Libav 0.7.1
|
00001 /* 00002 * MPEG-4 Parametric Stereo decoding functions 00003 * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com> 00004 * 00005 * This file is part of Libav. 00006 * 00007 * Libav is free software; you can redistribute it and/or 00008 * modify it under the terms of the GNU Lesser General Public 00009 * License as published by the Free Software Foundation; either 00010 * version 2.1 of the License, or (at your option) any later version. 00011 * 00012 * Libav is distributed in the hope that it will be useful, 00013 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00015 * Lesser General Public License for more details. 00016 * 00017 * You should have received a copy of the GNU Lesser General Public 00018 * License along with Libav; if not, write to the Free Software 00019 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00020 */ 00021 00022 #include <stdint.h> 00023 #include "libavutil/common.h" 00024 #include "libavutil/mathematics.h" 00025 #include "avcodec.h" 00026 #include "get_bits.h" 00027 #include "aacps.h" 00028 #include "aacps_tablegen.h" 00029 #include "aacpsdata.c" 00030 00031 #define PS_BASELINE 0 //< Operate in Baseline PS mode 00032 //< Baseline implies 10 or 20 stereo bands, 00033 //< mixing mode A, and no ipd/opd 00034 00035 #define numQMFSlots 32 //numTimeSlots * RATE 00036 00037 static const int8_t num_env_tab[2][4] = { 00038 { 0, 1, 2, 4, }, 00039 { 1, 2, 3, 4, }, 00040 }; 00041 00042 static const int8_t nr_iidicc_par_tab[] = { 00043 10, 20, 34, 10, 20, 34, 00044 }; 00045 00046 static const int8_t nr_iidopd_par_tab[] = { 00047 5, 11, 17, 5, 11, 17, 00048 }; 00049 00050 enum { 00051 huff_iid_df1, 00052 huff_iid_dt1, 00053 huff_iid_df0, 00054 huff_iid_dt0, 00055 huff_icc_df, 00056 huff_icc_dt, 00057 huff_ipd_df, 00058 huff_ipd_dt, 00059 huff_opd_df, 00060 huff_opd_dt, 00061 }; 00062 00063 static const int huff_iid[] = { 00064 huff_iid_df0, 00065 huff_iid_df1, 00066 huff_iid_dt0, 00067 huff_iid_dt1, 00068 }; 00069 00070 static VLC vlc_ps[10]; 00071 00084 #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \ 00085 static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \ 00086 int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \ 00087 { \ 00088 int b, num = ps->nr_ ## PAR ## _par; \ 00089 VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \ 00090 if (dt) { \ 00091 int e_prev = e ? e - 1 : ps->num_env_old - 1; \ 00092 e_prev = FFMAX(e_prev, 0); \ 00093 for (b = 0; b < num; b++) { \ 00094 int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \ 00095 if (MASK) val &= MASK; \ 00096 PAR[e][b] = val; \ 00097 if (ERR_CONDITION) \ 00098 goto err; \ 00099 } \ 00100 } else { \ 00101 int val = 0; \ 00102 for (b = 0; b < num; b++) { \ 00103 val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \ 00104 if (MASK) val &= MASK; \ 00105 PAR[e][b] = val; \ 00106 if (ERR_CONDITION) \ 00107 goto err; \ 00108 } \ 00109 } \ 00110 return 0; \ 00111 err: \ 00112 av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \ 00113 return -1; \ 00114 } 00115 00116 READ_PAR_DATA(iid, huff_offset[table_idx], 0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant) 00117 READ_PAR_DATA(icc, huff_offset[table_idx], 0, ps->icc_par[e][b] > 7U) 00118 READ_PAR_DATA(ipdopd, 0, 0x07, 0) 00119 00120 static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id) 00121 { 00122 int e; 00123 int count = get_bits_count(gb); 00124 00125 if (ps_extension_id) 00126 return 0; 00127 00128 ps->enable_ipdopd = get_bits1(gb); 00129 if (ps->enable_ipdopd) { 00130 for (e = 0; e < ps->num_env; e++) { 00131 int dt = get_bits1(gb); 00132 read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt); 00133 dt = get_bits1(gb); 00134 read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt); 00135 } 00136 } 00137 skip_bits1(gb); //reserved_ps 00138 return get_bits_count(gb) - count; 00139 } 00140 00141 static void ipdopd_reset(int8_t *opd_hist, int8_t *ipd_hist) 00142 { 00143 int i; 00144 for (i = 0; i < PS_MAX_NR_IPDOPD; i++) { 00145 opd_hist[i] = 0; 00146 ipd_hist[i] = 0; 00147 } 00148 } 00149 00150 int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left) 00151 { 00152 int e; 00153 int bit_count_start = get_bits_count(gb_host); 00154 int header; 00155 int bits_consumed; 00156 GetBitContext gbc = *gb_host, *gb = &gbc; 00157 00158 header = get_bits1(gb); 00159 if (header) { //enable_ps_header 00160 ps->enable_iid = get_bits1(gb); 00161 if (ps->enable_iid) { 00162 int iid_mode = get_bits(gb, 3); 00163 if (iid_mode > 5) { 00164 av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n", 00165 iid_mode); 00166 goto err; 00167 } 00168 ps->nr_iid_par = nr_iidicc_par_tab[iid_mode]; 00169 ps->iid_quant = iid_mode > 2; 00170 ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode]; 00171 } 00172 ps->enable_icc = get_bits1(gb); 00173 if (ps->enable_icc) { 00174 ps->icc_mode = get_bits(gb, 3); 00175 if (ps->icc_mode > 5) { 00176 av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n", 00177 ps->icc_mode); 00178 goto err; 00179 } 00180 ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode]; 00181 } 00182 ps->enable_ext = get_bits1(gb); 00183 } 00184 00185 ps->frame_class = get_bits1(gb); 00186 ps->num_env_old = ps->num_env; 00187 ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)]; 00188 00189 ps->border_position[0] = -1; 00190 if (ps->frame_class) { 00191 for (e = 1; e <= ps->num_env; e++) 00192 ps->border_position[e] = get_bits(gb, 5); 00193 } else 00194 for (e = 1; e <= ps->num_env; e++) 00195 ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1; 00196 00197 if (ps->enable_iid) { 00198 for (e = 0; e < ps->num_env; e++) { 00199 int dt = get_bits1(gb); 00200 if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt)) 00201 goto err; 00202 } 00203 } else 00204 memset(ps->iid_par, 0, sizeof(ps->iid_par)); 00205 00206 if (ps->enable_icc) 00207 for (e = 0; e < ps->num_env; e++) { 00208 int dt = get_bits1(gb); 00209 if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt)) 00210 goto err; 00211 } 00212 else 00213 memset(ps->icc_par, 0, sizeof(ps->icc_par)); 00214 00215 if (ps->enable_ext) { 00216 int cnt = get_bits(gb, 4); 00217 if (cnt == 15) { 00218 cnt += get_bits(gb, 8); 00219 } 00220 cnt *= 8; 00221 while (cnt > 7) { 00222 int ps_extension_id = get_bits(gb, 2); 00223 cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id); 00224 } 00225 if (cnt < 0) { 00226 av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d", cnt); 00227 goto err; 00228 } 00229 skip_bits(gb, cnt); 00230 } 00231 00232 ps->enable_ipdopd &= !PS_BASELINE; 00233 00234 //Fix up envelopes 00235 if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) { 00236 //Create a fake envelope 00237 int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1; 00238 if (source >= 0 && source != ps->num_env) { 00239 if (ps->enable_iid) { 00240 memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0])); 00241 } 00242 if (ps->enable_icc) { 00243 memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0])); 00244 } 00245 if (ps->enable_ipdopd) { 00246 memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0])); 00247 memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0])); 00248 } 00249 } 00250 ps->num_env++; 00251 ps->border_position[ps->num_env] = numQMFSlots - 1; 00252 } 00253 00254 00255 ps->is34bands_old = ps->is34bands; 00256 if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc)) 00257 ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) || 00258 (ps->enable_icc && ps->nr_icc_par == 34); 00259 00260 //Baseline 00261 if (!ps->enable_ipdopd) { 00262 memset(ps->ipd_par, 0, sizeof(ps->ipd_par)); 00263 memset(ps->opd_par, 0, sizeof(ps->opd_par)); 00264 } 00265 00266 if (header) 00267 ps->start = 1; 00268 00269 bits_consumed = get_bits_count(gb) - bit_count_start; 00270 if (bits_consumed <= bits_left) { 00271 skip_bits_long(gb_host, bits_consumed); 00272 return bits_consumed; 00273 } 00274 av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed); 00275 err: 00276 ps->start = 0; 00277 skip_bits_long(gb_host, bits_left); 00278 return bits_left; 00279 } 00280 00283 static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[7], int len, int reverse) 00284 { 00285 int i, j; 00286 for (i = 0; i < len; i++, in++) { 00287 float re_in = filter[6] * in[6][0]; //real inphase 00288 float re_op = 0.0f; //real out of phase 00289 float im_in = filter[6] * in[6][1]; //imag inphase 00290 float im_op = 0.0f; //imag out of phase 00291 for (j = 0; j < 6; j += 2) { 00292 re_op += filter[j+1] * (in[j+1][0] + in[12-j-1][0]); 00293 im_op += filter[j+1] * (in[j+1][1] + in[12-j-1][1]); 00294 } 00295 out[ reverse][i][0] = re_in + re_op; 00296 out[ reverse][i][1] = im_in + im_op; 00297 out[!reverse][i][0] = re_in - re_op; 00298 out[!reverse][i][1] = im_in - im_op; 00299 } 00300 } 00301 00303 static void hybrid6_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int len) 00304 { 00305 int i, j, ssb; 00306 int N = 8; 00307 float temp[8][2]; 00308 00309 for (i = 0; i < len; i++, in++) { 00310 for (ssb = 0; ssb < N; ssb++) { 00311 float sum_re = filter[ssb][6][0] * in[6][0], sum_im = filter[ssb][6][0] * in[6][1]; 00312 for (j = 0; j < 6; j++) { 00313 float in0_re = in[j][0]; 00314 float in0_im = in[j][1]; 00315 float in1_re = in[12-j][0]; 00316 float in1_im = in[12-j][1]; 00317 sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im); 00318 sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re); 00319 } 00320 temp[ssb][0] = sum_re; 00321 temp[ssb][1] = sum_im; 00322 } 00323 out[0][i][0] = temp[6][0]; 00324 out[0][i][1] = temp[6][1]; 00325 out[1][i][0] = temp[7][0]; 00326 out[1][i][1] = temp[7][1]; 00327 out[2][i][0] = temp[0][0]; 00328 out[2][i][1] = temp[0][1]; 00329 out[3][i][0] = temp[1][0]; 00330 out[3][i][1] = temp[1][1]; 00331 out[4][i][0] = temp[2][0] + temp[5][0]; 00332 out[4][i][1] = temp[2][1] + temp[5][1]; 00333 out[5][i][0] = temp[3][0] + temp[4][0]; 00334 out[5][i][1] = temp[3][1] + temp[4][1]; 00335 } 00336 } 00337 00338 static void hybrid4_8_12_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int N, int len) 00339 { 00340 int i, j, ssb; 00341 00342 for (i = 0; i < len; i++, in++) { 00343 for (ssb = 0; ssb < N; ssb++) { 00344 float sum_re = filter[ssb][6][0] * in[6][0], sum_im = filter[ssb][6][0] * in[6][1]; 00345 for (j = 0; j < 6; j++) { 00346 float in0_re = in[j][0]; 00347 float in0_im = in[j][1]; 00348 float in1_re = in[12-j][0]; 00349 float in1_im = in[12-j][1]; 00350 sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im); 00351 sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re); 00352 } 00353 out[ssb][i][0] = sum_re; 00354 out[ssb][i][1] = sum_im; 00355 } 00356 } 00357 } 00358 00359 static void hybrid_analysis(float out[91][32][2], float in[5][44][2], float L[2][38][64], int is34, int len) 00360 { 00361 int i, j; 00362 for (i = 0; i < 5; i++) { 00363 for (j = 0; j < 38; j++) { 00364 in[i][j+6][0] = L[0][j][i]; 00365 in[i][j+6][1] = L[1][j][i]; 00366 } 00367 } 00368 if (is34) { 00369 hybrid4_8_12_cx(in[0], out, f34_0_12, 12, len); 00370 hybrid4_8_12_cx(in[1], out+12, f34_1_8, 8, len); 00371 hybrid4_8_12_cx(in[2], out+20, f34_2_4, 4, len); 00372 hybrid4_8_12_cx(in[3], out+24, f34_2_4, 4, len); 00373 hybrid4_8_12_cx(in[4], out+28, f34_2_4, 4, len); 00374 for (i = 0; i < 59; i++) { 00375 for (j = 0; j < len; j++) { 00376 out[i+32][j][0] = L[0][j][i+5]; 00377 out[i+32][j][1] = L[1][j][i+5]; 00378 } 00379 } 00380 } else { 00381 hybrid6_cx(in[0], out, f20_0_8, len); 00382 hybrid2_re(in[1], out+6, g1_Q2, len, 1); 00383 hybrid2_re(in[2], out+8, g1_Q2, len, 0); 00384 for (i = 0; i < 61; i++) { 00385 for (j = 0; j < len; j++) { 00386 out[i+10][j][0] = L[0][j][i+3]; 00387 out[i+10][j][1] = L[1][j][i+3]; 00388 } 00389 } 00390 } 00391 //update in_buf 00392 for (i = 0; i < 5; i++) { 00393 memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0])); 00394 } 00395 } 00396 00397 static void hybrid_synthesis(float out[2][38][64], float in[91][32][2], int is34, int len) 00398 { 00399 int i, n; 00400 if (is34) { 00401 for (n = 0; n < len; n++) { 00402 memset(out[0][n], 0, 5*sizeof(out[0][n][0])); 00403 memset(out[1][n], 0, 5*sizeof(out[1][n][0])); 00404 for (i = 0; i < 12; i++) { 00405 out[0][n][0] += in[ i][n][0]; 00406 out[1][n][0] += in[ i][n][1]; 00407 } 00408 for (i = 0; i < 8; i++) { 00409 out[0][n][1] += in[12+i][n][0]; 00410 out[1][n][1] += in[12+i][n][1]; 00411 } 00412 for (i = 0; i < 4; i++) { 00413 out[0][n][2] += in[20+i][n][0]; 00414 out[1][n][2] += in[20+i][n][1]; 00415 out[0][n][3] += in[24+i][n][0]; 00416 out[1][n][3] += in[24+i][n][1]; 00417 out[0][n][4] += in[28+i][n][0]; 00418 out[1][n][4] += in[28+i][n][1]; 00419 } 00420 } 00421 for (i = 0; i < 59; i++) { 00422 for (n = 0; n < len; n++) { 00423 out[0][n][i+5] = in[i+32][n][0]; 00424 out[1][n][i+5] = in[i+32][n][1]; 00425 } 00426 } 00427 } else { 00428 for (n = 0; n < len; n++) { 00429 out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] + 00430 in[3][n][0] + in[4][n][0] + in[5][n][0]; 00431 out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] + 00432 in[3][n][1] + in[4][n][1] + in[5][n][1]; 00433 out[0][n][1] = in[6][n][0] + in[7][n][0]; 00434 out[1][n][1] = in[6][n][1] + in[7][n][1]; 00435 out[0][n][2] = in[8][n][0] + in[9][n][0]; 00436 out[1][n][2] = in[8][n][1] + in[9][n][1]; 00437 } 00438 for (i = 0; i < 61; i++) { 00439 for (n = 0; n < len; n++) { 00440 out[0][n][i+3] = in[i+10][n][0]; 00441 out[1][n][i+3] = in[i+10][n][1]; 00442 } 00443 } 00444 } 00445 } 00446 00448 #define DECAY_SLOPE 0.05f 00449 00450 static const int NR_PAR_BANDS[] = { 20, 34 }; 00452 static const int NR_BANDS[] = { 71, 91 }; 00454 static const int DECAY_CUTOFF[] = { 10, 32 }; 00456 static const int NR_ALLPASS_BANDS[] = { 30, 50 }; 00458 static const int SHORT_DELAY_BAND[] = { 42, 62 }; 00459 00461 static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full) 00462 { 00463 int b; 00464 if (full) 00465 b = 9; 00466 else { 00467 b = 4; 00468 par_mapped[10] = 0; 00469 } 00470 for (; b >= 0; b--) { 00471 par_mapped[2*b+1] = par_mapped[2*b] = par[b]; 00472 } 00473 } 00474 00475 static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full) 00476 { 00477 par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3; 00478 par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3; 00479 par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3; 00480 par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3; 00481 par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2; 00482 par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2; 00483 par_mapped[ 6] = par[10]; 00484 par_mapped[ 7] = par[11]; 00485 par_mapped[ 8] = ( par[12] + par[13]) / 2; 00486 par_mapped[ 9] = ( par[14] + par[15]) / 2; 00487 par_mapped[10] = par[16]; 00488 if (full) { 00489 par_mapped[11] = par[17]; 00490 par_mapped[12] = par[18]; 00491 par_mapped[13] = par[19]; 00492 par_mapped[14] = ( par[20] + par[21]) / 2; 00493 par_mapped[15] = ( par[22] + par[23]) / 2; 00494 par_mapped[16] = ( par[24] + par[25]) / 2; 00495 par_mapped[17] = ( par[26] + par[27]) / 2; 00496 par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4; 00497 par_mapped[19] = ( par[32] + par[33]) / 2; 00498 } 00499 } 00500 00501 static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC]) 00502 { 00503 par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f; 00504 par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f; 00505 par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f; 00506 par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f; 00507 par[ 4] = ( par[ 6] + par[ 7]) * 0.5f; 00508 par[ 5] = ( par[ 8] + par[ 9]) * 0.5f; 00509 par[ 6] = par[10]; 00510 par[ 7] = par[11]; 00511 par[ 8] = ( par[12] + par[13]) * 0.5f; 00512 par[ 9] = ( par[14] + par[15]) * 0.5f; 00513 par[10] = par[16]; 00514 par[11] = par[17]; 00515 par[12] = par[18]; 00516 par[13] = par[19]; 00517 par[14] = ( par[20] + par[21]) * 0.5f; 00518 par[15] = ( par[22] + par[23]) * 0.5f; 00519 par[16] = ( par[24] + par[25]) * 0.5f; 00520 par[17] = ( par[26] + par[27]) * 0.5f; 00521 par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f; 00522 par[19] = ( par[32] + par[33]) * 0.5f; 00523 } 00524 00525 static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full) 00526 { 00527 if (full) { 00528 par_mapped[33] = par[9]; 00529 par_mapped[32] = par[9]; 00530 par_mapped[31] = par[9]; 00531 par_mapped[30] = par[9]; 00532 par_mapped[29] = par[9]; 00533 par_mapped[28] = par[9]; 00534 par_mapped[27] = par[8]; 00535 par_mapped[26] = par[8]; 00536 par_mapped[25] = par[8]; 00537 par_mapped[24] = par[8]; 00538 par_mapped[23] = par[7]; 00539 par_mapped[22] = par[7]; 00540 par_mapped[21] = par[7]; 00541 par_mapped[20] = par[7]; 00542 par_mapped[19] = par[6]; 00543 par_mapped[18] = par[6]; 00544 par_mapped[17] = par[5]; 00545 par_mapped[16] = par[5]; 00546 } else { 00547 par_mapped[16] = 0; 00548 } 00549 par_mapped[15] = par[4]; 00550 par_mapped[14] = par[4]; 00551 par_mapped[13] = par[4]; 00552 par_mapped[12] = par[4]; 00553 par_mapped[11] = par[3]; 00554 par_mapped[10] = par[3]; 00555 par_mapped[ 9] = par[2]; 00556 par_mapped[ 8] = par[2]; 00557 par_mapped[ 7] = par[2]; 00558 par_mapped[ 6] = par[2]; 00559 par_mapped[ 5] = par[1]; 00560 par_mapped[ 4] = par[1]; 00561 par_mapped[ 3] = par[1]; 00562 par_mapped[ 2] = par[0]; 00563 par_mapped[ 1] = par[0]; 00564 par_mapped[ 0] = par[0]; 00565 } 00566 00567 static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full) 00568 { 00569 if (full) { 00570 par_mapped[33] = par[19]; 00571 par_mapped[32] = par[19]; 00572 par_mapped[31] = par[18]; 00573 par_mapped[30] = par[18]; 00574 par_mapped[29] = par[18]; 00575 par_mapped[28] = par[18]; 00576 par_mapped[27] = par[17]; 00577 par_mapped[26] = par[17]; 00578 par_mapped[25] = par[16]; 00579 par_mapped[24] = par[16]; 00580 par_mapped[23] = par[15]; 00581 par_mapped[22] = par[15]; 00582 par_mapped[21] = par[14]; 00583 par_mapped[20] = par[14]; 00584 par_mapped[19] = par[13]; 00585 par_mapped[18] = par[12]; 00586 par_mapped[17] = par[11]; 00587 } 00588 par_mapped[16] = par[10]; 00589 par_mapped[15] = par[ 9]; 00590 par_mapped[14] = par[ 9]; 00591 par_mapped[13] = par[ 8]; 00592 par_mapped[12] = par[ 8]; 00593 par_mapped[11] = par[ 7]; 00594 par_mapped[10] = par[ 6]; 00595 par_mapped[ 9] = par[ 5]; 00596 par_mapped[ 8] = par[ 5]; 00597 par_mapped[ 7] = par[ 4]; 00598 par_mapped[ 6] = par[ 4]; 00599 par_mapped[ 5] = par[ 3]; 00600 par_mapped[ 4] = (par[ 2] + par[ 3]) / 2; 00601 par_mapped[ 3] = par[ 2]; 00602 par_mapped[ 2] = par[ 1]; 00603 par_mapped[ 1] = (par[ 0] + par[ 1]) / 2; 00604 par_mapped[ 0] = par[ 0]; 00605 } 00606 00607 static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC]) 00608 { 00609 par[33] = par[19]; 00610 par[32] = par[19]; 00611 par[31] = par[18]; 00612 par[30] = par[18]; 00613 par[29] = par[18]; 00614 par[28] = par[18]; 00615 par[27] = par[17]; 00616 par[26] = par[17]; 00617 par[25] = par[16]; 00618 par[24] = par[16]; 00619 par[23] = par[15]; 00620 par[22] = par[15]; 00621 par[21] = par[14]; 00622 par[20] = par[14]; 00623 par[19] = par[13]; 00624 par[18] = par[12]; 00625 par[17] = par[11]; 00626 par[16] = par[10]; 00627 par[15] = par[ 9]; 00628 par[14] = par[ 9]; 00629 par[13] = par[ 8]; 00630 par[12] = par[ 8]; 00631 par[11] = par[ 7]; 00632 par[10] = par[ 6]; 00633 par[ 9] = par[ 5]; 00634 par[ 8] = par[ 5]; 00635 par[ 7] = par[ 4]; 00636 par[ 6] = par[ 4]; 00637 par[ 5] = par[ 3]; 00638 par[ 4] = (par[ 2] + par[ 3]) * 0.5f; 00639 par[ 3] = par[ 2]; 00640 par[ 2] = par[ 1]; 00641 par[ 1] = (par[ 0] + par[ 1]) * 0.5f; 00642 par[ 0] = par[ 0]; 00643 } 00644 00645 static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34) 00646 { 00647 float power[34][PS_QMF_TIME_SLOTS] = {{0}}; 00648 float transient_gain[34][PS_QMF_TIME_SLOTS]; 00649 float *peak_decay_nrg = ps->peak_decay_nrg; 00650 float *power_smooth = ps->power_smooth; 00651 float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth; 00652 float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay; 00653 float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay; 00654 const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20; 00655 const float peak_decay_factor = 0.76592833836465f; 00656 const float transient_impact = 1.5f; 00657 const float a_smooth = 0.25f; //< Smoothing coefficient 00658 int i, k, m, n; 00659 int n0 = 0, nL = 32; 00660 static const int link_delay[] = { 3, 4, 5 }; 00661 static const float a[] = { 0.65143905753106f, 00662 0.56471812200776f, 00663 0.48954165955695f }; 00664 00665 if (is34 != ps->is34bands_old) { 00666 memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg)); 00667 memset(ps->power_smooth, 0, sizeof(ps->power_smooth)); 00668 memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth)); 00669 memset(ps->delay, 0, sizeof(ps->delay)); 00670 memset(ps->ap_delay, 0, sizeof(ps->ap_delay)); 00671 } 00672 00673 for (n = n0; n < nL; n++) { 00674 for (k = 0; k < NR_BANDS[is34]; k++) { 00675 int i = k_to_i[k]; 00676 power[i][n] += s[k][n][0] * s[k][n][0] + s[k][n][1] * s[k][n][1]; 00677 } 00678 } 00679 00680 //Transient detection 00681 for (i = 0; i < NR_PAR_BANDS[is34]; i++) { 00682 for (n = n0; n < nL; n++) { 00683 float decayed_peak = peak_decay_factor * peak_decay_nrg[i]; 00684 float denom; 00685 peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]); 00686 power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]); 00687 peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]); 00688 denom = transient_impact * peak_decay_diff_smooth[i]; 00689 transient_gain[i][n] = (denom > power_smooth[i]) ? 00690 power_smooth[i] / denom : 1.0f; 00691 } 00692 } 00693 00694 //Decorrelation and transient reduction 00695 // PS_AP_LINKS - 1 00696 // ----- 00697 // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k] 00698 //H[k][z] = z^-2 * phi_fract[k] * | | ---------------------------------------------------------------- 00699 // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m] 00700 // m = 0 00701 //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z] 00702 for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) { 00703 int b = k_to_i[k]; 00704 float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]); 00705 float ag[PS_AP_LINKS]; 00706 g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f); 00707 memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); 00708 memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); 00709 for (m = 0; m < PS_AP_LINKS; m++) { 00710 memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0])); 00711 ag[m] = a[m] * g_decay_slope; 00712 } 00713 for (n = n0; n < nL; n++) { 00714 float in_re = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][0] - 00715 delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][1]; 00716 float in_im = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][1] + 00717 delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][0]; 00718 for (m = 0; m < PS_AP_LINKS; m++) { 00719 float a_re = ag[m] * in_re; 00720 float a_im = ag[m] * in_im; 00721 float link_delay_re = ap_delay[k][m][n+5-link_delay[m]][0]; 00722 float link_delay_im = ap_delay[k][m][n+5-link_delay[m]][1]; 00723 float fractional_delay_re = Q_fract_allpass[is34][k][m][0]; 00724 float fractional_delay_im = Q_fract_allpass[is34][k][m][1]; 00725 ap_delay[k][m][n+5][0] = in_re; 00726 ap_delay[k][m][n+5][1] = in_im; 00727 in_re = link_delay_re * fractional_delay_re - link_delay_im * fractional_delay_im - a_re; 00728 in_im = link_delay_re * fractional_delay_im + link_delay_im * fractional_delay_re - a_im; 00729 ap_delay[k][m][n+5][0] += ag[m] * in_re; 00730 ap_delay[k][m][n+5][1] += ag[m] * in_im; 00731 } 00732 out[k][n][0] = transient_gain[b][n] * in_re; 00733 out[k][n][1] = transient_gain[b][n] * in_im; 00734 } 00735 } 00736 for (; k < SHORT_DELAY_BAND[is34]; k++) { 00737 memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); 00738 memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); 00739 for (n = n0; n < nL; n++) { 00740 //H = delay 14 00741 out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][0]; 00742 out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][1]; 00743 } 00744 } 00745 for (; k < NR_BANDS[is34]; k++) { 00746 memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); 00747 memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); 00748 for (n = n0; n < nL; n++) { 00749 //H = delay 1 00750 out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][0]; 00751 out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][1]; 00752 } 00753 } 00754 } 00755 00756 static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC], 00757 int8_t (*par)[PS_MAX_NR_IIDICC], 00758 int num_par, int num_env, int full) 00759 { 00760 int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped; 00761 int e; 00762 if (num_par == 20 || num_par == 11) { 00763 for (e = 0; e < num_env; e++) { 00764 map_idx_20_to_34(par_mapped[e], par[e], full); 00765 } 00766 } else if (num_par == 10 || num_par == 5) { 00767 for (e = 0; e < num_env; e++) { 00768 map_idx_10_to_34(par_mapped[e], par[e], full); 00769 } 00770 } else { 00771 *p_par_mapped = par; 00772 } 00773 } 00774 00775 static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC], 00776 int8_t (*par)[PS_MAX_NR_IIDICC], 00777 int num_par, int num_env, int full) 00778 { 00779 int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped; 00780 int e; 00781 if (num_par == 34 || num_par == 17) { 00782 for (e = 0; e < num_env; e++) { 00783 map_idx_34_to_20(par_mapped[e], par[e], full); 00784 } 00785 } else if (num_par == 10 || num_par == 5) { 00786 for (e = 0; e < num_env; e++) { 00787 map_idx_10_to_20(par_mapped[e], par[e], full); 00788 } 00789 } else { 00790 *p_par_mapped = par; 00791 } 00792 } 00793 00794 static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34) 00795 { 00796 int e, b, k, n; 00797 00798 float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11; 00799 float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12; 00800 float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21; 00801 float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22; 00802 int8_t *opd_hist = ps->opd_hist; 00803 int8_t *ipd_hist = ps->ipd_hist; 00804 int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; 00805 int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; 00806 int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; 00807 int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; 00808 int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf; 00809 int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf; 00810 int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf; 00811 int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf; 00812 const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20; 00813 const float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB; 00814 00815 //Remapping 00816 if (ps->num_env_old) { 00817 memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0])); 00818 memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0])); 00819 memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0])); 00820 memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0])); 00821 memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0])); 00822 memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0])); 00823 memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0])); 00824 memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0])); 00825 } 00826 00827 if (is34) { 00828 remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1); 00829 remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1); 00830 if (ps->enable_ipdopd) { 00831 remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0); 00832 remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0); 00833 } 00834 if (!ps->is34bands_old) { 00835 map_val_20_to_34(H11[0][0]); 00836 map_val_20_to_34(H11[1][0]); 00837 map_val_20_to_34(H12[0][0]); 00838 map_val_20_to_34(H12[1][0]); 00839 map_val_20_to_34(H21[0][0]); 00840 map_val_20_to_34(H21[1][0]); 00841 map_val_20_to_34(H22[0][0]); 00842 map_val_20_to_34(H22[1][0]); 00843 ipdopd_reset(ipd_hist, opd_hist); 00844 } 00845 } else { 00846 remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1); 00847 remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1); 00848 if (ps->enable_ipdopd) { 00849 remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0); 00850 remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0); 00851 } 00852 if (ps->is34bands_old) { 00853 map_val_34_to_20(H11[0][0]); 00854 map_val_34_to_20(H11[1][0]); 00855 map_val_34_to_20(H12[0][0]); 00856 map_val_34_to_20(H12[1][0]); 00857 map_val_34_to_20(H21[0][0]); 00858 map_val_34_to_20(H21[1][0]); 00859 map_val_34_to_20(H22[0][0]); 00860 map_val_34_to_20(H22[1][0]); 00861 ipdopd_reset(ipd_hist, opd_hist); 00862 } 00863 } 00864 00865 //Mixing 00866 for (e = 0; e < ps->num_env; e++) { 00867 for (b = 0; b < NR_PAR_BANDS[is34]; b++) { 00868 float h11, h12, h21, h22; 00869 h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0]; 00870 h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1]; 00871 h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2]; 00872 h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3]; 00873 if (!PS_BASELINE && ps->enable_ipdopd && b < ps->nr_ipdopd_par) { 00874 //The spec say says to only run this smoother when enable_ipdopd 00875 //is set but the reference decoder appears to run it constantly 00876 float h11i, h12i, h21i, h22i; 00877 float ipd_adj_re, ipd_adj_im; 00878 int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b]; 00879 int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b]; 00880 float opd_re = pd_re_smooth[opd_idx]; 00881 float opd_im = pd_im_smooth[opd_idx]; 00882 float ipd_re = pd_re_smooth[ipd_idx]; 00883 float ipd_im = pd_im_smooth[ipd_idx]; 00884 opd_hist[b] = opd_idx & 0x3F; 00885 ipd_hist[b] = ipd_idx & 0x3F; 00886 00887 ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im; 00888 ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im; 00889 h11i = h11 * opd_im; 00890 h11 = h11 * opd_re; 00891 h12i = h12 * ipd_adj_im; 00892 h12 = h12 * ipd_adj_re; 00893 h21i = h21 * opd_im; 00894 h21 = h21 * opd_re; 00895 h22i = h22 * ipd_adj_im; 00896 h22 = h22 * ipd_adj_re; 00897 H11[1][e+1][b] = h11i; 00898 H12[1][e+1][b] = h12i; 00899 H21[1][e+1][b] = h21i; 00900 H22[1][e+1][b] = h22i; 00901 } 00902 H11[0][e+1][b] = h11; 00903 H12[0][e+1][b] = h12; 00904 H21[0][e+1][b] = h21; 00905 H22[0][e+1][b] = h22; 00906 } 00907 for (k = 0; k < NR_BANDS[is34]; k++) { 00908 float h11r, h12r, h21r, h22r; 00909 float h11i, h12i, h21i, h22i; 00910 float h11r_step, h12r_step, h21r_step, h22r_step; 00911 float h11i_step, h12i_step, h21i_step, h22i_step; 00912 int start = ps->border_position[e]; 00913 int stop = ps->border_position[e+1]; 00914 float width = 1.f / (stop - start); 00915 b = k_to_i[k]; 00916 h11r = H11[0][e][b]; 00917 h12r = H12[0][e][b]; 00918 h21r = H21[0][e][b]; 00919 h22r = H22[0][e][b]; 00920 if (!PS_BASELINE && ps->enable_ipdopd) { 00921 //Is this necessary? ps_04_new seems unchanged 00922 if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) { 00923 h11i = -H11[1][e][b]; 00924 h12i = -H12[1][e][b]; 00925 h21i = -H21[1][e][b]; 00926 h22i = -H22[1][e][b]; 00927 } else { 00928 h11i = H11[1][e][b]; 00929 h12i = H12[1][e][b]; 00930 h21i = H21[1][e][b]; 00931 h22i = H22[1][e][b]; 00932 } 00933 } 00934 //Interpolation 00935 h11r_step = (H11[0][e+1][b] - h11r) * width; 00936 h12r_step = (H12[0][e+1][b] - h12r) * width; 00937 h21r_step = (H21[0][e+1][b] - h21r) * width; 00938 h22r_step = (H22[0][e+1][b] - h22r) * width; 00939 if (!PS_BASELINE && ps->enable_ipdopd) { 00940 h11i_step = (H11[1][e+1][b] - h11i) * width; 00941 h12i_step = (H12[1][e+1][b] - h12i) * width; 00942 h21i_step = (H21[1][e+1][b] - h21i) * width; 00943 h22i_step = (H22[1][e+1][b] - h22i) * width; 00944 } 00945 for (n = start + 1; n <= stop; n++) { 00946 //l is s, r is d 00947 float l_re = l[k][n][0]; 00948 float l_im = l[k][n][1]; 00949 float r_re = r[k][n][0]; 00950 float r_im = r[k][n][1]; 00951 h11r += h11r_step; 00952 h12r += h12r_step; 00953 h21r += h21r_step; 00954 h22r += h22r_step; 00955 if (!PS_BASELINE && ps->enable_ipdopd) { 00956 h11i += h11i_step; 00957 h12i += h12i_step; 00958 h21i += h21i_step; 00959 h22i += h22i_step; 00960 00961 l[k][n][0] = h11r*l_re + h21r*r_re - h11i*l_im - h21i*r_im; 00962 l[k][n][1] = h11r*l_im + h21r*r_im + h11i*l_re + h21i*r_re; 00963 r[k][n][0] = h12r*l_re + h22r*r_re - h12i*l_im - h22i*r_im; 00964 r[k][n][1] = h12r*l_im + h22r*r_im + h12i*l_re + h22i*r_re; 00965 } else { 00966 l[k][n][0] = h11r*l_re + h21r*r_re; 00967 l[k][n][1] = h11r*l_im + h21r*r_im; 00968 r[k][n][0] = h12r*l_re + h22r*r_re; 00969 r[k][n][1] = h12r*l_im + h22r*r_im; 00970 } 00971 } 00972 } 00973 } 00974 } 00975 00976 int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top) 00977 { 00978 float Lbuf[91][32][2]; 00979 float Rbuf[91][32][2]; 00980 const int len = 32; 00981 int is34 = ps->is34bands; 00982 00983 top += NR_BANDS[is34] - 64; 00984 memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0])); 00985 if (top < NR_ALLPASS_BANDS[is34]) 00986 memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0])); 00987 00988 hybrid_analysis(Lbuf, ps->in_buf, L, is34, len); 00989 decorrelation(ps, Rbuf, Lbuf, is34); 00990 stereo_processing(ps, Lbuf, Rbuf, is34); 00991 hybrid_synthesis(L, Lbuf, is34, len); 00992 hybrid_synthesis(R, Rbuf, is34, len); 00993 00994 return 0; 00995 } 00996 00997 #define PS_INIT_VLC_STATIC(num, size) \ 00998 INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \ 00999 ps_tmp[num].ps_bits, 1, 1, \ 01000 ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \ 01001 size); 01002 01003 #define PS_VLC_ROW(name) \ 01004 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) } 01005 01006 av_cold void ff_ps_init(void) { 01007 // Syntax initialization 01008 static const struct { 01009 const void *ps_codes, *ps_bits; 01010 const unsigned int table_size, elem_size; 01011 } ps_tmp[] = { 01012 PS_VLC_ROW(huff_iid_df1), 01013 PS_VLC_ROW(huff_iid_dt1), 01014 PS_VLC_ROW(huff_iid_df0), 01015 PS_VLC_ROW(huff_iid_dt0), 01016 PS_VLC_ROW(huff_icc_df), 01017 PS_VLC_ROW(huff_icc_dt), 01018 PS_VLC_ROW(huff_ipd_df), 01019 PS_VLC_ROW(huff_ipd_dt), 01020 PS_VLC_ROW(huff_opd_df), 01021 PS_VLC_ROW(huff_opd_dt), 01022 }; 01023 01024 PS_INIT_VLC_STATIC(0, 1544); 01025 PS_INIT_VLC_STATIC(1, 832); 01026 PS_INIT_VLC_STATIC(2, 1024); 01027 PS_INIT_VLC_STATIC(3, 1036); 01028 PS_INIT_VLC_STATIC(4, 544); 01029 PS_INIT_VLC_STATIC(5, 544); 01030 PS_INIT_VLC_STATIC(6, 512); 01031 PS_INIT_VLC_STATIC(7, 512); 01032 PS_INIT_VLC_STATIC(8, 512); 01033 PS_INIT_VLC_STATIC(9, 512); 01034 01035 ps_tableinit(); 01036 } 01037 01038 av_cold void ff_ps_ctx_init(PSContext *ps) 01039 { 01040 }