s, const uint8_t *sel_vector_table) 00279 { 00280 int len, i, j; 00281 unsigned char delta_pair; 00282 00283 for (i = 0; i < 1024; i += 4) 00284 { 00285 len = *sel_vector_table++ / 2; 00286 for (j = 0; j < len; j++) 00287 { 00288 delta_pair = *sel_vector_table++; 00289 s->y_predictor_table[i+j] = 0xfffffffe & 00290 make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt); 00291 s->c_predictor_table[i+j] = 0xfffffffe & 00292 make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt); 00293 s->fat_y_predictor_table[i+j] = 0xfffffffe & 00294 make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_ydt); 00295 s->fat_c_predictor_table[i+j] = 0xfffffffe & 00296 make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_cdt); 00297 } 00298 s->y_predictor_table[i+(j-1)] |= 1; 00299 s->c_predictor_table[i+(j-1)] |= 1; 00300 s->fat_y_predictor_table[i+(j-1)] |= 1; 00301 s->fat_c_predictor_table[i+(j-1)] |= 1; 00302 } 00303 } 00304 00305 /* Returns the number of bytes consumed from the bytestream. Returns -1 if 00306 * there was an error while decoding the header */ 00307 static int truemotion1_decode_header(TrueMotion1Context *s) 00308 { 00309 int i; 00310 int width_shift = 0; 00311 int new_pix_fmt; 00312 struct frame_header header; 00313 uint8_t header_buffer[128]; /* logical maximum size of the header */ 00314 const uint8_t *sel_vector_table; 00315 00316 header.header_size = ((s->buf[0] >> 5) | (s->buf[0] << 3)) & 0x7f; 00317 if (s->buf[0] < 0x10) 00318 { 00319 av_log(s->avctx, AV_LOG_ERROR, "invalid header size (%d)\n", s->buf[0]); 00320 return -1; 00321 } 00322 00323 /* unscramble the header bytes with a XOR operation */ 00324 memset(header_buffer, 0, 128); 00325 for (i = 1; i < header.header_size; i++) 00326 header_buffer[i - 1] = s->buf[i] ^ s->buf[i + 1]; 00327 00328 header.compression = header_buffer[0]; 00329 header.deltaset = header_buffer[1]; 00330 header.vectable = header_buffer[2]; 00331 header.ysize = AV_RL16(&header_buffer[3]); 00332 header.xsize = AV_RL16(&header_buffer[5]); 00333 header.checksum = AV_RL16(&header_buffer[7]); 00334 header.version = header_buffer[9]; 00335 header.header_type = header_buffer[10]; 00336 header.flags = header_buffer[11]; 00337 header.control = header_buffer[12]; 00338 00339 /* Version 2 */ 00340 if (header.version >= 2) 00341 { 00342 if (header.header_type > 3) 00343 { 00344 av_log(s->avctx, AV_LOG_ERROR, "invalid header type (%d)\n", header.header_type); 00345 return -1; 00346 } else if ((header.header_type == 2) || (header.header_type == 3)) { 00347 s->flags = header.flags; 00348 if (!(s->flags & FLAG_INTERFRAME)) 00349 s->flags |= FLAG_KEYFRAME; 00350 } else 00351 s->flags = FLAG_KEYFRAME; 00352 } else /* Version 1 */ 00353 s->flags = FLAG_KEYFRAME; 00354 00355 if (s->flags & FLAG_SPRITE) { 00356 av_log_ask_for_sample(s->avctx, "SPRITE frame found.\n"); 00357 /* FIXME header.width, height, xoffset and yoffset aren't initialized */ 00358 #if 0 00359 s->w = header.width; 00360 s->h = header.height; 00361 s->x = header.xoffset; 00362 s->y = header.yoffset; 00363 #else 00364 return -1; 00365 #endif 00366 } else { 00367 s->w = header.xsize; 00368 s->h = header.ysize; 00369 if (header.header_type < 2) { 00370 if ((s->w < 213) && (s->h >= 176)) 00371 { 00372 s->flags |= FLAG_INTERPOLATED; 00373 av_log_ask_for_sample(s->avctx, "INTERPOLATION selected.\n"); 00374 } 00375 } 00376 } 00377 00378 if (header.compression >= 17) { 00379 av_log(s->avctx, AV_LOG_ERROR, "invalid compression type (%d)\n", header.compression); 00380 return -1; 00381 } 00382 00383 if ((header.deltaset != s->last_deltaset) || 00384 (header.vectable != s->last_vectable)) 00385 select_delta_tables(s, header.deltaset); 00386 00387 if ((header.compression & 1) && header.header_type) 00388 sel_vector_table = pc_tbl2; 00389 else { 00390 if (header.vectable > 0 && header.vectable < 4) 00391 sel_vector_table = tables[header.vectable - 1]; 00392 else { 00393 av_log(s->avctx, AV_LOG_ERROR, "invalid vector table id (%d)\n", header.vectable); 00394 return -1; 00395 } 00396 } 00397 00398 if (compression_types[header.compression].algorithm == ALGO_RGB24H) { 00399 new_pix_fmt = PIX_FMT_RGB32; 00400 width_shift = 1; 00401 } else 00402 new_pix_fmt = PIX_FMT_RGB555; // RGB565 is supported as well 00403 00404 s->w >>= width_shift; 00405 if (av_image_check_size(s->w, s->h, 0, s->avctx) < 0) 00406 return -1; 00407 00408 if (s->w != s->avctx->width || s->h != s->avctx->height || 00409 new_pix_fmt != s->avctx->pix_fmt) { 00410 if (s->frame.data[0]) 00411 s->avctx->release_buffer(s->avctx, &s->frame); 00412 s->avctx->sample_aspect_ratio = (AVRational){ 1 << width_shift, 1 }; 00413 s->avctx->pix_fmt = new_pix_fmt; 00414 avcodec_set_dimensions(s->avctx, s->w, s->h); 00415 av_fast_malloc(&s->vert_pred, &s->vert_pred_size, s->avctx->width * sizeof(unsigned int)); 00416 } 00417 00418 /* There is 1 change bit per 4 pixels, so each change byte represents 00419 * 32 pixels; divide width by 4 to obtain the number of change bits and 00420 * then round up to the nearest byte. */ 00421 s->mb_change_bits_row_size = ((s->avctx->width >> (2 - width_shift)) + 7) >> 3; 00422 00423 if ((header.deltaset != s->last_deltaset) || (header.vectable != s->last_vectable)) 00424 { 00425 if (compression_types[header.compression].algorithm == ALGO_RGB24H) 00426 gen_vector_table24(s, sel_vector_table); 00427 else 00428 if (s->avctx->pix_fmt == PIX_FMT_RGB555) 00429 gen_vector_table15(s, sel_vector_table); 00430 else 00431 gen_vector_table16(s, sel_vector_table); 00432 } 00433 00434 /* set up pointers to the other key data chunks */ 00435 s->mb_change_bits = s->buf + header.header_size; 00436 if (s->flags & FLAG_KEYFRAME) { 00437 /* no change bits specified for a keyframe; only index bytes */ 00438 s->index_stream = s->mb_change_bits; 00439 } else { 00440 /* one change bit per 4x4 block */ 00441 s->index_stream = s->mb_change_bits + 00442 (s->mb_change_bits_row_size * (s->avctx->height >> 2)); 00443 } 00444 s->index_stream_size = s->size - (s->index_stream - s->buf); 00445 00446 s->last_deltaset = header.deltaset; 00447 s->last_vectable = header.vectable; 00448 s->compression = header.compression; 00449 s->block_width = compression_types[header.compression].block_width; 00450 s->block_height = compression_types[header.compression].block_height; 00451 s->block_type = compression_types[header.compression].block_type; 00452 00453 if (s->avctx->debug & FF_DEBUG_PICT_INFO) 00454 av_log(s->avctx, AV_LOG_INFO, "tables: %d / %d c:%d %dx%d t:%d %s%s%s%s\n", 00455 s->last_deltaset, s->last_vectable, s->compression, s->block_width, 00456 s->block_height, s->block_type, 00457 s->flags & FLAG_KEYFRAME ? " KEY" : "", 00458 s->flags & FLAG_INTERFRAME ? " INTER" : "", 00459 s->flags & FLAG_SPRITE ? " SPRITE" : "", 00460 s->flags & FLAG_INTERPOLATED ? " INTERPOL" : ""); 00461 00462 return header.header_size; 00463 } 00464 00465 static av_cold int truemotion1_decode_init(AVCodecContext *avctx) 00466 { 00467 TrueMotion1Context *s = avctx->priv_data; 00468 00469 s->avctx = avctx; 00470 00471 // FIXME: it may change ? 00472 // if (avctx->bits_per_sample == 24) 00473 // avctx->pix_fmt = PIX_FMT_RGB24; 00474 // else 00475 // avctx->pix_fmt = PIX_FMT_RGB555; 00476 00477 s->frame.data[0] = NULL; 00478 00479 /* there is a vertical predictor for each pixel in a line; each vertical 00480 * predictor is 0 to start with */ 00481 av_fast_malloc(&s->vert_pred, &s->vert_pred_size, s->avctx->width * sizeof(unsigned int)); 00482 00483 return 0; 00484 } 00485 00486 /* 00487 Block decoding order: 00488 00489 dxi: Y-Y 00490 dxic: Y-C-Y 00491 dxic2: Y-C-Y-C 00492 00493 hres,vres,i,i%vres (0 < i < 4) 00494 2x2 0: 0 dxic2 00495 2x2 1: 1 dxi 00496 2x2 2: 0 dxic2 00497 2x2 3: 1 dxi 00498 2x4 0: 0 dxic2 00499 2x4 1: 1 dxi 00500 2x4 2: 2 dxi 00501 2x4 3: 3 dxi 00502 4x2 0: 0 dxic 00503 4x2 1: 1 dxi 00504 4x2 2: 0 dxic 00505 4x2 3: 1 dxi 00506 4x4 0: 0 dxic 00507 4x4 1: 1 dxi 00508 4x4 2: 2 dxi 00509 4x4 3: 3 dxi 00510 */ 00511 00512 #define GET_NEXT_INDEX() \ 00513 {\ 00514 if (index_stream_index >= s->index_stream_size) { \ 00515 av_log(s->avctx, AV_LOG_INFO, " help! truemotion1 decoder went out of bounds\n"); \ 00516 return; \ 00517 } \ 00518 index = s->index_stream[index_stream_index++] * 4; \ 00519 } 00520 00521 #define APPLY_C_PREDICTOR() \ 00522 predictor_pair = s->c_predictor_table[index]; \ 00523 horiz_pred += (predictor_pair >> 1); \ 00524 if (predictor_pair & 1) { \ 00525 GET_NEXT_INDEX() \ 00526 if (!index) { \ 00527 GET_NEXT_INDEX() \ 00528 predictor_pair = s->c_predictor_table[index]; \ 00529 horiz_pred += ((predictor_pair >> 1) * 5); \ 00530 if (predictor_pair & 1) \ 00531 GET_NEXT_INDEX() \ 00532 else \ 00533 index++; \ 00534 } \ 00535 } else \ 00536 index++; 00537 00538 #define APPLY_C_PREDICTOR_24() \ 00539 predictor_pair = s->c_predictor_table[index]; \ 00540 horiz_pred += (predictor_pair >> 1); \ 00541 if (predictor_pair & 1) { \ 00542 GET_NEXT_INDEX() \ 00543 if (!index) { \ 00544 GET_NEXT_INDEX() \ 00545 predictor_pair = s->fat_c_predictor_table[index]; \ 00546 horiz_pred += (predictor_pair >> 1); \ 00547 if (predictor_pair & 1) \ 00548 GET_NEXT_INDEX() \ 00549 else \ 00550 index++; \ 00551 } \ 00552 } else \ 00553 index++; 00554 00555 00556 #define APPLY_Y_PREDICTOR() \ 00557 predictor_pair = s->y_predictor_table[index]; \ 00558 horiz_pred += (predictor_pair >> 1); \ 00559 if (predictor_pair & 1) { \ 00560 GET_NEXT_INDEX() \ 00561 if (!index) { \ 00562 GET_NEXT_INDEX() \ 00563 predictor_pair = s->y_predictor_table[index]; \ 00564 horiz_pred += ((predictor_pair >> 1) * 5); \ 00565 if (predictor_pair & 1) \ 00566 GET_NEXT_INDEX() \ 00567 else \ 00568 index++; \ 00569 } \ 00570 } else \ 00571 index++; 00572 00573 #define APPLY_Y_PREDICTOR_24() \ 00574 predictor_pair = s->y_predictor_table[index]; \ 00575 horiz_pred += (predictor_pair >> 1); \ 00576 if (predictor_pair & 1) { \ 00577 GET_NEXT_INDEX() \ 00578 if (!index) { \ 00579 GET_NEXT_INDEX() \ 00580 predictor_pair = s->fat_y_predictor_table[index]; \ 00581 horiz_pred += (predictor_pair >> 1); \ 00582 if (predictor_pair & 1) \ 00583 GET_NEXT_INDEX() \ 00584 else \ 00585 index++; \ 00586 } \ 00587 } else \ 00588 index++; 00589 00590 #define OUTPUT_PIXEL_PAIR() \ 00591 *current_pixel_pair = *vert_pred + horiz_pred; \ 00592 *vert_pred++ = *current_pixel_pair++; 00593 00594 static void truemotion1_decode_16bit(TrueMotion1Context *s) 00595 { 00596 int y; 00597 int pixels_left; /* remaining pixels on this line */ 00598 unsigned int predictor_pair; 00599 unsigned int horiz_pred; 00600 unsigned int *vert_pred; 00601 unsigned int *current_pixel_pair; 00602 unsigned char *current_line = s->frame.data[0]; 00603 int keyframe = s->flags & FLAG_KEYFRAME; 00604 00605 /* these variables are for managing the stream of macroblock change bits */ 00606 const unsigned char *mb_change_bits = s->mb_change_bits; 00607 unsigned char mb_change_byte; 00608 unsigned char mb_change_byte_mask; 00609 int mb_change_index; 00610 00611 /* these variables are for managing the main index stream */ 00612 int index_stream_index = 0; /* yes, the index into the index stream */ 00613 int index; 00614 00615 /* clean out the line buffer */ 00616 memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int)); 00617 00618 GET_NEXT_INDEX(); 00619 00620 for (y = 0; y < s->avctx->height; y++) { 00621 00622 /* re-init variables for the next line iteration */ 00623 horiz_pred = 0; 00624 current_pixel_pair = (unsigned int *)current_line; 00625 vert_pred = s->vert_pred; 00626 mb_change_index = 0; 00627 mb_change_byte = mb_change_bits[mb_change_index++]; 00628 mb_change_byte_mask = 0x01; 00629 pixels_left = s->avctx->width; 00630 00631 while (pixels_left > 0) { 00632 00633 if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) { 00634 00635 switch (y & 3) { 00636 case 0: 00637 /* if macroblock width is 2, apply C-Y-C-Y; else 00638 * apply C-Y-Y */ 00639 if (s->block_width == 2) { 00640 APPLY_C_PREDICTOR(); 00641 APPLY_Y_PREDICTOR(); 00642 OUTPUT_PIXEL_PAIR(); 00643 APPLY_C_PREDICTOR(); 00644 APPLY_Y_PREDICTOR(); 00645 OUTPUT_PIXEL_PAIR(); 00646 } else { 00647 APPLY_C_PREDICTOR(); 00648 APPLY_Y_PREDICTOR(); 00649 OUTPUT_PIXEL_PAIR(); 00650 APPLY_Y_PREDICTOR(); 00651 OUTPUT_PIXEL_PAIR(); 00652 } 00653 break; 00654 00655 case 1: 00656 case 3: 00657 /* always apply 2 Y predictors on these iterations */ 00658 APPLY_Y_PREDICTOR(); 00659 OUTPUT_PIXEL_PAIR(); 00660 APPLY_Y_PREDICTOR(); 00661 OUTPUT_PIXEL_PAIR(); 00662 break; 00663 00664 case 2: 00665 /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y 00666 * depending on the macroblock type */ 00667 if (s->block_type == BLOCK_2x2) { 00668 APPLY_C_PREDICTOR(); 00669 APPLY_Y_PREDICTOR(); 00670 OUTPUT_PIXEL_PAIR(); 00671 APPLY_C_PREDICTOR(); 00672 APPLY_Y_PREDICTOR(); 00673 OUTPUT_PIXEL_PAIR(); 00674 } else if (s->block_type == BLOCK_4x2) { 00675 APPLY_C_PREDICTOR(); 00676 APPLY_Y_PREDICTOR(); 00677 OUTPUT_PIXEL_PAIR(); 00678 APPLY_Y_PREDICTOR(); 00679 OUTPUT_PIXEL_PAIR(); 00680 } else { 00681 APPLY_Y_PREDICTOR(); 00682 OUTPUT_PIXEL_PAIR(); 00683 APPLY_Y_PREDICTOR(); 00684 OUTPUT_PIXEL_PAIR(); 00685 } 00686 break; 00687 } 00688 00689 } else { 00690 00691 /* skip (copy) four pixels, but reassign the horizontal 00692 * predictor */ 00693 *vert_pred++ = *current_pixel_pair++; 00694 horiz_pred = *current_pixel_pair - *vert_pred; 00695 *vert_pred++ = *current_pixel_pair++; 00696 00697 } 00698 00699 if (!keyframe) { 00700 mb_change_byte_mask <<= 1; 00701 00702 /* next byte */ 00703 if (!mb_change_byte_mask) { 00704 mb_change_byte = mb_change_bits[mb_change_index++]; 00705 mb_change_byte_mask = 0x01; 00706 } 00707 } 00708 00709 pixels_left -= 4; 00710 } 00711 00712 /* next change row */ 00713 if (((y + 1) & 3) == 0) 00714 mb_change_bits += s->mb_change_bits_row_size; 00715 00716 current_line += s->frame.linesize[0]; 00717 } 00718 } 00719 00720 static void truemotion1_decode_24bit(TrueMotion1Context *s) 00721 { 00722 int y; 00723 int pixels_left; /* remaining pixels on this line */ 00724 unsigned int predictor_pair; 00725 unsigned int horiz_pred; 00726 unsigned int *vert_pred; 00727 unsigned int *current_pixel_pair; 00728 unsigned char *current_line = s->frame.data[0]; 00729 int keyframe = s->flags & FLAG_KEYFRAME; 00730 00731 /* these variables are for managing the stream of macroblock change bits */ 00732 const unsigned char *mb_change_bits = s->mb_change_bits; 00733 unsigned char mb_change_byte; 00734 unsigned char mb_change_byte_mask; 00735 int mb_change_index; 00736 00737 /* these variables are for managing the main index stream */ 00738 int index_stream_index = 0; /* yes, the index into the index stream */ 00739 int index; 00740 00741 /* clean out the line buffer */ 00742 memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int)); 00743 00744 GET_NEXT_INDEX(); 00745 00746 for (y = 0; y < s->avctx->height; y++) { 00747 00748 /* re-init variables for the next line iteration */ 00749 horiz_pred = 0; 00750 current_pixel_pair = (unsigned int *)current_line; 00751 vert_pred = s->vert_pred; 00752 mb_change_index = 0; 00753 mb_change_byte = mb_change_bits[mb_change_index++]; 00754 mb_change_byte_mask = 0x01; 00755 pixels_left = s->avctx->width; 00756 00757 while (pixels_left > 0) { 00758 00759 if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) { 00760 00761 switch (y & 3) { 00762 case 0: 00763 /* if macroblock width is 2, apply C-Y-C-Y; else 00764 * apply C-Y-Y */ 00765 if (s->block_width == 2) { 00766 APPLY_C_PREDICTOR_24(); 00767 APPLY_Y_PREDICTOR_24(); 00768 OUTPUT_PIXEL_PAIR(); 00769 APPLY_C_PREDICTOR_24(); 00770 APPLY_Y_PREDICTOR_24(); 00771 OUTPUT_PIXEL_PAIR(); 00772 } else { 00773 APPLY_C_PREDICTOR_24(); 00774 APPLY_Y_PREDICTOR_24(); 00775 OUTPUT_PIXEL_PAIR(); 00776 APPLY_Y_PREDICTOR_24(); 00777 OUTPUT_PIXEL_PAIR(); 00778 } 00779 break; 00780 00781 case 1: 00782 case 3: 00783 /* always apply 2 Y predictors on these iterations */ 00784 APPLY_Y_PREDICTOR_24(); 00785 OUTPUT_PIXEL_PAIR(); 00786 APPLY_Y_PREDICTOR_24(); 00787 OUTPUT_PIXEL_PAIR(); 00788 break; 00789 00790 case 2: 00791 /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y 00792 * depending on the macroblock type */ 00793 if (s->block_type == BLOCK_2x2) { 00794 APPLY_C_PREDICTOR_24(); 00795 APPLY_Y_PREDICTOR_24(); 00796 OUTPUT_PIXEL_PAIR(); 00797 APPLY_C_PREDICTOR_24(); 00798 APPLY_Y_PREDICTOR_24(); 00799 OUTPUT_PIXEL_PAIR(); 00800 } else if (s->block_type == BLOCK_4x2) { 00801 APPLY_C_PREDICTOR_24(); 00802 APPLY_Y_PREDICTOR_24(); 00803 OUTPUT_PIXEL_PAIR(); 00804 APPLY_Y_PREDICTOR_24(); 00805 OUTPUT_PIXEL_PAIR(); 00806 } else { 00807 APPLY_Y_PREDICTOR_24(); 00808 OUTPUT_PIXEL_PAIR(); 00809 APPLY_Y_PREDICTOR_24(); 00810 OUTPUT_PIXEL_PAIR(); 00811 } 00812 break; 00813 } 00814 00815 } else { 00816 00817 /* skip (copy) four pixels, but reassign the horizontal 00818 * predictor */ 00819 *vert_pred++ = *current_pixel_pair++; 00820 horiz_pred = *current_pixel_pair - *vert_pred; 00821 *vert_pred++ = *current_pixel_pair++; 00822 00823 } 00824 00825 if (!keyframe) { 00826 mb_change_byte_mask <<= 1; 00827 00828 /* next byte */ 00829 if (!mb_change_byte_mask) { 00830 mb_change_byte = mb_change_bits[mb_change_index++]; 00831 mb_change_byte_mask = 0x01; 00832 } 00833 } 00834 00835 pixels_left -= 2; 00836 } 00837 00838 /* next change row */ 00839 if (((y + 1) & 3) == 0) 00840 mb_change_bits += s->mb_change_bits_row_size; 00841 00842 current_line += s->frame.linesize[0]; 00843 } 00844 } 00845 00846 00847 static int truemotion1_decode_frame(AVCodecContext *avctx, 00848 void *data, int *data_size, 00849 AVPacket *avpkt) 00850 { 00851 const uint8_t *buf = avpkt->data; 00852 int buf_size = avpkt->size; 00853 TrueMotion1Context *s = avctx->priv_data; 00854 00855 s->buf = buf; 00856 s->size = buf_size; 00857 00858 if (truemotion1_decode_header(s) == -1) 00859 return -1; 00860 00861 s->frame.reference = 1; 00862 s->frame.buffer_hints = FF_BUFFER_HINTS_VALID | 00863 FF_BUFFER_HINTS_PRESERVE | FF_BUFFER_HINTS_REUSABLE; 00864 if (avctx->reget_buffer(avctx, &s->frame) < 0) { 00865 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n"); 00866 return -1; 00867 } 00868 00869 if (compression_types[s->compression].algorithm == ALGO_RGB24H) { 00870 truemotion1_decode_24bit(s); 00871 } else if (compression_types[s->compression].algorithm != ALGO_NOP) { 00872 truemotion1_decode_16bit(s); 00873 } 00874 00875 *data_size = sizeof(AVFrame); 00876 *(AVFrame*)data = s->frame; 00877 00878 /* report that the buffer was completely consumed */ 00879 return buf_size; 00880 } 00881 00882 static av_cold int truemotion1_decode_end(AVCodecContext *avctx) 00883 { 00884 TrueMotion1Context *s = avctx->priv_data; 00885 00886 if (s->frame.data[0]) 00887 avctx->release_buffer(avctx, &s->frame); 00888 00889 av_free(s->vert_pred); 00890 00891 return 0; 00892 } 00893 00894 AVCodec ff_truemotion1_decoder = { 00895 "truemotion1", 00896 AVMEDIA_TYPE_VIDEO, 00897 CODEC_ID_TRUEMOTION1, 00898 sizeof(TrueMotion1Context), 00899 truemotion1_decode_init, 00900 NULL, 00901 truemotion1_decode_end, 00902 truemotion1_decode_frame, 00903 CODEC_CAP_DR1, 00904 .long_name = NULL_IF_CONFIG_SMALL("Duck TrueMotion 1.0"), 00905 };