Libav
|
00001 /* 00002 * AAC Spectral Band Replication decoding functions 00003 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl ) 00004 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com> 00005 * 00006 * This file is part of FFmpeg. 00007 * 00008 * FFmpeg is free software; you can redistribute it and/or 00009 * modify it under the terms of the GNU Lesser General Public 00010 * License as published by the Free Software Foundation; either 00011 * version 2.1 of the License, or (at your option) any later version. 00012 * 00013 * FFmpeg is distributed in the hope that it will be useful, 00014 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00015 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00016 * Lesser General Public License for more details. 00017 * 00018 * You should have received a copy of the GNU Lesser General Public 00019 * License along with FFmpeg; if not, write to the Free Software 00020 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00021 */ 00022 00029 #include "aac.h" 00030 #include "sbr.h" 00031 #include "aacsbr.h" 00032 #include "aacsbrdata.h" 00033 #include "fft.h" 00034 #include "aacps.h" 00035 #include "libavutil/libm.h" 00036 00037 #include <stdint.h> 00038 #include <float.h> 00039 00040 #define ENVELOPE_ADJUSTMENT_OFFSET 2 00041 #define NOISE_FLOOR_OFFSET 6.0f 00042 00046 enum { 00047 T_HUFFMAN_ENV_1_5DB, 00048 F_HUFFMAN_ENV_1_5DB, 00049 T_HUFFMAN_ENV_BAL_1_5DB, 00050 F_HUFFMAN_ENV_BAL_1_5DB, 00051 T_HUFFMAN_ENV_3_0DB, 00052 F_HUFFMAN_ENV_3_0DB, 00053 T_HUFFMAN_ENV_BAL_3_0DB, 00054 F_HUFFMAN_ENV_BAL_3_0DB, 00055 T_HUFFMAN_NOISE_3_0DB, 00056 T_HUFFMAN_NOISE_BAL_3_0DB, 00057 }; 00058 00062 enum { 00063 FIXFIX, 00064 FIXVAR, 00065 VARFIX, 00066 VARVAR, 00067 }; 00068 00069 enum { 00070 EXTENSION_ID_PS = 2, 00071 }; 00072 00073 static VLC vlc_sbr[10]; 00074 static const int8_t vlc_sbr_lav[10] = 00075 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 }; 00076 static const DECLARE_ALIGNED(16, float, zero64)[64]; 00077 00078 #define SBR_INIT_VLC_STATIC(num, size) \ 00079 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \ 00080 sbr_tmp[num].sbr_bits , 1, 1, \ 00081 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \ 00082 size) 00083 00084 #define SBR_VLC_ROW(name) \ 00085 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) } 00086 00087 av_cold void ff_aac_sbr_init(void) 00088 { 00089 int n; 00090 static const struct { 00091 const void *sbr_codes, *sbr_bits; 00092 const unsigned int table_size, elem_size; 00093 } sbr_tmp[] = { 00094 SBR_VLC_ROW(t_huffman_env_1_5dB), 00095 SBR_VLC_ROW(f_huffman_env_1_5dB), 00096 SBR_VLC_ROW(t_huffman_env_bal_1_5dB), 00097 SBR_VLC_ROW(f_huffman_env_bal_1_5dB), 00098 SBR_VLC_ROW(t_huffman_env_3_0dB), 00099 SBR_VLC_ROW(f_huffman_env_3_0dB), 00100 SBR_VLC_ROW(t_huffman_env_bal_3_0dB), 00101 SBR_VLC_ROW(f_huffman_env_bal_3_0dB), 00102 SBR_VLC_ROW(t_huffman_noise_3_0dB), 00103 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB), 00104 }; 00105 00106 // SBR VLC table initialization 00107 SBR_INIT_VLC_STATIC(0, 1098); 00108 SBR_INIT_VLC_STATIC(1, 1092); 00109 SBR_INIT_VLC_STATIC(2, 768); 00110 SBR_INIT_VLC_STATIC(3, 1026); 00111 SBR_INIT_VLC_STATIC(4, 1058); 00112 SBR_INIT_VLC_STATIC(5, 1052); 00113 SBR_INIT_VLC_STATIC(6, 544); 00114 SBR_INIT_VLC_STATIC(7, 544); 00115 SBR_INIT_VLC_STATIC(8, 592); 00116 SBR_INIT_VLC_STATIC(9, 512); 00117 00118 for (n = 1; n < 320; n++) 00119 sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n]; 00120 sbr_qmf_window_us[384] = -sbr_qmf_window_us[384]; 00121 sbr_qmf_window_us[512] = -sbr_qmf_window_us[512]; 00122 00123 for (n = 0; n < 320; n++) 00124 sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n]; 00125 00126 ff_ps_init(); 00127 } 00128 00129 av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr) 00130 { 00131 sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32 00132 sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1; 00133 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128); 00134 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128); 00135 ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64); 00136 ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0); 00137 ff_ps_ctx_init(&sbr->ps); 00138 } 00139 00140 av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr) 00141 { 00142 ff_mdct_end(&sbr->mdct); 00143 ff_mdct_end(&sbr->mdct_ana); 00144 } 00145 00146 static int qsort_comparison_function_int16(const void *a, const void *b) 00147 { 00148 return *(const int16_t *)a - *(const int16_t *)b; 00149 } 00150 00151 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle) 00152 { 00153 int i; 00154 for (i = 0; i <= last_el; i++) 00155 if (table[i] == needle) 00156 return 1; 00157 return 0; 00158 } 00159 00161 static void sbr_make_f_tablelim(SpectralBandReplication *sbr) 00162 { 00163 int k; 00164 if (sbr->bs_limiter_bands > 0) { 00165 static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2) 00166 1.18509277094158210129f, //2^(0.49/2) 00167 1.11987160404675912501f }; //2^(0.49/3) 00168 const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1]; 00169 int16_t patch_borders[7]; 00170 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim; 00171 00172 patch_borders[0] = sbr->kx[1]; 00173 for (k = 1; k <= sbr->num_patches; k++) 00174 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1]; 00175 00176 memcpy(sbr->f_tablelim, sbr->f_tablelow, 00177 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0])); 00178 if (sbr->num_patches > 1) 00179 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1, 00180 (sbr->num_patches - 1) * sizeof(patch_borders[0])); 00181 00182 qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0], 00183 sizeof(sbr->f_tablelim[0]), 00184 qsort_comparison_function_int16); 00185 00186 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1; 00187 while (out < sbr->f_tablelim + sbr->n_lim) { 00188 if (*in >= *out * lim_bands_per_octave_warped) { 00189 *++out = *in++; 00190 } else if (*in == *out || 00191 !in_table_int16(patch_borders, sbr->num_patches, *in)) { 00192 in++; 00193 sbr->n_lim--; 00194 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) { 00195 *out = *in++; 00196 sbr->n_lim--; 00197 } else { 00198 *++out = *in++; 00199 } 00200 } 00201 } else { 00202 sbr->f_tablelim[0] = sbr->f_tablelow[0]; 00203 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]]; 00204 sbr->n_lim = 1; 00205 } 00206 } 00207 00208 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb) 00209 { 00210 unsigned int cnt = get_bits_count(gb); 00211 uint8_t bs_header_extra_1; 00212 uint8_t bs_header_extra_2; 00213 int old_bs_limiter_bands = sbr->bs_limiter_bands; 00214 SpectrumParameters old_spectrum_params; 00215 00216 sbr->start = 1; 00217 00218 // Save last spectrum parameters variables to compare to new ones 00219 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)); 00220 00221 sbr->bs_amp_res_header = get_bits1(gb); 00222 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4); 00223 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4); 00224 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3); 00225 skip_bits(gb, 2); // bs_reserved 00226 00227 bs_header_extra_1 = get_bits1(gb); 00228 bs_header_extra_2 = get_bits1(gb); 00229 00230 if (bs_header_extra_1) { 00231 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2); 00232 sbr->spectrum_params.bs_alter_scale = get_bits1(gb); 00233 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2); 00234 } else { 00235 sbr->spectrum_params.bs_freq_scale = 2; 00236 sbr->spectrum_params.bs_alter_scale = 1; 00237 sbr->spectrum_params.bs_noise_bands = 2; 00238 } 00239 00240 // Check if spectrum parameters changed 00241 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters))) 00242 sbr->reset = 1; 00243 00244 if (bs_header_extra_2) { 00245 sbr->bs_limiter_bands = get_bits(gb, 2); 00246 sbr->bs_limiter_gains = get_bits(gb, 2); 00247 sbr->bs_interpol_freq = get_bits1(gb); 00248 sbr->bs_smoothing_mode = get_bits1(gb); 00249 } else { 00250 sbr->bs_limiter_bands = 2; 00251 sbr->bs_limiter_gains = 2; 00252 sbr->bs_interpol_freq = 1; 00253 sbr->bs_smoothing_mode = 1; 00254 } 00255 00256 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset) 00257 sbr_make_f_tablelim(sbr); 00258 00259 return get_bits_count(gb) - cnt; 00260 } 00261 00262 static int array_min_int16(const int16_t *array, int nel) 00263 { 00264 int i, min = array[0]; 00265 for (i = 1; i < nel; i++) 00266 min = FFMIN(array[i], min); 00267 return min; 00268 } 00269 00270 static void make_bands(int16_t* bands, int start, int stop, int num_bands) 00271 { 00272 int k, previous, present; 00273 float base, prod; 00274 00275 base = powf((float)stop / start, 1.0f / num_bands); 00276 prod = start; 00277 previous = start; 00278 00279 for (k = 0; k < num_bands-1; k++) { 00280 prod *= base; 00281 present = lrintf(prod); 00282 bands[k] = present - previous; 00283 previous = present; 00284 } 00285 bands[num_bands-1] = stop - previous; 00286 } 00287 00288 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band) 00289 { 00290 // Requirements (14496-3 sp04 p205) 00291 if (n_master <= 0) { 00292 av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master); 00293 return -1; 00294 } 00295 if (bs_xover_band >= n_master) { 00296 av_log(avctx, AV_LOG_ERROR, 00297 "Invalid bitstream, crossover band index beyond array bounds: %d\n", 00298 bs_xover_band); 00299 return -1; 00300 } 00301 return 0; 00302 } 00303 00305 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr, 00306 SpectrumParameters *spectrum) 00307 { 00308 unsigned int temp, max_qmf_subbands; 00309 unsigned int start_min, stop_min; 00310 int k; 00311 const int8_t *sbr_offset_ptr; 00312 int16_t stop_dk[13]; 00313 00314 if (sbr->sample_rate < 32000) { 00315 temp = 3000; 00316 } else if (sbr->sample_rate < 64000) { 00317 temp = 4000; 00318 } else 00319 temp = 5000; 00320 00321 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate; 00322 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate; 00323 00324 switch (sbr->sample_rate) { 00325 case 16000: 00326 sbr_offset_ptr = sbr_offset[0]; 00327 break; 00328 case 22050: 00329 sbr_offset_ptr = sbr_offset[1]; 00330 break; 00331 case 24000: 00332 sbr_offset_ptr = sbr_offset[2]; 00333 break; 00334 case 32000: 00335 sbr_offset_ptr = sbr_offset[3]; 00336 break; 00337 case 44100: case 48000: case 64000: 00338 sbr_offset_ptr = sbr_offset[4]; 00339 break; 00340 case 88200: case 96000: case 128000: case 176400: case 192000: 00341 sbr_offset_ptr = sbr_offset[5]; 00342 break; 00343 default: 00344 av_log(ac->avctx, AV_LOG_ERROR, 00345 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate); 00346 return -1; 00347 } 00348 00349 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq]; 00350 00351 if (spectrum->bs_stop_freq < 14) { 00352 sbr->k[2] = stop_min; 00353 make_bands(stop_dk, stop_min, 64, 13); 00354 qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16); 00355 for (k = 0; k < spectrum->bs_stop_freq; k++) 00356 sbr->k[2] += stop_dk[k]; 00357 } else if (spectrum->bs_stop_freq == 14) { 00358 sbr->k[2] = 2*sbr->k[0]; 00359 } else if (spectrum->bs_stop_freq == 15) { 00360 sbr->k[2] = 3*sbr->k[0]; 00361 } else { 00362 av_log(ac->avctx, AV_LOG_ERROR, 00363 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq); 00364 return -1; 00365 } 00366 sbr->k[2] = FFMIN(64, sbr->k[2]); 00367 00368 // Requirements (14496-3 sp04 p205) 00369 if (sbr->sample_rate <= 32000) { 00370 max_qmf_subbands = 48; 00371 } else if (sbr->sample_rate == 44100) { 00372 max_qmf_subbands = 35; 00373 } else if (sbr->sample_rate >= 48000) 00374 max_qmf_subbands = 32; 00375 00376 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) { 00377 av_log(ac->avctx, AV_LOG_ERROR, 00378 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]); 00379 return -1; 00380 } 00381 00382 if (!spectrum->bs_freq_scale) { 00383 int dk, k2diff; 00384 00385 dk = spectrum->bs_alter_scale + 1; 00386 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1; 00387 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band)) 00388 return -1; 00389 00390 for (k = 1; k <= sbr->n_master; k++) 00391 sbr->f_master[k] = dk; 00392 00393 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk; 00394 if (k2diff < 0) { 00395 sbr->f_master[1]--; 00396 sbr->f_master[2]-= (k2diff < -1); 00397 } else if (k2diff) { 00398 sbr->f_master[sbr->n_master]++; 00399 } 00400 00401 sbr->f_master[0] = sbr->k[0]; 00402 for (k = 1; k <= sbr->n_master; k++) 00403 sbr->f_master[k] += sbr->f_master[k - 1]; 00404 00405 } else { 00406 int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3} 00407 int two_regions, num_bands_0; 00408 int vdk0_max, vdk1_min; 00409 int16_t vk0[49]; 00410 00411 if (49 * sbr->k[2] > 110 * sbr->k[0]) { 00412 two_regions = 1; 00413 sbr->k[1] = 2 * sbr->k[0]; 00414 } else { 00415 two_regions = 0; 00416 sbr->k[1] = sbr->k[2]; 00417 } 00418 00419 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2; 00420 00421 if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205) 00422 av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0); 00423 return -1; 00424 } 00425 00426 vk0[0] = 0; 00427 00428 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0); 00429 00430 qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16); 00431 vdk0_max = vk0[num_bands_0]; 00432 00433 vk0[0] = sbr->k[0]; 00434 for (k = 1; k <= num_bands_0; k++) { 00435 if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205) 00436 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]); 00437 return -1; 00438 } 00439 vk0[k] += vk0[k-1]; 00440 } 00441 00442 if (two_regions) { 00443 int16_t vk1[49]; 00444 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f 00445 : 1.0f; // bs_alter_scale = {0,1} 00446 int num_bands_1 = lrintf(half_bands * invwarp * 00447 log2f(sbr->k[2] / (float)sbr->k[1])) * 2; 00448 00449 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1); 00450 00451 vdk1_min = array_min_int16(vk1 + 1, num_bands_1); 00452 00453 if (vdk1_min < vdk0_max) { 00454 int change; 00455 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16); 00456 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1); 00457 vk1[1] += change; 00458 vk1[num_bands_1] -= change; 00459 } 00460 00461 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16); 00462 00463 vk1[0] = sbr->k[1]; 00464 for (k = 1; k <= num_bands_1; k++) { 00465 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205) 00466 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]); 00467 return -1; 00468 } 00469 vk1[k] += vk1[k-1]; 00470 } 00471 00472 sbr->n_master = num_bands_0 + num_bands_1; 00473 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band)) 00474 return -1; 00475 memcpy(&sbr->f_master[0], vk0, 00476 (num_bands_0 + 1) * sizeof(sbr->f_master[0])); 00477 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1, 00478 num_bands_1 * sizeof(sbr->f_master[0])); 00479 00480 } else { 00481 sbr->n_master = num_bands_0; 00482 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band)) 00483 return -1; 00484 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0])); 00485 } 00486 } 00487 00488 return 0; 00489 } 00490 00492 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr) 00493 { 00494 int i, k, sb = 0; 00495 int msb = sbr->k[0]; 00496 int usb = sbr->kx[1]; 00497 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate; 00498 00499 sbr->num_patches = 0; 00500 00501 if (goal_sb < sbr->kx[1] + sbr->m[1]) { 00502 for (k = 0; sbr->f_master[k] < goal_sb; k++) ; 00503 } else 00504 k = sbr->n_master; 00505 00506 do { 00507 int odd = 0; 00508 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) { 00509 sb = sbr->f_master[i]; 00510 odd = (sb + sbr->k[0]) & 1; 00511 } 00512 00513 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5. 00514 // After this check the final number of patches can still be six which is 00515 // illegal however the Coding Technologies decoder check stream has a final 00516 // count of 6 patches 00517 if (sbr->num_patches > 5) { 00518 av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches); 00519 return -1; 00520 } 00521 00522 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0); 00523 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches]; 00524 00525 if (sbr->patch_num_subbands[sbr->num_patches] > 0) { 00526 usb = sb; 00527 msb = sb; 00528 sbr->num_patches++; 00529 } else 00530 msb = sbr->kx[1]; 00531 00532 if (sbr->f_master[k] - sb < 3) 00533 k = sbr->n_master; 00534 } while (sb != sbr->kx[1] + sbr->m[1]); 00535 00536 if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1) 00537 sbr->num_patches--; 00538 00539 return 0; 00540 } 00541 00543 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr) 00544 { 00545 int k, temp; 00546 00547 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band; 00548 sbr->n[0] = (sbr->n[1] + 1) >> 1; 00549 00550 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band], 00551 (sbr->n[1] + 1) * sizeof(sbr->f_master[0])); 00552 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0]; 00553 sbr->kx[1] = sbr->f_tablehigh[0]; 00554 00555 // Requirements (14496-3 sp04 p205) 00556 if (sbr->kx[1] + sbr->m[1] > 64) { 00557 av_log(ac->avctx, AV_LOG_ERROR, 00558 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]); 00559 return -1; 00560 } 00561 if (sbr->kx[1] > 32) { 00562 av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]); 00563 return -1; 00564 } 00565 00566 sbr->f_tablelow[0] = sbr->f_tablehigh[0]; 00567 temp = sbr->n[1] & 1; 00568 for (k = 1; k <= sbr->n[0]; k++) 00569 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp]; 00570 00571 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands * 00572 log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3 00573 if (sbr->n_q > 5) { 00574 av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q); 00575 return -1; 00576 } 00577 00578 sbr->f_tablenoise[0] = sbr->f_tablelow[0]; 00579 temp = 0; 00580 for (k = 1; k <= sbr->n_q; k++) { 00581 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k); 00582 sbr->f_tablenoise[k] = sbr->f_tablelow[temp]; 00583 } 00584 00585 if (sbr_hf_calc_npatches(ac, sbr) < 0) 00586 return -1; 00587 00588 sbr_make_f_tablelim(sbr); 00589 00590 sbr->data[0].f_indexnoise = 0; 00591 sbr->data[1].f_indexnoise = 0; 00592 00593 return 0; 00594 } 00595 00596 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec, 00597 int elements) 00598 { 00599 int i; 00600 for (i = 0; i < elements; i++) { 00601 vec[i] = get_bits1(gb); 00602 } 00603 } 00604 00606 static const int8_t ceil_log2[] = { 00607 0, 1, 2, 2, 3, 3, 00608 }; 00609 00610 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr, 00611 GetBitContext *gb, SBRData *ch_data) 00612 { 00613 int i; 00614 unsigned bs_pointer = 0; 00615 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots 00616 int abs_bord_trail = 16; 00617 int num_rel_lead, num_rel_trail; 00618 unsigned bs_num_env_old = ch_data->bs_num_env; 00619 00620 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env]; 00621 ch_data->bs_amp_res = sbr->bs_amp_res_header; 00622 ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old]; 00623 00624 switch (ch_data->bs_frame_class = get_bits(gb, 2)) { 00625 case FIXFIX: 00626 ch_data->bs_num_env = 1 << get_bits(gb, 2); 00627 num_rel_lead = ch_data->bs_num_env - 1; 00628 if (ch_data->bs_num_env == 1) 00629 ch_data->bs_amp_res = 0; 00630 00631 if (ch_data->bs_num_env > 4) { 00632 av_log(ac->avctx, AV_LOG_ERROR, 00633 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n", 00634 ch_data->bs_num_env); 00635 return -1; 00636 } 00637 00638 ch_data->t_env[0] = 0; 00639 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail; 00640 00641 abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) / 00642 ch_data->bs_num_env; 00643 for (i = 0; i < num_rel_lead; i++) 00644 ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail; 00645 00646 ch_data->bs_freq_res[1] = get_bits1(gb); 00647 for (i = 1; i < ch_data->bs_num_env; i++) 00648 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1]; 00649 break; 00650 case FIXVAR: 00651 abs_bord_trail += get_bits(gb, 2); 00652 num_rel_trail = get_bits(gb, 2); 00653 ch_data->bs_num_env = num_rel_trail + 1; 00654 ch_data->t_env[0] = 0; 00655 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail; 00656 00657 for (i = 0; i < num_rel_trail; i++) 00658 ch_data->t_env[ch_data->bs_num_env - 1 - i] = 00659 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2; 00660 00661 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]); 00662 00663 for (i = 0; i < ch_data->bs_num_env; i++) 00664 ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb); 00665 break; 00666 case VARFIX: 00667 ch_data->t_env[0] = get_bits(gb, 2); 00668 num_rel_lead = get_bits(gb, 2); 00669 ch_data->bs_num_env = num_rel_lead + 1; 00670 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail; 00671 00672 for (i = 0; i < num_rel_lead; i++) 00673 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2; 00674 00675 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]); 00676 00677 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env); 00678 break; 00679 case VARVAR: 00680 ch_data->t_env[0] = get_bits(gb, 2); 00681 abs_bord_trail += get_bits(gb, 2); 00682 num_rel_lead = get_bits(gb, 2); 00683 num_rel_trail = get_bits(gb, 2); 00684 ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1; 00685 00686 if (ch_data->bs_num_env > 5) { 00687 av_log(ac->avctx, AV_LOG_ERROR, 00688 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n", 00689 ch_data->bs_num_env); 00690 return -1; 00691 } 00692 00693 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail; 00694 00695 for (i = 0; i < num_rel_lead; i++) 00696 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2; 00697 for (i = 0; i < num_rel_trail; i++) 00698 ch_data->t_env[ch_data->bs_num_env - 1 - i] = 00699 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2; 00700 00701 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]); 00702 00703 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env); 00704 break; 00705 } 00706 00707 if (bs_pointer > ch_data->bs_num_env + 1) { 00708 av_log(ac->avctx, AV_LOG_ERROR, 00709 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n", 00710 bs_pointer); 00711 return -1; 00712 } 00713 00714 for (i = 1; i <= ch_data->bs_num_env; i++) { 00715 if (ch_data->t_env[i-1] > ch_data->t_env[i]) { 00716 av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n"); 00717 return -1; 00718 } 00719 } 00720 00721 ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1; 00722 00723 ch_data->t_q[0] = ch_data->t_env[0]; 00724 ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env]; 00725 if (ch_data->bs_num_noise > 1) { 00726 unsigned int idx; 00727 if (ch_data->bs_frame_class == FIXFIX) { 00728 idx = ch_data->bs_num_env >> 1; 00729 } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR 00730 idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1); 00731 } else { // VARFIX 00732 if (!bs_pointer) 00733 idx = 1; 00734 else if (bs_pointer == 1) 00735 idx = ch_data->bs_num_env - 1; 00736 else // bs_pointer > 1 00737 idx = bs_pointer - 1; 00738 } 00739 ch_data->t_q[1] = ch_data->t_env[idx]; 00740 } 00741 00742 ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev 00743 ch_data->e_a[1] = -1; 00744 if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0 00745 ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer; 00746 } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1 00747 ch_data->e_a[1] = bs_pointer - 1; 00748 00749 return 0; 00750 } 00751 00752 static void copy_sbr_grid(SBRData *dst, const SBRData *src) { 00753 //These variables are saved from the previous frame rather than copied 00754 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env]; 00755 dst->t_env_num_env_old = dst->t_env[dst->bs_num_env]; 00756 dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env); 00757 00758 //These variables are read from the bitstream and therefore copied 00759 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res)); 00760 memcpy(dst->t_env, src->t_env, sizeof(dst->t_env)); 00761 memcpy(dst->t_q, src->t_q, sizeof(dst->t_q)); 00762 dst->bs_num_env = src->bs_num_env; 00763 dst->bs_amp_res = src->bs_amp_res; 00764 dst->bs_num_noise = src->bs_num_noise; 00765 dst->bs_frame_class = src->bs_frame_class; 00766 dst->e_a[1] = src->e_a[1]; 00767 } 00768 00770 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb, 00771 SBRData *ch_data) 00772 { 00773 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env); 00774 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise); 00775 } 00776 00778 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb, 00779 SBRData *ch_data) 00780 { 00781 int i; 00782 00783 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t)); 00784 for (i = 0; i < sbr->n_q; i++) 00785 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2); 00786 } 00787 00788 static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb, 00789 SBRData *ch_data, int ch) 00790 { 00791 int bits; 00792 int i, j, k; 00793 VLC_TYPE (*t_huff)[2], (*f_huff)[2]; 00794 int t_lav, f_lav; 00795 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1; 00796 const int odd = sbr->n[1] & 1; 00797 00798 if (sbr->bs_coupling && ch) { 00799 if (ch_data->bs_amp_res) { 00800 bits = 5; 00801 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table; 00802 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB]; 00803 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table; 00804 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB]; 00805 } else { 00806 bits = 6; 00807 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table; 00808 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB]; 00809 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table; 00810 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB]; 00811 } 00812 } else { 00813 if (ch_data->bs_amp_res) { 00814 bits = 6; 00815 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table; 00816 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB]; 00817 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table; 00818 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB]; 00819 } else { 00820 bits = 7; 00821 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table; 00822 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB]; 00823 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table; 00824 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB]; 00825 } 00826 } 00827 00828 for (i = 0; i < ch_data->bs_num_env; i++) { 00829 if (ch_data->bs_df_env[i]) { 00830 // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame 00831 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) { 00832 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) 00833 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav); 00834 } else if (ch_data->bs_freq_res[i + 1]) { 00835 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) { 00836 k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1] 00837 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav); 00838 } 00839 } else { 00840 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) { 00841 k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j] 00842 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav); 00843 } 00844 } 00845 } else { 00846 ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance 00847 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) 00848 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav); 00849 } 00850 } 00851 00852 //assign 0th elements of env_facs from last elements 00853 memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env], 00854 sizeof(ch_data->env_facs[0])); 00855 } 00856 00857 static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb, 00858 SBRData *ch_data, int ch) 00859 { 00860 int i, j; 00861 VLC_TYPE (*t_huff)[2], (*f_huff)[2]; 00862 int t_lav, f_lav; 00863 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1; 00864 00865 if (sbr->bs_coupling && ch) { 00866 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table; 00867 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB]; 00868 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table; 00869 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB]; 00870 } else { 00871 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table; 00872 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB]; 00873 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table; 00874 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB]; 00875 } 00876 00877 for (i = 0; i < ch_data->bs_num_noise; i++) { 00878 if (ch_data->bs_df_noise[i]) { 00879 for (j = 0; j < sbr->n_q; j++) 00880 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav); 00881 } else { 00882 ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level 00883 for (j = 1; j < sbr->n_q; j++) 00884 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav); 00885 } 00886 } 00887 00888 //assign 0th elements of noise_facs from last elements 00889 memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise], 00890 sizeof(ch_data->noise_facs[0])); 00891 } 00892 00893 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, 00894 GetBitContext *gb, 00895 int bs_extension_id, int *num_bits_left) 00896 { 00897 switch (bs_extension_id) { 00898 case EXTENSION_ID_PS: 00899 if (!ac->m4ac.ps) { 00900 av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n"); 00901 skip_bits_long(gb, *num_bits_left); // bs_fill_bits 00902 *num_bits_left = 0; 00903 } else { 00904 #if 1 00905 *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left); 00906 #else 00907 av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0); 00908 skip_bits_long(gb, *num_bits_left); // bs_fill_bits 00909 *num_bits_left = 0; 00910 #endif 00911 } 00912 break; 00913 default: 00914 av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1); 00915 skip_bits_long(gb, *num_bits_left); // bs_fill_bits 00916 *num_bits_left = 0; 00917 break; 00918 } 00919 } 00920 00921 static int read_sbr_single_channel_element(AACContext *ac, 00922 SpectralBandReplication *sbr, 00923 GetBitContext *gb) 00924 { 00925 if (get_bits1(gb)) // bs_data_extra 00926 skip_bits(gb, 4); // bs_reserved 00927 00928 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0])) 00929 return -1; 00930 read_sbr_dtdf(sbr, gb, &sbr->data[0]); 00931 read_sbr_invf(sbr, gb, &sbr->data[0]); 00932 read_sbr_envelope(sbr, gb, &sbr->data[0], 0); 00933 read_sbr_noise(sbr, gb, &sbr->data[0], 0); 00934 00935 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb))) 00936 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]); 00937 00938 return 0; 00939 } 00940 00941 static int read_sbr_channel_pair_element(AACContext *ac, 00942 SpectralBandReplication *sbr, 00943 GetBitContext *gb) 00944 { 00945 if (get_bits1(gb)) // bs_data_extra 00946 skip_bits(gb, 8); // bs_reserved 00947 00948 if ((sbr->bs_coupling = get_bits1(gb))) { 00949 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0])) 00950 return -1; 00951 copy_sbr_grid(&sbr->data[1], &sbr->data[0]); 00952 read_sbr_dtdf(sbr, gb, &sbr->data[0]); 00953 read_sbr_dtdf(sbr, gb, &sbr->data[1]); 00954 read_sbr_invf(sbr, gb, &sbr->data[0]); 00955 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0])); 00956 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0])); 00957 read_sbr_envelope(sbr, gb, &sbr->data[0], 0); 00958 read_sbr_noise(sbr, gb, &sbr->data[0], 0); 00959 read_sbr_envelope(sbr, gb, &sbr->data[1], 1); 00960 read_sbr_noise(sbr, gb, &sbr->data[1], 1); 00961 } else { 00962 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) || 00963 read_sbr_grid(ac, sbr, gb, &sbr->data[1])) 00964 return -1; 00965 read_sbr_dtdf(sbr, gb, &sbr->data[0]); 00966 read_sbr_dtdf(sbr, gb, &sbr->data[1]); 00967 read_sbr_invf(sbr, gb, &sbr->data[0]); 00968 read_sbr_invf(sbr, gb, &sbr->data[1]); 00969 read_sbr_envelope(sbr, gb, &sbr->data[0], 0); 00970 read_sbr_envelope(sbr, gb, &sbr->data[1], 1); 00971 read_sbr_noise(sbr, gb, &sbr->data[0], 0); 00972 read_sbr_noise(sbr, gb, &sbr->data[1], 1); 00973 } 00974 00975 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb))) 00976 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]); 00977 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb))) 00978 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]); 00979 00980 return 0; 00981 } 00982 00983 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr, 00984 GetBitContext *gb, int id_aac) 00985 { 00986 unsigned int cnt = get_bits_count(gb); 00987 00988 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) { 00989 if (read_sbr_single_channel_element(ac, sbr, gb)) { 00990 sbr->start = 0; 00991 return get_bits_count(gb) - cnt; 00992 } 00993 } else if (id_aac == TYPE_CPE) { 00994 if (read_sbr_channel_pair_element(ac, sbr, gb)) { 00995 sbr->start = 0; 00996 return get_bits_count(gb) - cnt; 00997 } 00998 } else { 00999 av_log(ac->avctx, AV_LOG_ERROR, 01000 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac); 01001 sbr->start = 0; 01002 return get_bits_count(gb) - cnt; 01003 } 01004 if (get_bits1(gb)) { // bs_extended_data 01005 int num_bits_left = get_bits(gb, 4); // bs_extension_size 01006 if (num_bits_left == 15) 01007 num_bits_left += get_bits(gb, 8); // bs_esc_count 01008 01009 num_bits_left <<= 3; 01010 while (num_bits_left > 7) { 01011 num_bits_left -= 2; 01012 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id 01013 } 01014 if (num_bits_left < 0) { 01015 av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n"); 01016 } 01017 if (num_bits_left > 0) 01018 skip_bits(gb, num_bits_left); 01019 } 01020 01021 return get_bits_count(gb) - cnt; 01022 } 01023 01024 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr) 01025 { 01026 int err; 01027 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params); 01028 if (err >= 0) 01029 err = sbr_make_f_derived(ac, sbr); 01030 if (err < 0) { 01031 av_log(ac->avctx, AV_LOG_ERROR, 01032 "SBR reset failed. Switching SBR to pure upsampling mode.\n"); 01033 sbr->start = 0; 01034 } 01035 } 01036 01045 int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, 01046 GetBitContext *gb_host, int crc, int cnt, int id_aac) 01047 { 01048 unsigned int num_sbr_bits = 0, num_align_bits; 01049 unsigned bytes_read; 01050 GetBitContext gbc = *gb_host, *gb = &gbc; 01051 skip_bits_long(gb_host, cnt*8 - 4); 01052 01053 sbr->reset = 0; 01054 01055 if (!sbr->sample_rate) 01056 sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support 01057 if (!ac->m4ac.ext_sample_rate) 01058 ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate; 01059 01060 if (crc) { 01061 skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check 01062 num_sbr_bits += 10; 01063 } 01064 01065 //Save some state from the previous frame. 01066 sbr->kx[0] = sbr->kx[1]; 01067 sbr->m[0] = sbr->m[1]; 01068 01069 num_sbr_bits++; 01070 if (get_bits1(gb)) // bs_header_flag 01071 num_sbr_bits += read_sbr_header(sbr, gb); 01072 01073 if (sbr->reset) 01074 sbr_reset(ac, sbr); 01075 01076 if (sbr->start) 01077 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac); 01078 01079 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7; 01080 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3); 01081 01082 if (bytes_read > cnt) { 01083 av_log(ac->avctx, AV_LOG_ERROR, 01084 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read); 01085 } 01086 return cnt; 01087 } 01088 01090 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac) 01091 { 01092 int k, e; 01093 int ch; 01094 01095 if (id_aac == TYPE_CPE && sbr->bs_coupling) { 01096 float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f; 01097 float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f; 01098 for (e = 1; e <= sbr->data[0].bs_num_env; e++) { 01099 for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) { 01100 float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f); 01101 float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha); 01102 float fac = temp1 / (1.0f + temp2); 01103 sbr->data[0].env_facs[e][k] = fac; 01104 sbr->data[1].env_facs[e][k] = fac * temp2; 01105 } 01106 } 01107 for (e = 1; e <= sbr->data[0].bs_num_noise; e++) { 01108 for (k = 0; k < sbr->n_q; k++) { 01109 float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1); 01110 float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]); 01111 float fac = temp1 / (1.0f + temp2); 01112 sbr->data[0].noise_facs[e][k] = fac; 01113 sbr->data[1].noise_facs[e][k] = fac * temp2; 01114 } 01115 } 01116 } else { // SCE or one non-coupled CPE 01117 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) { 01118 float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f; 01119 for (e = 1; e <= sbr->data[ch].bs_num_env; e++) 01120 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++) 01121 sbr->data[ch].env_facs[e][k] = 01122 exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f); 01123 for (e = 1; e <= sbr->data[ch].bs_num_noise; e++) 01124 for (k = 0; k < sbr->n_q; k++) 01125 sbr->data[ch].noise_facs[e][k] = 01126 exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]); 01127 } 01128 } 01129 } 01130 01137 static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct, const float *in, float *x, 01138 float z[320], float W[2][32][32][2], 01139 float scale) 01140 { 01141 int i, k; 01142 memcpy(W[0], W[1], sizeof(W[0])); 01143 memcpy(x , x+1024, (320-32)*sizeof(x[0])); 01144 if (scale != 1.0f) 01145 dsp->vector_fmul_scalar(x+288, in, scale, 1024); 01146 else 01147 memcpy(x+288, in, 1024*sizeof(*x)); 01148 for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames 01149 // are not supported 01150 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320); 01151 for (k = 0; k < 64; k++) { 01152 float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256]; 01153 z[k] = f; 01154 } 01155 //Shuffle to IMDCT 01156 z[64] = z[0]; 01157 for (k = 1; k < 32; k++) { 01158 z[64+2*k-1] = z[ k]; 01159 z[64+2*k ] = -z[64-k]; 01160 } 01161 z[64+63] = z[32]; 01162 01163 ff_imdct_half(mdct, z, z+64); 01164 for (k = 0; k < 32; k++) { 01165 W[1][i][k][0] = -z[63-k]; 01166 W[1][i][k][1] = z[k]; 01167 } 01168 x += 32; 01169 } 01170 } 01171 01176 static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct, 01177 float *out, float X[2][38][64], 01178 float mdct_buf[2][64], 01179 float *v0, int *v_off, const unsigned int div, 01180 float bias, float scale) 01181 { 01182 int i, n; 01183 const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us; 01184 int scale_and_bias = scale != 1.0f || bias != 0.0f; 01185 float *v; 01186 for (i = 0; i < 32; i++) { 01187 if (*v_off == 0) { 01188 int saved_samples = (1280 - 128) >> div; 01189 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float)); 01190 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div); 01191 } else { 01192 *v_off -= 128 >> div; 01193 } 01194 v = v0 + *v_off; 01195 if (div) { 01196 for (n = 0; n < 32; n++) { 01197 X[0][i][ n] = -X[0][i][n]; 01198 X[0][i][32+n] = X[1][i][31-n]; 01199 } 01200 ff_imdct_half(mdct, mdct_buf[0], X[0][i]); 01201 for (n = 0; n < 32; n++) { 01202 v[ n] = mdct_buf[0][63 - 2*n]; 01203 v[63 - n] = -mdct_buf[0][62 - 2*n]; 01204 } 01205 } else { 01206 for (n = 1; n < 64; n+=2) { 01207 X[1][i][n] = -X[1][i][n]; 01208 } 01209 ff_imdct_half(mdct, mdct_buf[0], X[0][i]); 01210 ff_imdct_half(mdct, mdct_buf[1], X[1][i]); 01211 for (n = 0; n < 64; n++) { 01212 v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ]; 01213 v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ]; 01214 } 01215 } 01216 dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div); 01217 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div); 01218 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div); 01219 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div); 01220 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div); 01221 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div); 01222 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div); 01223 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div); 01224 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div); 01225 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div); 01226 if (scale_and_bias) 01227 for (n = 0; n < 64 >> div; n++) 01228 out[n] = out[n] * scale + bias; 01229 out += 64 >> div; 01230 } 01231 } 01232 01233 static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag) 01234 { 01235 int i; 01236 float real_sum = 0.0f; 01237 float imag_sum = 0.0f; 01238 if (lag) { 01239 for (i = 1; i < 38; i++) { 01240 real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1]; 01241 imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0]; 01242 } 01243 phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1]; 01244 phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0]; 01245 if (lag == 1) { 01246 phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1]; 01247 phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0]; 01248 } 01249 } else { 01250 for (i = 1; i < 38; i++) { 01251 real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1]; 01252 } 01253 phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1]; 01254 phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1]; 01255 } 01256 } 01257 01262 static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2], 01263 const float X_low[32][40][2], int k0) 01264 { 01265 int k; 01266 for (k = 0; k < k0; k++) { 01267 float phi[3][2][2], dk; 01268 01269 autocorrelate(X_low[k], phi, 0); 01270 autocorrelate(X_low[k], phi, 1); 01271 autocorrelate(X_low[k], phi, 2); 01272 01273 dk = phi[2][1][0] * phi[1][0][0] - 01274 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f; 01275 01276 if (!dk) { 01277 alpha1[k][0] = 0; 01278 alpha1[k][1] = 0; 01279 } else { 01280 float temp_real, temp_im; 01281 temp_real = phi[0][0][0] * phi[1][1][0] - 01282 phi[0][0][1] * phi[1][1][1] - 01283 phi[0][1][0] * phi[1][0][0]; 01284 temp_im = phi[0][0][0] * phi[1][1][1] + 01285 phi[0][0][1] * phi[1][1][0] - 01286 phi[0][1][1] * phi[1][0][0]; 01287 01288 alpha1[k][0] = temp_real / dk; 01289 alpha1[k][1] = temp_im / dk; 01290 } 01291 01292 if (!phi[1][0][0]) { 01293 alpha0[k][0] = 0; 01294 alpha0[k][1] = 0; 01295 } else { 01296 float temp_real, temp_im; 01297 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] + 01298 alpha1[k][1] * phi[1][1][1]; 01299 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] - 01300 alpha1[k][0] * phi[1][1][1]; 01301 01302 alpha0[k][0] = -temp_real / phi[1][0][0]; 01303 alpha0[k][1] = -temp_im / phi[1][0][0]; 01304 } 01305 01306 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f || 01307 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) { 01308 alpha1[k][0] = 0; 01309 alpha1[k][1] = 0; 01310 alpha0[k][0] = 0; 01311 alpha0[k][1] = 0; 01312 } 01313 } 01314 } 01315 01317 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data) 01318 { 01319 int i; 01320 float new_bw; 01321 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f }; 01322 01323 for (i = 0; i < sbr->n_q; i++) { 01324 if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) { 01325 new_bw = 0.6f; 01326 } else 01327 new_bw = bw_tab[ch_data->bs_invf_mode[0][i]]; 01328 01329 if (new_bw < ch_data->bw_array[i]) { 01330 new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i]; 01331 } else 01332 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i]; 01333 ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw; 01334 } 01335 } 01336 01338 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr, 01339 float X_low[32][40][2], const float W[2][32][32][2]) 01340 { 01341 int i, k; 01342 const int t_HFGen = 8; 01343 const int i_f = 32; 01344 memset(X_low, 0, 32*sizeof(*X_low)); 01345 for (k = 0; k < sbr->kx[1]; k++) { 01346 for (i = t_HFGen; i < i_f + t_HFGen; i++) { 01347 X_low[k][i][0] = W[1][i - t_HFGen][k][0]; 01348 X_low[k][i][1] = W[1][i - t_HFGen][k][1]; 01349 } 01350 } 01351 for (k = 0; k < sbr->kx[0]; k++) { 01352 for (i = 0; i < t_HFGen; i++) { 01353 X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0]; 01354 X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1]; 01355 } 01356 } 01357 return 0; 01358 } 01359 01361 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr, 01362 float X_high[64][40][2], const float X_low[32][40][2], 01363 const float (*alpha0)[2], const float (*alpha1)[2], 01364 const float bw_array[5], const uint8_t *t_env, 01365 int bs_num_env) 01366 { 01367 int i, j, x; 01368 int g = 0; 01369 int k = sbr->kx[1]; 01370 for (j = 0; j < sbr->num_patches; j++) { 01371 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) { 01372 float alpha[4]; 01373 const int p = sbr->patch_start_subband[j] + x; 01374 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g]) 01375 g++; 01376 g--; 01377 01378 if (g < 0) { 01379 av_log(ac->avctx, AV_LOG_ERROR, 01380 "ERROR : no subband found for frequency %d\n", k); 01381 return -1; 01382 } 01383 01384 alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g]; 01385 alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g]; 01386 alpha[2] = alpha0[p][0] * bw_array[g]; 01387 alpha[3] = alpha0[p][1] * bw_array[g]; 01388 01389 for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) { 01390 const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET; 01391 X_high[k][idx][0] = 01392 X_low[p][idx - 2][0] * alpha[0] - 01393 X_low[p][idx - 2][1] * alpha[1] + 01394 X_low[p][idx - 1][0] * alpha[2] - 01395 X_low[p][idx - 1][1] * alpha[3] + 01396 X_low[p][idx][0]; 01397 X_high[k][idx][1] = 01398 X_low[p][idx - 2][1] * alpha[0] + 01399 X_low[p][idx - 2][0] * alpha[1] + 01400 X_low[p][idx - 1][1] * alpha[2] + 01401 X_low[p][idx - 1][0] * alpha[3] + 01402 X_low[p][idx][1]; 01403 } 01404 } 01405 } 01406 if (k < sbr->m[1] + sbr->kx[1]) 01407 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high)); 01408 01409 return 0; 01410 } 01411 01413 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64], 01414 const float X_low[32][40][2], const float Y[2][38][64][2], 01415 int ch) 01416 { 01417 int k, i; 01418 const int i_f = 32; 01419 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0); 01420 memset(X, 0, 2*sizeof(*X)); 01421 for (k = 0; k < sbr->kx[0]; k++) { 01422 for (i = 0; i < i_Temp; i++) { 01423 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0]; 01424 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1]; 01425 } 01426 } 01427 for (; k < sbr->kx[0] + sbr->m[0]; k++) { 01428 for (i = 0; i < i_Temp; i++) { 01429 X[0][i][k] = Y[0][i + i_f][k][0]; 01430 X[1][i][k] = Y[0][i + i_f][k][1]; 01431 } 01432 } 01433 01434 for (k = 0; k < sbr->kx[1]; k++) { 01435 for (i = i_Temp; i < 38; i++) { 01436 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0]; 01437 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1]; 01438 } 01439 } 01440 for (; k < sbr->kx[1] + sbr->m[1]; k++) { 01441 for (i = i_Temp; i < i_f; i++) { 01442 X[0][i][k] = Y[1][i][k][0]; 01443 X[1][i][k] = Y[1][i][k][1]; 01444 } 01445 } 01446 return 0; 01447 } 01448 01452 static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr, 01453 SBRData *ch_data, int e_a[2]) 01454 { 01455 int e, i, m; 01456 01457 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1])); 01458 for (e = 0; e < ch_data->bs_num_env; e++) { 01459 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]]; 01460 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow; 01461 int k; 01462 01463 for (i = 0; i < ilim; i++) 01464 for (m = table[i]; m < table[i + 1]; m++) 01465 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i]; 01466 01467 // ch_data->bs_num_noise > 1 => 2 noise floors 01468 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]); 01469 for (i = 0; i < sbr->n_q; i++) 01470 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++) 01471 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i]; 01472 01473 for (i = 0; i < sbr->n[1]; i++) { 01474 if (ch_data->bs_add_harmonic_flag) { 01475 const unsigned int m_midpoint = 01476 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1; 01477 01478 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] * 01479 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1)); 01480 } 01481 } 01482 01483 for (i = 0; i < ilim; i++) { 01484 int additional_sinusoid_present = 0; 01485 for (m = table[i]; m < table[i + 1]; m++) { 01486 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) { 01487 additional_sinusoid_present = 1; 01488 break; 01489 } 01490 } 01491 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present, 01492 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0])); 01493 } 01494 } 01495 01496 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0])); 01497 } 01498 01500 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2], 01501 SpectralBandReplication *sbr, SBRData *ch_data) 01502 { 01503 int e, i, m; 01504 01505 if (sbr->bs_interpol_freq) { 01506 for (e = 0; e < ch_data->bs_num_env; e++) { 01507 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]); 01508 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; 01509 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; 01510 01511 for (m = 0; m < sbr->m[1]; m++) { 01512 float sum = 0.0f; 01513 01514 for (i = ilb; i < iub; i++) { 01515 sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] + 01516 X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1]; 01517 } 01518 e_curr[e][m] = sum * recip_env_size; 01519 } 01520 } 01521 } else { 01522 int k, p; 01523 01524 for (e = 0; e < ch_data->bs_num_env; e++) { 01525 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]); 01526 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; 01527 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; 01528 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow; 01529 01530 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) { 01531 float sum = 0.0f; 01532 const int den = env_size * (table[p + 1] - table[p]); 01533 01534 for (k = table[p]; k < table[p + 1]; k++) { 01535 for (i = ilb; i < iub; i++) { 01536 sum += X_high[k][i][0] * X_high[k][i][0] + 01537 X_high[k][i][1] * X_high[k][i][1]; 01538 } 01539 } 01540 sum /= den; 01541 for (k = table[p]; k < table[p + 1]; k++) { 01542 e_curr[e][k - sbr->kx[1]] = sum; 01543 } 01544 } 01545 } 01546 } 01547 } 01548 01553 static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, 01554 SBRData *ch_data, const int e_a[2]) 01555 { 01556 int e, k, m; 01557 // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off) 01558 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 }; 01559 01560 for (e = 0; e < ch_data->bs_num_env; e++) { 01561 int delta = !((e == e_a[1]) || (e == e_a[0])); 01562 for (k = 0; k < sbr->n_lim; k++) { 01563 float gain_boost, gain_max; 01564 float sum[2] = { 0.0f, 0.0f }; 01565 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { 01566 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]); 01567 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]); 01568 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]); 01569 if (!sbr->s_mapped[e][m]) { 01570 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] / 01571 ((1.0f + sbr->e_curr[e][m]) * 01572 (1.0f + sbr->q_mapped[e][m] * delta))); 01573 } else { 01574 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] / 01575 ((1.0f + sbr->e_curr[e][m]) * 01576 (1.0f + sbr->q_mapped[e][m]))); 01577 } 01578 } 01579 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { 01580 sum[0] += sbr->e_origmapped[e][m]; 01581 sum[1] += sbr->e_curr[e][m]; 01582 } 01583 gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1])); 01584 gain_max = FFMIN(100000, gain_max); 01585 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { 01586 float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m]; 01587 sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max); 01588 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max); 01589 } 01590 sum[0] = sum[1] = 0.0f; 01591 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { 01592 sum[0] += sbr->e_origmapped[e][m]; 01593 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m] 01594 + sbr->s_m[e][m] * sbr->s_m[e][m] 01595 + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m]; 01596 } 01597 gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1])); 01598 gain_boost = FFMIN(1.584893192, gain_boost); 01599 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { 01600 sbr->gain[e][m] *= gain_boost; 01601 sbr->q_m[e][m] *= gain_boost; 01602 sbr->s_m[e][m] *= gain_boost; 01603 } 01604 } 01605 } 01606 } 01607 01609 static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2], 01610 SpectralBandReplication *sbr, SBRData *ch_data, 01611 const int e_a[2]) 01612 { 01613 int e, i, j, m; 01614 const int h_SL = 4 * !sbr->bs_smoothing_mode; 01615 const int kx = sbr->kx[1]; 01616 const int m_max = sbr->m[1]; 01617 static const float h_smooth[5] = { 01618 0.33333333333333, 01619 0.30150283239582, 01620 0.21816949906249, 01621 0.11516383427084, 01622 0.03183050093751, 01623 }; 01624 static const int8_t phi[2][4] = { 01625 { 1, 0, -1, 0}, // real 01626 { 0, 1, 0, -1}, // imaginary 01627 }; 01628 float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp; 01629 int indexnoise = ch_data->f_indexnoise; 01630 int indexsine = ch_data->f_indexsine; 01631 memcpy(Y[0], Y[1], sizeof(Y[0])); 01632 01633 if (sbr->reset) { 01634 for (i = 0; i < h_SL; i++) { 01635 memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0])); 01636 memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0])); 01637 } 01638 } else if (h_SL) { 01639 memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0])); 01640 memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0])); 01641 } 01642 01643 for (e = 0; e < ch_data->bs_num_env; e++) { 01644 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { 01645 memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0])); 01646 memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0])); 01647 } 01648 } 01649 01650 for (e = 0; e < ch_data->bs_num_env; e++) { 01651 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { 01652 int phi_sign = (1 - 2*(kx & 1)); 01653 01654 if (h_SL && e != e_a[0] && e != e_a[1]) { 01655 for (m = 0; m < m_max; m++) { 01656 const int idx1 = i + h_SL; 01657 float g_filt = 0.0f; 01658 for (j = 0; j <= h_SL; j++) 01659 g_filt += g_temp[idx1 - j][m] * h_smooth[j]; 01660 Y[1][i][m + kx][0] = 01661 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt; 01662 Y[1][i][m + kx][1] = 01663 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt; 01664 } 01665 } else { 01666 for (m = 0; m < m_max; m++) { 01667 const float g_filt = g_temp[i + h_SL][m]; 01668 Y[1][i][m + kx][0] = 01669 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt; 01670 Y[1][i][m + kx][1] = 01671 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt; 01672 } 01673 } 01674 01675 if (e != e_a[0] && e != e_a[1]) { 01676 for (m = 0; m < m_max; m++) { 01677 indexnoise = (indexnoise + 1) & 0x1ff; 01678 if (sbr->s_m[e][m]) { 01679 Y[1][i][m + kx][0] += 01680 sbr->s_m[e][m] * phi[0][indexsine]; 01681 Y[1][i][m + kx][1] += 01682 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign); 01683 } else { 01684 float q_filt; 01685 if (h_SL) { 01686 const int idx1 = i + h_SL; 01687 q_filt = 0.0f; 01688 for (j = 0; j <= h_SL; j++) 01689 q_filt += q_temp[idx1 - j][m] * h_smooth[j]; 01690 } else { 01691 q_filt = q_temp[i][m]; 01692 } 01693 Y[1][i][m + kx][0] += 01694 q_filt * sbr_noise_table[indexnoise][0]; 01695 Y[1][i][m + kx][1] += 01696 q_filt * sbr_noise_table[indexnoise][1]; 01697 } 01698 phi_sign = -phi_sign; 01699 } 01700 } else { 01701 indexnoise = (indexnoise + m_max) & 0x1ff; 01702 for (m = 0; m < m_max; m++) { 01703 Y[1][i][m + kx][0] += 01704 sbr->s_m[e][m] * phi[0][indexsine]; 01705 Y[1][i][m + kx][1] += 01706 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign); 01707 phi_sign = -phi_sign; 01708 } 01709 } 01710 indexsine = (indexsine + 1) & 3; 01711 } 01712 } 01713 ch_data->f_indexnoise = indexnoise; 01714 ch_data->f_indexsine = indexsine; 01715 } 01716 01717 void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac, 01718 float* L, float* R) 01719 { 01720 int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate; 01721 int ch; 01722 int nch = (id_aac == TYPE_CPE) ? 2 : 1; 01723 01724 if (sbr->start) { 01725 sbr_dequant(sbr, id_aac); 01726 } 01727 for (ch = 0; ch < nch; ch++) { 01728 /* decode channel */ 01729 sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, ch ? R : L, sbr->data[ch].analysis_filterbank_samples, 01730 (float*)sbr->qmf_filter_scratch, 01731 sbr->data[ch].W, 1/(-1024 * ac->sf_scale)); 01732 sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W); 01733 if (sbr->start) { 01734 sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]); 01735 sbr_chirp(sbr, &sbr->data[ch]); 01736 sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1, 01737 sbr->data[ch].bw_array, sbr->data[ch].t_env, 01738 sbr->data[ch].bs_num_env); 01739 01740 // hf_adj 01741 sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a); 01742 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]); 01743 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a); 01744 sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch], 01745 sbr->data[ch].e_a); 01746 } 01747 01748 /* synthesis */ 01749 sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch); 01750 } 01751 01752 if (ac->m4ac.ps == 1) { 01753 if (sbr->ps.start) { 01754 ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]); 01755 } else { 01756 memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0])); 01757 } 01758 nch = 2; 01759 } 01760 01761 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch, 01762 sbr->data[0].synthesis_filterbank_samples, 01763 &sbr->data[0].synthesis_filterbank_samples_offset, 01764 downsampled, 01765 ac->add_bias, -1024 * ac->sf_scale); 01766 if (nch == 2) 01767 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch, 01768 sbr->data[1].synthesis_filterbank_samples, 01769 &sbr->data[1].synthesis_filterbank_samples_offset, 01770 downsampled, 01771 ac->add_bias, -1024 * ac->sf_scale); 01772 }