Libav
|
00001 /* 00002 * SIPR / ACELP.NET decoder 00003 * 00004 * Copyright (c) 2008 Vladimir Voroshilov 00005 * Copyright (c) 2009 Vitor Sessak 00006 * 00007 * This file is part of FFmpeg. 00008 * 00009 * FFmpeg is free software; you can redistribute it and/or 00010 * modify it under the terms of the GNU Lesser General Public 00011 * License as published by the Free Software Foundation; either 00012 * version 2.1 of the License, or (at your option) any later version. 00013 * 00014 * FFmpeg is distributed in the hope that it will be useful, 00015 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00016 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00017 * Lesser General Public License for more details. 00018 * 00019 * You should have received a copy of the GNU Lesser General Public 00020 * License along with FFmpeg; if not, write to the Free Software 00021 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00022 */ 00023 00024 #include <math.h> 00025 #include <stdint.h> 00026 00027 #include "libavutil/mathematics.h" 00028 #include "avcodec.h" 00029 #define ALT_BITSTREAM_READER_LE 00030 #include "get_bits.h" 00031 #include "dsputil.h" 00032 00033 #include "lsp.h" 00034 #include "celp_math.h" 00035 #include "acelp_vectors.h" 00036 #include "acelp_pitch_delay.h" 00037 #include "acelp_filters.h" 00038 #include "celp_filters.h" 00039 00040 #define MAX_SUBFRAME_COUNT 5 00041 00042 #include "sipr.h" 00043 #include "siprdata.h" 00044 00045 typedef struct { 00046 const char *mode_name; 00047 uint16_t bits_per_frame; 00048 uint8_t subframe_count; 00049 uint8_t frames_per_packet; 00050 float pitch_sharp_factor; 00051 00052 /* bitstream parameters */ 00053 uint8_t number_of_fc_indexes; 00054 uint8_t ma_predictor_bits; 00055 00057 uint8_t vq_indexes_bits[5]; 00058 00060 uint8_t pitch_delay_bits[5]; 00061 00062 uint8_t gp_index_bits; 00063 uint8_t fc_index_bits[10]; 00064 uint8_t gc_index_bits; 00065 } SiprModeParam; 00066 00067 static const SiprModeParam modes[MODE_COUNT] = { 00068 [MODE_16k] = { 00069 .mode_name = "16k", 00070 .bits_per_frame = 160, 00071 .subframe_count = SUBFRAME_COUNT_16k, 00072 .frames_per_packet = 1, 00073 .pitch_sharp_factor = 0.00, 00074 00075 .number_of_fc_indexes = 10, 00076 .ma_predictor_bits = 1, 00077 .vq_indexes_bits = {7, 8, 7, 7, 7}, 00078 .pitch_delay_bits = {9, 6}, 00079 .gp_index_bits = 4, 00080 .fc_index_bits = {4, 5, 4, 5, 4, 5, 4, 5, 4, 5}, 00081 .gc_index_bits = 5 00082 }, 00083 00084 [MODE_8k5] = { 00085 .mode_name = "8k5", 00086 .bits_per_frame = 152, 00087 .subframe_count = 3, 00088 .frames_per_packet = 1, 00089 .pitch_sharp_factor = 0.8, 00090 00091 .number_of_fc_indexes = 3, 00092 .ma_predictor_bits = 0, 00093 .vq_indexes_bits = {6, 7, 7, 7, 5}, 00094 .pitch_delay_bits = {8, 5, 5}, 00095 .gp_index_bits = 0, 00096 .fc_index_bits = {9, 9, 9}, 00097 .gc_index_bits = 7 00098 }, 00099 00100 [MODE_6k5] = { 00101 .mode_name = "6k5", 00102 .bits_per_frame = 232, 00103 .subframe_count = 3, 00104 .frames_per_packet = 2, 00105 .pitch_sharp_factor = 0.8, 00106 00107 .number_of_fc_indexes = 3, 00108 .ma_predictor_bits = 0, 00109 .vq_indexes_bits = {6, 7, 7, 7, 5}, 00110 .pitch_delay_bits = {8, 5, 5}, 00111 .gp_index_bits = 0, 00112 .fc_index_bits = {5, 5, 5}, 00113 .gc_index_bits = 7 00114 }, 00115 00116 [MODE_5k0] = { 00117 .mode_name = "5k0", 00118 .bits_per_frame = 296, 00119 .subframe_count = 5, 00120 .frames_per_packet = 2, 00121 .pitch_sharp_factor = 0.85, 00122 00123 .number_of_fc_indexes = 1, 00124 .ma_predictor_bits = 0, 00125 .vq_indexes_bits = {6, 7, 7, 7, 5}, 00126 .pitch_delay_bits = {8, 5, 8, 5, 5}, 00127 .gp_index_bits = 0, 00128 .fc_index_bits = {10}, 00129 .gc_index_bits = 7 00130 } 00131 }; 00132 00133 const float ff_pow_0_5[] = { 00134 1.0/(1 << 1), 1.0/(1 << 2), 1.0/(1 << 3), 1.0/(1 << 4), 00135 1.0/(1 << 5), 1.0/(1 << 6), 1.0/(1 << 7), 1.0/(1 << 8), 00136 1.0/(1 << 9), 1.0/(1 << 10), 1.0/(1 << 11), 1.0/(1 << 12), 00137 1.0/(1 << 13), 1.0/(1 << 14), 1.0/(1 << 15), 1.0/(1 << 16) 00138 }; 00139 00140 static void dequant(float *out, const int *idx, const float *cbs[]) 00141 { 00142 int i; 00143 int stride = 2; 00144 int num_vec = 5; 00145 00146 for (i = 0; i < num_vec; i++) 00147 memcpy(out + stride*i, cbs[i] + stride*idx[i], stride*sizeof(float)); 00148 00149 } 00150 00151 static void lsf_decode_fp(float *lsfnew, float *lsf_history, 00152 const SiprParameters *parm) 00153 { 00154 int i; 00155 float lsf_tmp[LP_FILTER_ORDER]; 00156 00157 dequant(lsf_tmp, parm->vq_indexes, lsf_codebooks); 00158 00159 for (i = 0; i < LP_FILTER_ORDER; i++) 00160 lsfnew[i] = lsf_history[i] * 0.33 + lsf_tmp[i] + mean_lsf[i]; 00161 00162 ff_sort_nearly_sorted_floats(lsfnew, LP_FILTER_ORDER - 1); 00163 00164 /* Note that a minimum distance is not enforced between the last value and 00165 the previous one, contrary to what is done in ff_acelp_reorder_lsf() */ 00166 ff_set_min_dist_lsf(lsfnew, LSFQ_DIFF_MIN, LP_FILTER_ORDER - 1); 00167 lsfnew[9] = FFMIN(lsfnew[LP_FILTER_ORDER - 1], 1.3 * M_PI); 00168 00169 memcpy(lsf_history, lsf_tmp, LP_FILTER_ORDER * sizeof(*lsf_history)); 00170 00171 for (i = 0; i < LP_FILTER_ORDER - 1; i++) 00172 lsfnew[i] = cos(lsfnew[i]); 00173 lsfnew[LP_FILTER_ORDER - 1] *= 6.153848 / M_PI; 00174 } 00175 00177 static void pitch_sharpening(int pitch_lag_int, float beta, 00178 float *fixed_vector) 00179 { 00180 int i; 00181 00182 for (i = pitch_lag_int; i < SUBFR_SIZE; i++) 00183 fixed_vector[i] += beta * fixed_vector[i - pitch_lag_int]; 00184 } 00185 00191 static void decode_parameters(SiprParameters* parms, GetBitContext *pgb, 00192 const SiprModeParam *p) 00193 { 00194 int i, j; 00195 00196 parms->ma_pred_switch = get_bits(pgb, p->ma_predictor_bits); 00197 00198 for (i = 0; i < 5; i++) 00199 parms->vq_indexes[i] = get_bits(pgb, p->vq_indexes_bits[i]); 00200 00201 for (i = 0; i < p->subframe_count; i++) { 00202 parms->pitch_delay[i] = get_bits(pgb, p->pitch_delay_bits[i]); 00203 parms->gp_index[i] = get_bits(pgb, p->gp_index_bits); 00204 00205 for (j = 0; j < p->number_of_fc_indexes; j++) 00206 parms->fc_indexes[i][j] = get_bits(pgb, p->fc_index_bits[j]); 00207 00208 parms->gc_index[i] = get_bits(pgb, p->gc_index_bits); 00209 } 00210 } 00211 00212 static void lsp2lpc_sipr(const double *lsp, float *Az) 00213 { 00214 int lp_half_order = LP_FILTER_ORDER >> 1; 00215 double buf[(LP_FILTER_ORDER >> 1) + 1]; 00216 double pa[(LP_FILTER_ORDER >> 1) + 1]; 00217 double *qa = buf + 1; 00218 int i,j; 00219 00220 qa[-1] = 0.0; 00221 00222 ff_lsp2polyf(lsp , pa, lp_half_order ); 00223 ff_lsp2polyf(lsp + 1, qa, lp_half_order - 1); 00224 00225 for (i = 1, j = LP_FILTER_ORDER - 1; i < lp_half_order; i++, j--) { 00226 double paf = pa[i] * (1 + lsp[LP_FILTER_ORDER - 1]); 00227 double qaf = (qa[i] - qa[i-2]) * (1 - lsp[LP_FILTER_ORDER - 1]); 00228 Az[i-1] = (paf + qaf) * 0.5; 00229 Az[j-1] = (paf - qaf) * 0.5; 00230 } 00231 00232 Az[lp_half_order - 1] = (1.0 + lsp[LP_FILTER_ORDER - 1]) * 00233 pa[lp_half_order] * 0.5; 00234 00235 Az[LP_FILTER_ORDER - 1] = lsp[LP_FILTER_ORDER - 1]; 00236 } 00237 00238 static void sipr_decode_lp(float *lsfnew, const float *lsfold, float *Az, 00239 int num_subfr) 00240 { 00241 double lsfint[LP_FILTER_ORDER]; 00242 int i,j; 00243 float t, t0 = 1.0 / num_subfr; 00244 00245 t = t0 * 0.5; 00246 for (i = 0; i < num_subfr; i++) { 00247 for (j = 0; j < LP_FILTER_ORDER; j++) 00248 lsfint[j] = lsfold[j] * (1 - t) + t * lsfnew[j]; 00249 00250 lsp2lpc_sipr(lsfint, Az); 00251 Az += LP_FILTER_ORDER; 00252 t += t0; 00253 } 00254 } 00255 00259 static void eval_ir(const float *Az, int pitch_lag, float *freq, 00260 float pitch_sharp_factor) 00261 { 00262 float tmp1[SUBFR_SIZE+1], tmp2[LP_FILTER_ORDER+1]; 00263 int i; 00264 00265 tmp1[0] = 1.; 00266 for (i = 0; i < LP_FILTER_ORDER; i++) { 00267 tmp1[i+1] = Az[i] * ff_pow_0_55[i]; 00268 tmp2[i ] = Az[i] * ff_pow_0_7 [i]; 00269 } 00270 memset(tmp1 + 11, 0, 37 * sizeof(float)); 00271 00272 ff_celp_lp_synthesis_filterf(freq, tmp2, tmp1, SUBFR_SIZE, 00273 LP_FILTER_ORDER); 00274 00275 pitch_sharpening(pitch_lag, pitch_sharp_factor, freq); 00276 } 00277 00281 static void convolute_with_sparse(float *out, const AMRFixed *pulses, 00282 const float *shape, int length) 00283 { 00284 int i, j; 00285 00286 memset(out, 0, length*sizeof(float)); 00287 for (i = 0; i < pulses->n; i++) 00288 for (j = pulses->x[i]; j < length; j++) 00289 out[j] += pulses->y[i] * shape[j - pulses->x[i]]; 00290 } 00291 00295 static void postfilter_5k0(SiprContext *ctx, const float *lpc, float *samples) 00296 { 00297 float buf[SUBFR_SIZE + LP_FILTER_ORDER]; 00298 float *pole_out = buf + LP_FILTER_ORDER; 00299 float lpc_n[LP_FILTER_ORDER]; 00300 float lpc_d[LP_FILTER_ORDER]; 00301 int i; 00302 00303 for (i = 0; i < LP_FILTER_ORDER; i++) { 00304 lpc_d[i] = lpc[i] * ff_pow_0_75[i]; 00305 lpc_n[i] = lpc[i] * ff_pow_0_5 [i]; 00306 }; 00307 00308 memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem, 00309 LP_FILTER_ORDER*sizeof(float)); 00310 00311 ff_celp_lp_synthesis_filterf(pole_out, lpc_d, samples, SUBFR_SIZE, 00312 LP_FILTER_ORDER); 00313 00314 memcpy(ctx->postfilter_mem, pole_out + SUBFR_SIZE - LP_FILTER_ORDER, 00315 LP_FILTER_ORDER*sizeof(float)); 00316 00317 ff_tilt_compensation(&ctx->tilt_mem, 0.4, pole_out, SUBFR_SIZE); 00318 00319 memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem5k0, 00320 LP_FILTER_ORDER*sizeof(*pole_out)); 00321 00322 memcpy(ctx->postfilter_mem5k0, pole_out + SUBFR_SIZE - LP_FILTER_ORDER, 00323 LP_FILTER_ORDER*sizeof(*pole_out)); 00324 00325 ff_celp_lp_zero_synthesis_filterf(samples, lpc_n, pole_out, SUBFR_SIZE, 00326 LP_FILTER_ORDER); 00327 00328 } 00329 00330 static void decode_fixed_sparse(AMRFixed *fixed_sparse, const int16_t *pulses, 00331 SiprMode mode, int low_gain) 00332 { 00333 int i; 00334 00335 switch (mode) { 00336 case MODE_6k5: 00337 for (i = 0; i < 3; i++) { 00338 fixed_sparse->x[i] = 3 * (pulses[i] & 0xf) + i; 00339 fixed_sparse->y[i] = pulses[i] & 0x10 ? -1 : 1; 00340 } 00341 fixed_sparse->n = 3; 00342 break; 00343 case MODE_8k5: 00344 for (i = 0; i < 3; i++) { 00345 fixed_sparse->x[2*i ] = 3 * ((pulses[i] >> 4) & 0xf) + i; 00346 fixed_sparse->x[2*i + 1] = 3 * ( pulses[i] & 0xf) + i; 00347 00348 fixed_sparse->y[2*i ] = (pulses[i] & 0x100) ? -1.0: 1.0; 00349 00350 fixed_sparse->y[2*i + 1] = 00351 (fixed_sparse->x[2*i + 1] < fixed_sparse->x[2*i]) ? 00352 -fixed_sparse->y[2*i ] : fixed_sparse->y[2*i]; 00353 } 00354 00355 fixed_sparse->n = 6; 00356 break; 00357 case MODE_5k0: 00358 default: 00359 if (low_gain) { 00360 int offset = (pulses[0] & 0x200) ? 2 : 0; 00361 int val = pulses[0]; 00362 00363 for (i = 0; i < 3; i++) { 00364 int index = (val & 0x7) * 6 + 4 - i*2; 00365 00366 fixed_sparse->y[i] = (offset + index) & 0x3 ? -1 : 1; 00367 fixed_sparse->x[i] = index; 00368 00369 val >>= 3; 00370 } 00371 fixed_sparse->n = 3; 00372 } else { 00373 int pulse_subset = (pulses[0] >> 8) & 1; 00374 00375 fixed_sparse->x[0] = ((pulses[0] >> 4) & 15) * 3 + pulse_subset; 00376 fixed_sparse->x[1] = ( pulses[0] & 15) * 3 + pulse_subset + 1; 00377 00378 fixed_sparse->y[0] = pulses[0] & 0x200 ? -1 : 1; 00379 fixed_sparse->y[1] = -fixed_sparse->y[0]; 00380 fixed_sparse->n = 2; 00381 } 00382 break; 00383 } 00384 } 00385 00386 static void decode_frame(SiprContext *ctx, SiprParameters *params, 00387 float *out_data) 00388 { 00389 int i, j; 00390 int subframe_count = modes[ctx->mode].subframe_count; 00391 int frame_size = subframe_count * SUBFR_SIZE; 00392 float Az[LP_FILTER_ORDER * MAX_SUBFRAME_COUNT]; 00393 float *excitation; 00394 float ir_buf[SUBFR_SIZE + LP_FILTER_ORDER]; 00395 float lsf_new[LP_FILTER_ORDER]; 00396 float *impulse_response = ir_buf + LP_FILTER_ORDER; 00397 float *synth = ctx->synth_buf + 16; // 16 instead of LP_FILTER_ORDER for 00398 // memory alignment 00399 int t0_first = 0; 00400 AMRFixed fixed_cb; 00401 00402 memset(ir_buf, 0, LP_FILTER_ORDER * sizeof(float)); 00403 lsf_decode_fp(lsf_new, ctx->lsf_history, params); 00404 00405 sipr_decode_lp(lsf_new, ctx->lsp_history, Az, subframe_count); 00406 00407 memcpy(ctx->lsp_history, lsf_new, LP_FILTER_ORDER * sizeof(float)); 00408 00409 excitation = ctx->excitation + PITCH_DELAY_MAX + L_INTERPOL; 00410 00411 for (i = 0; i < subframe_count; i++) { 00412 float *pAz = Az + i*LP_FILTER_ORDER; 00413 float fixed_vector[SUBFR_SIZE]; 00414 int T0,T0_frac; 00415 float pitch_gain, gain_code, avg_energy; 00416 00417 ff_decode_pitch_lag(&T0, &T0_frac, params->pitch_delay[i], t0_first, i, 00418 ctx->mode == MODE_5k0, 6); 00419 00420 if (i == 0 || (i == 2 && ctx->mode == MODE_5k0)) 00421 t0_first = T0; 00422 00423 ff_acelp_interpolatef(excitation, excitation - T0 + (T0_frac <= 0), 00424 ff_b60_sinc, 6, 00425 2 * ((2 + T0_frac)%3 + 1), LP_FILTER_ORDER, 00426 SUBFR_SIZE); 00427 00428 decode_fixed_sparse(&fixed_cb, params->fc_indexes[i], ctx->mode, 00429 ctx->past_pitch_gain < 0.8); 00430 00431 eval_ir(pAz, T0, impulse_response, modes[ctx->mode].pitch_sharp_factor); 00432 00433 convolute_with_sparse(fixed_vector, &fixed_cb, impulse_response, 00434 SUBFR_SIZE); 00435 00436 avg_energy = 00437 (0.01 + ff_dot_productf(fixed_vector, fixed_vector, SUBFR_SIZE))/ 00438 SUBFR_SIZE; 00439 00440 ctx->past_pitch_gain = pitch_gain = gain_cb[params->gc_index[i]][0]; 00441 00442 gain_code = ff_amr_set_fixed_gain(gain_cb[params->gc_index[i]][1], 00443 avg_energy, ctx->energy_history, 00444 34 - 15.0/(0.05*M_LN10/M_LN2), 00445 pred); 00446 00447 ff_weighted_vector_sumf(excitation, excitation, fixed_vector, 00448 pitch_gain, gain_code, SUBFR_SIZE); 00449 00450 pitch_gain *= 0.5 * pitch_gain; 00451 pitch_gain = FFMIN(pitch_gain, 0.4); 00452 00453 ctx->gain_mem = 0.7 * ctx->gain_mem + 0.3 * pitch_gain; 00454 ctx->gain_mem = FFMIN(ctx->gain_mem, pitch_gain); 00455 gain_code *= ctx->gain_mem; 00456 00457 for (j = 0; j < SUBFR_SIZE; j++) 00458 fixed_vector[j] = excitation[j] - gain_code * fixed_vector[j]; 00459 00460 if (ctx->mode == MODE_5k0) { 00461 postfilter_5k0(ctx, pAz, fixed_vector); 00462 00463 ff_celp_lp_synthesis_filterf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE, 00464 pAz, excitation, SUBFR_SIZE, 00465 LP_FILTER_ORDER); 00466 } 00467 00468 ff_celp_lp_synthesis_filterf(synth + i*SUBFR_SIZE, pAz, fixed_vector, 00469 SUBFR_SIZE, LP_FILTER_ORDER); 00470 00471 excitation += SUBFR_SIZE; 00472 } 00473 00474 memcpy(synth - LP_FILTER_ORDER, synth + frame_size - LP_FILTER_ORDER, 00475 LP_FILTER_ORDER * sizeof(float)); 00476 00477 if (ctx->mode == MODE_5k0) { 00478 for (i = 0; i < subframe_count; i++) { 00479 float energy = ff_dot_productf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE, 00480 ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE, 00481 SUBFR_SIZE); 00482 ff_adaptive_gain_control(&synth[i * SUBFR_SIZE], 00483 &synth[i * SUBFR_SIZE], energy, 00484 SUBFR_SIZE, 0.9, &ctx->postfilter_agc); 00485 } 00486 00487 memcpy(ctx->postfilter_syn5k0, ctx->postfilter_syn5k0 + frame_size, 00488 LP_FILTER_ORDER*sizeof(float)); 00489 } 00490 memcpy(ctx->excitation, excitation - PITCH_DELAY_MAX - L_INTERPOL, 00491 (PITCH_DELAY_MAX + L_INTERPOL) * sizeof(float)); 00492 00493 ff_acelp_apply_order_2_transfer_function(out_data, synth, 00494 (const float[2]) {-1.99997 , 1.000000000}, 00495 (const float[2]) {-1.93307352, 0.935891986}, 00496 0.939805806, 00497 ctx->highpass_filt_mem, 00498 frame_size); 00499 } 00500 00501 static av_cold int sipr_decoder_init(AVCodecContext * avctx) 00502 { 00503 SiprContext *ctx = avctx->priv_data; 00504 int i; 00505 00506 if (avctx->bit_rate > 12200) ctx->mode = MODE_16k; 00507 else if (avctx->bit_rate > 7500 ) ctx->mode = MODE_8k5; 00508 else if (avctx->bit_rate > 5750 ) ctx->mode = MODE_6k5; 00509 else ctx->mode = MODE_5k0; 00510 00511 av_log(avctx, AV_LOG_DEBUG, "Mode: %s\n", modes[ctx->mode].mode_name); 00512 00513 if (ctx->mode == MODE_16k) 00514 ff_sipr_init_16k(ctx); 00515 00516 for (i = 0; i < LP_FILTER_ORDER; i++) 00517 ctx->lsp_history[i] = cos((i+1) * M_PI / (LP_FILTER_ORDER + 1)); 00518 00519 for (i = 0; i < 4; i++) 00520 ctx->energy_history[i] = -14; 00521 00522 avctx->sample_fmt = SAMPLE_FMT_FLT; 00523 00524 dsputil_init(&ctx->dsp, avctx); 00525 00526 return 0; 00527 } 00528 00529 static int sipr_decode_frame(AVCodecContext *avctx, void *datap, 00530 int *data_size, AVPacket *avpkt) 00531 { 00532 SiprContext *ctx = avctx->priv_data; 00533 const uint8_t *buf=avpkt->data; 00534 SiprParameters parm; 00535 const SiprModeParam *mode_par = &modes[ctx->mode]; 00536 GetBitContext gb; 00537 float *data = datap; 00538 int subframe_size = ctx->mode == MODE_16k ? L_SUBFR_16k : SUBFR_SIZE; 00539 int i; 00540 00541 ctx->avctx = avctx; 00542 if (avpkt->size < (mode_par->bits_per_frame >> 3)) { 00543 av_log(avctx, AV_LOG_ERROR, 00544 "Error processing packet: packet size (%d) too small\n", 00545 avpkt->size); 00546 00547 *data_size = 0; 00548 return -1; 00549 } 00550 if (*data_size < subframe_size * mode_par->subframe_count * sizeof(float)) { 00551 av_log(avctx, AV_LOG_ERROR, 00552 "Error processing packet: output buffer (%d) too small\n", 00553 *data_size); 00554 00555 *data_size = 0; 00556 return -1; 00557 } 00558 00559 init_get_bits(&gb, buf, mode_par->bits_per_frame); 00560 00561 for (i = 0; i < mode_par->frames_per_packet; i++) { 00562 decode_parameters(&parm, &gb, mode_par); 00563 00564 if (ctx->mode == MODE_16k) 00565 ff_sipr_decode_frame_16k(ctx, &parm, data); 00566 else 00567 decode_frame(ctx, &parm, data); 00568 00569 data += subframe_size * mode_par->subframe_count; 00570 } 00571 00572 *data_size = mode_par->frames_per_packet * subframe_size * 00573 mode_par->subframe_count * sizeof(float); 00574 00575 return mode_par->bits_per_frame >> 3; 00576 }; 00577 00578 AVCodec sipr_decoder = { 00579 "sipr", 00580 AVMEDIA_TYPE_AUDIO, 00581 CODEC_ID_SIPR, 00582 sizeof(SiprContext), 00583 sipr_decoder_init, 00584 NULL, 00585 NULL, 00586 sipr_decode_frame, 00587 .long_name = NULL_IF_CONFIG_SMALL("RealAudio SIPR / ACELP.NET"), 00588 };