Libav
|
00001 /* 00002 * VC3/DNxHD encoder 00003 * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com> 00004 * 00005 * VC-3 encoder funded by the British Broadcasting Corporation 00006 * 00007 * This file is part of FFmpeg. 00008 * 00009 * FFmpeg is free software; you can redistribute it and/or 00010 * modify it under the terms of the GNU Lesser General Public 00011 * License as published by the Free Software Foundation; either 00012 * version 2.1 of the License, or (at your option) any later version. 00013 * 00014 * FFmpeg is distributed in the hope that it will be useful, 00015 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00016 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00017 * Lesser General Public License for more details. 00018 * 00019 * You should have received a copy of the GNU Lesser General Public 00020 * License along with FFmpeg; if not, write to the Free Software 00021 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00022 */ 00023 00024 //#define DEBUG 00025 #define RC_VARIANCE 1 // use variance or ssd for fast rc 00026 00027 #include "avcodec.h" 00028 #include "dsputil.h" 00029 #include "mpegvideo.h" 00030 #include "dnxhdenc.h" 00031 00032 int dct_quantize_c(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow); 00033 00034 #define LAMBDA_FRAC_BITS 10 00035 00036 static av_always_inline void dnxhd_get_pixels_8x4(DCTELEM *restrict block, const uint8_t *pixels, int line_size) 00037 { 00038 int i; 00039 for (i = 0; i < 4; i++) { 00040 block[0] = pixels[0]; block[1] = pixels[1]; 00041 block[2] = pixels[2]; block[3] = pixels[3]; 00042 block[4] = pixels[4]; block[5] = pixels[5]; 00043 block[6] = pixels[6]; block[7] = pixels[7]; 00044 pixels += line_size; 00045 block += 8; 00046 } 00047 memcpy(block , block- 8, sizeof(*block)*8); 00048 memcpy(block+ 8, block-16, sizeof(*block)*8); 00049 memcpy(block+16, block-24, sizeof(*block)*8); 00050 memcpy(block+24, block-32, sizeof(*block)*8); 00051 } 00052 00053 static int dnxhd_init_vlc(DNXHDEncContext *ctx) 00054 { 00055 int i, j, level, run; 00056 int max_level = 1<<(ctx->cid_table->bit_depth+2); 00057 00058 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail); 00059 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits , max_level*4*sizeof(*ctx->vlc_bits ), fail); 00060 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2 , fail); 00061 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits , 63 , fail); 00062 00063 ctx->vlc_codes += max_level*2; 00064 ctx->vlc_bits += max_level*2; 00065 for (level = -max_level; level < max_level; level++) { 00066 for (run = 0; run < 2; run++) { 00067 int index = (level<<1)|run; 00068 int sign, offset = 0, alevel = level; 00069 00070 MASK_ABS(sign, alevel); 00071 if (alevel > 64) { 00072 offset = (alevel-1)>>6; 00073 alevel -= offset<<6; 00074 } 00075 for (j = 0; j < 257; j++) { 00076 if (ctx->cid_table->ac_level[j] == alevel && 00077 (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) && 00078 (!run || (ctx->cid_table->ac_run_flag [j] && run))) { 00079 assert(!ctx->vlc_codes[index]); 00080 if (alevel) { 00081 ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1); 00082 ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1; 00083 } else { 00084 ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j]; 00085 ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j]; 00086 } 00087 break; 00088 } 00089 } 00090 assert(!alevel || j < 257); 00091 if (offset) { 00092 ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset; 00093 ctx->vlc_bits [index]+= ctx->cid_table->index_bits; 00094 } 00095 } 00096 } 00097 for (i = 0; i < 62; i++) { 00098 int run = ctx->cid_table->run[i]; 00099 assert(run < 63); 00100 ctx->run_codes[run] = ctx->cid_table->run_codes[i]; 00101 ctx->run_bits [run] = ctx->cid_table->run_bits[i]; 00102 } 00103 return 0; 00104 fail: 00105 return -1; 00106 } 00107 00108 static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias) 00109 { 00110 // init first elem to 1 to avoid div by 0 in convert_matrix 00111 uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t* 00112 int qscale, i; 00113 00114 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int) , fail); 00115 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int) , fail); 00116 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail); 00117 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail); 00118 00119 for (i = 1; i < 64; i++) { 00120 int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]]; 00121 weight_matrix[j] = ctx->cid_table->luma_weight[i]; 00122 } 00123 ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix, 00124 ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1); 00125 for (i = 1; i < 64; i++) { 00126 int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]]; 00127 weight_matrix[j] = ctx->cid_table->chroma_weight[i]; 00128 } 00129 ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix, 00130 ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1); 00131 for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) { 00132 for (i = 0; i < 64; i++) { 00133 ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2; 00134 ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2; 00135 ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2; 00136 } 00137 } 00138 return 0; 00139 fail: 00140 return -1; 00141 } 00142 00143 static int dnxhd_init_rc(DNXHDEncContext *ctx) 00144 { 00145 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail); 00146 if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) 00147 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail); 00148 00149 ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4) * 8; 00150 ctx->qscale = 1; 00151 ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2 00152 return 0; 00153 fail: 00154 return -1; 00155 } 00156 00157 static int dnxhd_encode_init(AVCodecContext *avctx) 00158 { 00159 DNXHDEncContext *ctx = avctx->priv_data; 00160 int i, index; 00161 00162 ctx->cid = ff_dnxhd_find_cid(avctx); 00163 if (!ctx->cid || avctx->pix_fmt != PIX_FMT_YUV422P) { 00164 av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n"); 00165 return -1; 00166 } 00167 av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid); 00168 00169 index = ff_dnxhd_get_cid_table(ctx->cid); 00170 ctx->cid_table = &ff_dnxhd_cid_table[index]; 00171 00172 ctx->m.avctx = avctx; 00173 ctx->m.mb_intra = 1; 00174 ctx->m.h263_aic = 1; 00175 00176 ctx->get_pixels_8x4_sym = dnxhd_get_pixels_8x4; 00177 00178 dsputil_init(&ctx->m.dsp, avctx); 00179 ff_dct_common_init(&ctx->m); 00180 #if HAVE_MMX 00181 ff_dnxhd_init_mmx(ctx); 00182 #endif 00183 if (!ctx->m.dct_quantize) 00184 ctx->m.dct_quantize = dct_quantize_c; 00185 00186 ctx->m.mb_height = (avctx->height + 15) / 16; 00187 ctx->m.mb_width = (avctx->width + 15) / 16; 00188 00189 if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) { 00190 ctx->interlaced = 1; 00191 ctx->m.mb_height /= 2; 00192 } 00193 00194 ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width; 00195 00196 if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS) 00197 ctx->m.intra_quant_bias = avctx->intra_quant_bias; 00198 if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias 00199 return -1; 00200 00201 if (dnxhd_init_vlc(ctx) < 0) 00202 return -1; 00203 if (dnxhd_init_rc(ctx) < 0) 00204 return -1; 00205 00206 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail); 00207 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail); 00208 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail); 00209 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t) , fail); 00210 00211 ctx->frame.key_frame = 1; 00212 ctx->frame.pict_type = FF_I_TYPE; 00213 ctx->m.avctx->coded_frame = &ctx->frame; 00214 00215 if (avctx->thread_count > MAX_THREADS) { 00216 av_log(avctx, AV_LOG_ERROR, "too many threads\n"); 00217 return -1; 00218 } 00219 00220 ctx->thread[0] = ctx; 00221 for (i = 1; i < avctx->thread_count; i++) { 00222 ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext)); 00223 memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext)); 00224 } 00225 00226 return 0; 00227 fail: //for FF_ALLOCZ_OR_GOTO 00228 return -1; 00229 } 00230 00231 static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf) 00232 { 00233 DNXHDEncContext *ctx = avctx->priv_data; 00234 const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 }; 00235 00236 memset(buf, 0, 640); 00237 00238 memcpy(buf, header_prefix, 5); 00239 buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01; 00240 buf[6] = 0x80; // crc flag off 00241 buf[7] = 0xa0; // reserved 00242 AV_WB16(buf + 0x18, avctx->height); // ALPF 00243 AV_WB16(buf + 0x1a, avctx->width); // SPL 00244 AV_WB16(buf + 0x1d, avctx->height); // NAL 00245 00246 buf[0x21] = 0x38; // FIXME 8 bit per comp 00247 buf[0x22] = 0x88 + (ctx->frame.interlaced_frame<<2); 00248 AV_WB32(buf + 0x28, ctx->cid); // CID 00249 buf[0x2c] = ctx->interlaced ? 0 : 0x80; 00250 00251 buf[0x5f] = 0x01; // UDL 00252 00253 buf[0x167] = 0x02; // reserved 00254 AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS 00255 buf[0x16d] = ctx->m.mb_height; // Ns 00256 buf[0x16f] = 0x10; // reserved 00257 00258 ctx->msip = buf + 0x170; 00259 return 0; 00260 } 00261 00262 static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff) 00263 { 00264 int nbits; 00265 if (diff < 0) { 00266 nbits = av_log2_16bit(-2*diff); 00267 diff--; 00268 } else { 00269 nbits = av_log2_16bit(2*diff); 00270 } 00271 put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits, 00272 (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1))); 00273 } 00274 00275 static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n) 00276 { 00277 int last_non_zero = 0; 00278 int slevel, i, j; 00279 00280 dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]); 00281 ctx->m.last_dc[n] = block[0]; 00282 00283 for (i = 1; i <= last_index; i++) { 00284 j = ctx->m.intra_scantable.permutated[i]; 00285 slevel = block[j]; 00286 if (slevel) { 00287 int run_level = i - last_non_zero - 1; 00288 int rlevel = (slevel<<1)|!!run_level; 00289 put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]); 00290 if (run_level) 00291 put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]); 00292 last_non_zero = i; 00293 } 00294 } 00295 put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB 00296 } 00297 00298 static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index) 00299 { 00300 const uint8_t *weight_matrix; 00301 int level; 00302 int i; 00303 00304 weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight; 00305 00306 for (i = 1; i <= last_index; i++) { 00307 int j = ctx->m.intra_scantable.permutated[i]; 00308 level = block[j]; 00309 if (level) { 00310 if (level < 0) { 00311 level = (1-2*level) * qscale * weight_matrix[i]; 00312 if (weight_matrix[i] != 32) 00313 level += 32; 00314 level >>= 6; 00315 level = -level; 00316 } else { 00317 level = (2*level+1) * qscale * weight_matrix[i]; 00318 if (weight_matrix[i] != 32) 00319 level += 32; 00320 level >>= 6; 00321 } 00322 block[j] = level; 00323 } 00324 } 00325 } 00326 00327 static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block) 00328 { 00329 int score = 0; 00330 int i; 00331 for (i = 0; i < 64; i++) 00332 score += (block[i]-qblock[i])*(block[i]-qblock[i]); 00333 return score; 00334 } 00335 00336 static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index) 00337 { 00338 int last_non_zero = 0; 00339 int bits = 0; 00340 int i, j, level; 00341 for (i = 1; i <= last_index; i++) { 00342 j = ctx->m.intra_scantable.permutated[i]; 00343 level = block[j]; 00344 if (level) { 00345 int run_level = i - last_non_zero - 1; 00346 bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level]; 00347 last_non_zero = i; 00348 } 00349 } 00350 return bits; 00351 } 00352 00353 static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y) 00354 { 00355 const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << 4); 00356 const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3); 00357 const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3); 00358 DSPContext *dsp = &ctx->m.dsp; 00359 00360 dsp->get_pixels(ctx->blocks[0], ptr_y , ctx->m.linesize); 00361 dsp->get_pixels(ctx->blocks[1], ptr_y + 8, ctx->m.linesize); 00362 dsp->get_pixels(ctx->blocks[2], ptr_u , ctx->m.uvlinesize); 00363 dsp->get_pixels(ctx->blocks[3], ptr_v , ctx->m.uvlinesize); 00364 00365 if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) { 00366 if (ctx->interlaced) { 00367 ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset , ctx->m.linesize); 00368 ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize); 00369 ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset , ctx->m.uvlinesize); 00370 ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset , ctx->m.uvlinesize); 00371 } else { 00372 dsp->clear_block(ctx->blocks[4]); dsp->clear_block(ctx->blocks[5]); 00373 dsp->clear_block(ctx->blocks[6]); dsp->clear_block(ctx->blocks[7]); 00374 } 00375 } else { 00376 dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset , ctx->m.linesize); 00377 dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize); 00378 dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset , ctx->m.uvlinesize); 00379 dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset , ctx->m.uvlinesize); 00380 } 00381 } 00382 00383 static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i) 00384 { 00385 if (i&2) { 00386 ctx->m.q_intra_matrix16 = ctx->qmatrix_c16; 00387 ctx->m.q_intra_matrix = ctx->qmatrix_c; 00388 return 1 + (i&1); 00389 } else { 00390 ctx->m.q_intra_matrix16 = ctx->qmatrix_l16; 00391 ctx->m.q_intra_matrix = ctx->qmatrix_l; 00392 return 0; 00393 } 00394 } 00395 00396 static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) 00397 { 00398 DNXHDEncContext *ctx = avctx->priv_data; 00399 int mb_y = jobnr, mb_x; 00400 int qscale = ctx->qscale; 00401 LOCAL_ALIGNED_16(DCTELEM, block, [64]); 00402 ctx = ctx->thread[threadnr]; 00403 00404 ctx->m.last_dc[0] = 00405 ctx->m.last_dc[1] = 00406 ctx->m.last_dc[2] = 1024; 00407 00408 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { 00409 unsigned mb = mb_y * ctx->m.mb_width + mb_x; 00410 int ssd = 0; 00411 int ac_bits = 0; 00412 int dc_bits = 0; 00413 int i; 00414 00415 dnxhd_get_blocks(ctx, mb_x, mb_y); 00416 00417 for (i = 0; i < 8; i++) { 00418 DCTELEM *src_block = ctx->blocks[i]; 00419 int overflow, nbits, diff, last_index; 00420 int n = dnxhd_switch_matrix(ctx, i); 00421 00422 memcpy(block, src_block, 64*sizeof(*block)); 00423 last_index = ctx->m.dct_quantize((MpegEncContext*)ctx, block, i, qscale, &overflow); 00424 ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index); 00425 00426 diff = block[0] - ctx->m.last_dc[n]; 00427 if (diff < 0) nbits = av_log2_16bit(-2*diff); 00428 else nbits = av_log2_16bit( 2*diff); 00429 dc_bits += ctx->cid_table->dc_bits[nbits] + nbits; 00430 00431 ctx->m.last_dc[n] = block[0]; 00432 00433 if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) { 00434 dnxhd_unquantize_c(ctx, block, i, qscale, last_index); 00435 ctx->m.dsp.idct(block); 00436 ssd += dnxhd_ssd_block(block, src_block); 00437 } 00438 } 00439 ctx->mb_rc[qscale][mb].ssd = ssd; 00440 ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0]; 00441 } 00442 return 0; 00443 } 00444 00445 static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) 00446 { 00447 DNXHDEncContext *ctx = avctx->priv_data; 00448 int mb_y = jobnr, mb_x; 00449 ctx = ctx->thread[threadnr]; 00450 init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]); 00451 00452 ctx->m.last_dc[0] = 00453 ctx->m.last_dc[1] = 00454 ctx->m.last_dc[2] = 1024; 00455 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { 00456 unsigned mb = mb_y * ctx->m.mb_width + mb_x; 00457 int qscale = ctx->mb_qscale[mb]; 00458 int i; 00459 00460 put_bits(&ctx->m.pb, 12, qscale<<1); 00461 00462 dnxhd_get_blocks(ctx, mb_x, mb_y); 00463 00464 for (i = 0; i < 8; i++) { 00465 DCTELEM *block = ctx->blocks[i]; 00466 int last_index, overflow; 00467 int n = dnxhd_switch_matrix(ctx, i); 00468 last_index = ctx->m.dct_quantize((MpegEncContext*)ctx, block, i, qscale, &overflow); 00469 //START_TIMER; 00470 dnxhd_encode_block(ctx, block, last_index, n); 00471 //STOP_TIMER("encode_block"); 00472 } 00473 } 00474 if (put_bits_count(&ctx->m.pb)&31) 00475 put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0); 00476 flush_put_bits(&ctx->m.pb); 00477 return 0; 00478 } 00479 00480 static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx) 00481 { 00482 int mb_y, mb_x; 00483 int offset = 0; 00484 for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) { 00485 int thread_size; 00486 ctx->slice_offs[mb_y] = offset; 00487 ctx->slice_size[mb_y] = 0; 00488 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { 00489 unsigned mb = mb_y * ctx->m.mb_width + mb_x; 00490 ctx->slice_size[mb_y] += ctx->mb_bits[mb]; 00491 } 00492 ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31; 00493 ctx->slice_size[mb_y] >>= 3; 00494 thread_size = ctx->slice_size[mb_y]; 00495 offset += thread_size; 00496 } 00497 } 00498 00499 static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) 00500 { 00501 DNXHDEncContext *ctx = avctx->priv_data; 00502 int mb_y = jobnr, mb_x; 00503 ctx = ctx->thread[threadnr]; 00504 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { 00505 unsigned mb = mb_y * ctx->m.mb_width + mb_x; 00506 uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize) + (mb_x<<4); 00507 int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize); 00508 int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)(sum*sum))>>8)+128)>>8; 00509 ctx->mb_cmp[mb].value = varc; 00510 ctx->mb_cmp[mb].mb = mb; 00511 } 00512 return 0; 00513 } 00514 00515 static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx) 00516 { 00517 int lambda, up_step, down_step; 00518 int last_lower = INT_MAX, last_higher = 0; 00519 int x, y, q; 00520 00521 for (q = 1; q < avctx->qmax; q++) { 00522 ctx->qscale = q; 00523 avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height); 00524 } 00525 up_step = down_step = 2<<LAMBDA_FRAC_BITS; 00526 lambda = ctx->lambda; 00527 00528 for (;;) { 00529 int bits = 0; 00530 int end = 0; 00531 if (lambda == last_higher) { 00532 lambda++; 00533 end = 1; // need to set final qscales/bits 00534 } 00535 for (y = 0; y < ctx->m.mb_height; y++) { 00536 for (x = 0; x < ctx->m.mb_width; x++) { 00537 unsigned min = UINT_MAX; 00538 int qscale = 1; 00539 int mb = y*ctx->m.mb_width+x; 00540 for (q = 1; q < avctx->qmax; q++) { 00541 unsigned score = ctx->mb_rc[q][mb].bits*lambda+(ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS); 00542 if (score < min) { 00543 min = score; 00544 qscale = q; 00545 } 00546 } 00547 bits += ctx->mb_rc[qscale][mb].bits; 00548 ctx->mb_qscale[mb] = qscale; 00549 ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits; 00550 } 00551 bits = (bits+31)&~31; // padding 00552 if (bits > ctx->frame_bits) 00553 break; 00554 } 00555 //dprintf(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n", 00556 // lambda, last_higher, last_lower, bits, ctx->frame_bits); 00557 if (end) { 00558 if (bits > ctx->frame_bits) 00559 return -1; 00560 break; 00561 } 00562 if (bits < ctx->frame_bits) { 00563 last_lower = FFMIN(lambda, last_lower); 00564 if (last_higher != 0) 00565 lambda = (lambda+last_higher)>>1; 00566 else 00567 lambda -= down_step; 00568 down_step *= 5; // XXX tune ? 00569 up_step = 1<<LAMBDA_FRAC_BITS; 00570 lambda = FFMAX(1, lambda); 00571 if (lambda == last_lower) 00572 break; 00573 } else { 00574 last_higher = FFMAX(lambda, last_higher); 00575 if (last_lower != INT_MAX) 00576 lambda = (lambda+last_lower)>>1; 00577 else if ((int64_t)lambda + up_step > INT_MAX) 00578 return -1; 00579 else 00580 lambda += up_step; 00581 up_step = FFMIN((int64_t)up_step*5, INT_MAX); 00582 down_step = 1<<LAMBDA_FRAC_BITS; 00583 } 00584 } 00585 //dprintf(ctx->m.avctx, "out lambda %d\n", lambda); 00586 ctx->lambda = lambda; 00587 return 0; 00588 } 00589 00590 static int dnxhd_find_qscale(DNXHDEncContext *ctx) 00591 { 00592 int bits = 0; 00593 int up_step = 1; 00594 int down_step = 1; 00595 int last_higher = 0; 00596 int last_lower = INT_MAX; 00597 int qscale; 00598 int x, y; 00599 00600 qscale = ctx->qscale; 00601 for (;;) { 00602 bits = 0; 00603 ctx->qscale = qscale; 00604 // XXX avoid recalculating bits 00605 ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height); 00606 for (y = 0; y < ctx->m.mb_height; y++) { 00607 for (x = 0; x < ctx->m.mb_width; x++) 00608 bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits; 00609 bits = (bits+31)&~31; // padding 00610 if (bits > ctx->frame_bits) 00611 break; 00612 } 00613 //dprintf(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n", 00614 // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower); 00615 if (bits < ctx->frame_bits) { 00616 if (qscale == 1) 00617 return 1; 00618 if (last_higher == qscale - 1) { 00619 qscale = last_higher; 00620 break; 00621 } 00622 last_lower = FFMIN(qscale, last_lower); 00623 if (last_higher != 0) 00624 qscale = (qscale+last_higher)>>1; 00625 else 00626 qscale -= down_step++; 00627 if (qscale < 1) 00628 qscale = 1; 00629 up_step = 1; 00630 } else { 00631 if (last_lower == qscale + 1) 00632 break; 00633 last_higher = FFMAX(qscale, last_higher); 00634 if (last_lower != INT_MAX) 00635 qscale = (qscale+last_lower)>>1; 00636 else 00637 qscale += up_step++; 00638 down_step = 1; 00639 if (qscale >= ctx->m.avctx->qmax) 00640 return -1; 00641 } 00642 } 00643 //dprintf(ctx->m.avctx, "out qscale %d\n", qscale); 00644 ctx->qscale = qscale; 00645 return 0; 00646 } 00647 00648 #define BUCKET_BITS 8 00649 #define RADIX_PASSES 4 00650 #define NBUCKETS (1 << BUCKET_BITS) 00651 00652 static inline int get_bucket(int value, int shift) 00653 { 00654 value >>= shift; 00655 value &= NBUCKETS - 1; 00656 return NBUCKETS - 1 - value; 00657 } 00658 00659 static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS]) 00660 { 00661 int i, j; 00662 memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS); 00663 for (i = 0; i < size; i++) { 00664 int v = data[i].value; 00665 for (j = 0; j < RADIX_PASSES; j++) { 00666 buckets[j][get_bucket(v, 0)]++; 00667 v >>= BUCKET_BITS; 00668 } 00669 assert(!v); 00670 } 00671 for (j = 0; j < RADIX_PASSES; j++) { 00672 int offset = size; 00673 for (i = NBUCKETS - 1; i >= 0; i--) 00674 buckets[j][i] = offset -= buckets[j][i]; 00675 assert(!buckets[j][0]); 00676 } 00677 } 00678 00679 static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass) 00680 { 00681 int shift = pass * BUCKET_BITS; 00682 int i; 00683 for (i = 0; i < size; i++) { 00684 int v = get_bucket(data[i].value, shift); 00685 int pos = buckets[v]++; 00686 dst[pos] = data[i]; 00687 } 00688 } 00689 00690 static void radix_sort(RCCMPEntry *data, int size) 00691 { 00692 int buckets[RADIX_PASSES][NBUCKETS]; 00693 RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size); 00694 radix_count(data, size, buckets); 00695 radix_sort_pass(tmp, data, size, buckets[0], 0); 00696 radix_sort_pass(data, tmp, size, buckets[1], 1); 00697 if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) { 00698 radix_sort_pass(tmp, data, size, buckets[2], 2); 00699 radix_sort_pass(data, tmp, size, buckets[3], 3); 00700 } 00701 av_free(tmp); 00702 } 00703 00704 static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx) 00705 { 00706 int max_bits = 0; 00707 int ret, x, y; 00708 if ((ret = dnxhd_find_qscale(ctx)) < 0) 00709 return -1; 00710 for (y = 0; y < ctx->m.mb_height; y++) { 00711 for (x = 0; x < ctx->m.mb_width; x++) { 00712 int mb = y*ctx->m.mb_width+x; 00713 int delta_bits; 00714 ctx->mb_qscale[mb] = ctx->qscale; 00715 ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits; 00716 max_bits += ctx->mb_rc[ctx->qscale][mb].bits; 00717 if (!RC_VARIANCE) { 00718 delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits; 00719 ctx->mb_cmp[mb].mb = mb; 00720 ctx->mb_cmp[mb].value = delta_bits ? 00721 ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits 00722 : INT_MIN; //avoid increasing qscale 00723 } 00724 } 00725 max_bits += 31; //worst padding 00726 } 00727 if (!ret) { 00728 if (RC_VARIANCE) 00729 avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height); 00730 radix_sort(ctx->mb_cmp, ctx->m.mb_num); 00731 for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) { 00732 int mb = ctx->mb_cmp[x].mb; 00733 max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits; 00734 ctx->mb_qscale[mb] = ctx->qscale+1; 00735 ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits; 00736 } 00737 } 00738 return 0; 00739 } 00740 00741 static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame) 00742 { 00743 int i; 00744 00745 for (i = 0; i < 3; i++) { 00746 ctx->frame.data[i] = frame->data[i]; 00747 ctx->frame.linesize[i] = frame->linesize[i]; 00748 } 00749 00750 for (i = 0; i < ctx->m.avctx->thread_count; i++) { 00751 ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced; 00752 ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced; 00753 ctx->thread[i]->dct_y_offset = ctx->m.linesize *8; 00754 ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8; 00755 } 00756 00757 ctx->frame.interlaced_frame = frame->interlaced_frame; 00758 ctx->cur_field = frame->interlaced_frame && !frame->top_field_first; 00759 } 00760 00761 static int dnxhd_encode_picture(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data) 00762 { 00763 DNXHDEncContext *ctx = avctx->priv_data; 00764 int first_field = 1; 00765 int offset, i, ret; 00766 00767 if (buf_size < ctx->cid_table->frame_size) { 00768 av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n"); 00769 return -1; 00770 } 00771 00772 dnxhd_load_picture(ctx, data); 00773 00774 encode_coding_unit: 00775 for (i = 0; i < 3; i++) { 00776 ctx->src[i] = ctx->frame.data[i]; 00777 if (ctx->interlaced && ctx->cur_field) 00778 ctx->src[i] += ctx->frame.linesize[i]; 00779 } 00780 00781 dnxhd_write_header(avctx, buf); 00782 00783 if (avctx->mb_decision == FF_MB_DECISION_RD) 00784 ret = dnxhd_encode_rdo(avctx, ctx); 00785 else 00786 ret = dnxhd_encode_fast(avctx, ctx); 00787 if (ret < 0) { 00788 av_log(avctx, AV_LOG_ERROR, 00789 "picture could not fit ratecontrol constraints, increase qmax\n"); 00790 return -1; 00791 } 00792 00793 dnxhd_setup_threads_slices(ctx); 00794 00795 offset = 0; 00796 for (i = 0; i < ctx->m.mb_height; i++) { 00797 AV_WB32(ctx->msip + i * 4, offset); 00798 offset += ctx->slice_size[i]; 00799 assert(!(ctx->slice_size[i] & 3)); 00800 } 00801 00802 avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height); 00803 00804 assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size); 00805 memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640); 00806 00807 AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF 00808 00809 if (ctx->interlaced && first_field) { 00810 first_field = 0; 00811 ctx->cur_field ^= 1; 00812 buf += ctx->cid_table->coding_unit_size; 00813 buf_size -= ctx->cid_table->coding_unit_size; 00814 goto encode_coding_unit; 00815 } 00816 00817 ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA; 00818 00819 return ctx->cid_table->frame_size; 00820 } 00821 00822 static int dnxhd_encode_end(AVCodecContext *avctx) 00823 { 00824 DNXHDEncContext *ctx = avctx->priv_data; 00825 int max_level = 1<<(ctx->cid_table->bit_depth+2); 00826 int i; 00827 00828 av_free(ctx->vlc_codes-max_level*2); 00829 av_free(ctx->vlc_bits -max_level*2); 00830 av_freep(&ctx->run_codes); 00831 av_freep(&ctx->run_bits); 00832 00833 av_freep(&ctx->mb_bits); 00834 av_freep(&ctx->mb_qscale); 00835 av_freep(&ctx->mb_rc); 00836 av_freep(&ctx->mb_cmp); 00837 av_freep(&ctx->slice_size); 00838 av_freep(&ctx->slice_offs); 00839 00840 av_freep(&ctx->qmatrix_c); 00841 av_freep(&ctx->qmatrix_l); 00842 av_freep(&ctx->qmatrix_c16); 00843 av_freep(&ctx->qmatrix_l16); 00844 00845 for (i = 1; i < avctx->thread_count; i++) 00846 av_freep(&ctx->thread[i]); 00847 00848 return 0; 00849 } 00850 00851 AVCodec dnxhd_encoder = { 00852 "dnxhd", 00853 AVMEDIA_TYPE_VIDEO, 00854 CODEC_ID_DNXHD, 00855 sizeof(DNXHDEncContext), 00856 dnxhd_encode_init, 00857 dnxhd_encode_picture, 00858 dnxhd_encode_end, 00859 .pix_fmts = (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_NONE}, 00860 .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"), 00861 };