![]() |
LAPACK
3.4.1
LAPACK: Linear Algebra PACKage
|
00001 *> \brief \b DDRVSP 00002 * 00003 * =========== DOCUMENTATION =========== 00004 * 00005 * Online html documentation available at 00006 * http://www.netlib.org/lapack/explore-html/ 00007 * 00008 * Definition: 00009 * =========== 00010 * 00011 * SUBROUTINE DDRVSP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, 00012 * A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, 00013 * NOUT ) 00014 * 00015 * .. Scalar Arguments .. 00016 * LOGICAL TSTERR 00017 * INTEGER NMAX, NN, NOUT, NRHS 00018 * DOUBLE PRECISION THRESH 00019 * .. 00020 * .. Array Arguments .. 00021 * LOGICAL DOTYPE( * ) 00022 * INTEGER IWORK( * ), NVAL( * ) 00023 * DOUBLE PRECISION A( * ), AFAC( * ), AINV( * ), B( * ), 00024 * $ RWORK( * ), WORK( * ), X( * ), XACT( * ) 00025 * .. 00026 * 00027 * 00028 *> \par Purpose: 00029 * ============= 00030 *> 00031 *> \verbatim 00032 *> 00033 *> DDRVSP tests the driver routines DSPSV and -SVX. 00034 *> \endverbatim 00035 * 00036 * Arguments: 00037 * ========== 00038 * 00039 *> \param[in] DOTYPE 00040 *> \verbatim 00041 *> DOTYPE is LOGICAL array, dimension (NTYPES) 00042 *> The matrix types to be used for testing. Matrices of type j 00043 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = 00044 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. 00045 *> \endverbatim 00046 *> 00047 *> \param[in] NN 00048 *> \verbatim 00049 *> NN is INTEGER 00050 *> The number of values of N contained in the vector NVAL. 00051 *> \endverbatim 00052 *> 00053 *> \param[in] NVAL 00054 *> \verbatim 00055 *> NVAL is INTEGER array, dimension (NN) 00056 *> The values of the matrix dimension N. 00057 *> \endverbatim 00058 *> 00059 *> \param[in] NRHS 00060 *> \verbatim 00061 *> NRHS is INTEGER 00062 *> The number of right hand side vectors to be generated for 00063 *> each linear system. 00064 *> \endverbatim 00065 *> 00066 *> \param[in] THRESH 00067 *> \verbatim 00068 *> THRESH is DOUBLE PRECISION 00069 *> The threshold value for the test ratios. A result is 00070 *> included in the output file if RESULT >= THRESH. To have 00071 *> every test ratio printed, use THRESH = 0. 00072 *> \endverbatim 00073 *> 00074 *> \param[in] TSTERR 00075 *> \verbatim 00076 *> TSTERR is LOGICAL 00077 *> Flag that indicates whether error exits are to be tested. 00078 *> \endverbatim 00079 *> 00080 *> \param[in] NMAX 00081 *> \verbatim 00082 *> NMAX is INTEGER 00083 *> The maximum value permitted for N, used in dimensioning the 00084 *> work arrays. 00085 *> \endverbatim 00086 *> 00087 *> \param[out] A 00088 *> \verbatim 00089 *> A is DOUBLE PRECISION array, dimension 00090 *> (NMAX*(NMAX+1)/2) 00091 *> \endverbatim 00092 *> 00093 *> \param[out] AFAC 00094 *> \verbatim 00095 *> AFAC is DOUBLE PRECISION array, dimension 00096 *> (NMAX*(NMAX+1)/2) 00097 *> \endverbatim 00098 *> 00099 *> \param[out] AINV 00100 *> \verbatim 00101 *> AINV is DOUBLE PRECISION array, dimension 00102 *> (NMAX*(NMAX+1)/2) 00103 *> \endverbatim 00104 *> 00105 *> \param[out] B 00106 *> \verbatim 00107 *> B is DOUBLE PRECISION array, dimension (NMAX*NRHS) 00108 *> \endverbatim 00109 *> 00110 *> \param[out] X 00111 *> \verbatim 00112 *> X is DOUBLE PRECISION array, dimension (NMAX*NRHS) 00113 *> \endverbatim 00114 *> 00115 *> \param[out] XACT 00116 *> \verbatim 00117 *> XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS) 00118 *> \endverbatim 00119 *> 00120 *> \param[out] WORK 00121 *> \verbatim 00122 *> WORK is DOUBLE PRECISION array, dimension 00123 *> (NMAX*max(2,NRHS)) 00124 *> \endverbatim 00125 *> 00126 *> \param[out] RWORK 00127 *> \verbatim 00128 *> RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS) 00129 *> \endverbatim 00130 *> 00131 *> \param[out] IWORK 00132 *> \verbatim 00133 *> IWORK is INTEGER array, dimension (2*NMAX) 00134 *> \endverbatim 00135 *> 00136 *> \param[in] NOUT 00137 *> \verbatim 00138 *> NOUT is INTEGER 00139 *> The unit number for output. 00140 *> \endverbatim 00141 * 00142 * Authors: 00143 * ======== 00144 * 00145 *> \author Univ. of Tennessee 00146 *> \author Univ. of California Berkeley 00147 *> \author Univ. of Colorado Denver 00148 *> \author NAG Ltd. 00149 * 00150 *> \date November 2011 00151 * 00152 *> \ingroup double_lin 00153 * 00154 * ===================================================================== 00155 SUBROUTINE DDRVSP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, 00156 $ A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, 00157 $ NOUT ) 00158 * 00159 * -- LAPACK test routine (version 3.4.0) -- 00160 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00161 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00162 * November 2011 00163 * 00164 * .. Scalar Arguments .. 00165 LOGICAL TSTERR 00166 INTEGER NMAX, NN, NOUT, NRHS 00167 DOUBLE PRECISION THRESH 00168 * .. 00169 * .. Array Arguments .. 00170 LOGICAL DOTYPE( * ) 00171 INTEGER IWORK( * ), NVAL( * ) 00172 DOUBLE PRECISION A( * ), AFAC( * ), AINV( * ), B( * ), 00173 $ RWORK( * ), WORK( * ), X( * ), XACT( * ) 00174 * .. 00175 * 00176 * ===================================================================== 00177 * 00178 * .. Parameters .. 00179 DOUBLE PRECISION ONE, ZERO 00180 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) 00181 INTEGER NTYPES, NTESTS 00182 PARAMETER ( NTYPES = 10, NTESTS = 6 ) 00183 INTEGER NFACT 00184 PARAMETER ( NFACT = 2 ) 00185 * .. 00186 * .. Local Scalars .. 00187 LOGICAL ZEROT 00188 CHARACTER DIST, FACT, PACKIT, TYPE, UPLO, XTYPE 00189 CHARACTER*3 PATH 00190 INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO, 00191 $ IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N, 00192 $ NERRS, NFAIL, NIMAT, NPP, NRUN, NT 00193 DOUBLE PRECISION AINVNM, ANORM, CNDNUM, RCOND, RCONDC 00194 * .. 00195 * .. Local Arrays .. 00196 CHARACTER FACTS( NFACT ) 00197 INTEGER ISEED( 4 ), ISEEDY( 4 ) 00198 DOUBLE PRECISION RESULT( NTESTS ) 00199 * .. 00200 * .. External Functions .. 00201 DOUBLE PRECISION DGET06, DLANSP 00202 EXTERNAL DGET06, DLANSP 00203 * .. 00204 * .. External Subroutines .. 00205 EXTERNAL ALADHD, ALAERH, ALASVM, DCOPY, DERRVX, DGET04, 00206 $ DLACPY, DLARHS, DLASET, DLATB4, DLATMS, DPPT02, 00207 $ DPPT05, DSPSV, DSPSVX, DSPT01, DSPTRF, DSPTRI 00208 * .. 00209 * .. Scalars in Common .. 00210 LOGICAL LERR, OK 00211 CHARACTER*32 SRNAMT 00212 INTEGER INFOT, NUNIT 00213 * .. 00214 * .. Common blocks .. 00215 COMMON / INFOC / INFOT, NUNIT, OK, LERR 00216 COMMON / SRNAMC / SRNAMT 00217 * .. 00218 * .. Intrinsic Functions .. 00219 INTRINSIC MAX, MIN 00220 * .. 00221 * .. Data statements .. 00222 DATA ISEEDY / 1988, 1989, 1990, 1991 / 00223 DATA FACTS / 'F', 'N' / 00224 * .. 00225 * .. Executable Statements .. 00226 * 00227 * Initialize constants and the random number seed. 00228 * 00229 PATH( 1: 1 ) = 'Double precision' 00230 PATH( 2: 3 ) = 'SP' 00231 NRUN = 0 00232 NFAIL = 0 00233 NERRS = 0 00234 DO 10 I = 1, 4 00235 ISEED( I ) = ISEEDY( I ) 00236 10 CONTINUE 00237 LWORK = MAX( 2*NMAX, NMAX*NRHS ) 00238 * 00239 * Test the error exits 00240 * 00241 IF( TSTERR ) 00242 $ CALL DERRVX( PATH, NOUT ) 00243 INFOT = 0 00244 * 00245 * Do for each value of N in NVAL 00246 * 00247 DO 180 IN = 1, NN 00248 N = NVAL( IN ) 00249 LDA = MAX( N, 1 ) 00250 NPP = N*( N+1 ) / 2 00251 XTYPE = 'N' 00252 NIMAT = NTYPES 00253 IF( N.LE.0 ) 00254 $ NIMAT = 1 00255 * 00256 DO 170 IMAT = 1, NIMAT 00257 * 00258 * Do the tests only if DOTYPE( IMAT ) is true. 00259 * 00260 IF( .NOT.DOTYPE( IMAT ) ) 00261 $ GO TO 170 00262 * 00263 * Skip types 3, 4, 5, or 6 if the matrix size is too small. 00264 * 00265 ZEROT = IMAT.GE.3 .AND. IMAT.LE.6 00266 IF( ZEROT .AND. N.LT.IMAT-2 ) 00267 $ GO TO 170 00268 * 00269 * Do first for UPLO = 'U', then for UPLO = 'L' 00270 * 00271 DO 160 IUPLO = 1, 2 00272 IF( IUPLO.EQ.1 ) THEN 00273 UPLO = 'U' 00274 PACKIT = 'C' 00275 ELSE 00276 UPLO = 'L' 00277 PACKIT = 'R' 00278 END IF 00279 * 00280 * Set up parameters with DLATB4 and generate a test matrix 00281 * with DLATMS. 00282 * 00283 CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE, 00284 $ CNDNUM, DIST ) 00285 * 00286 SRNAMT = 'DLATMS' 00287 CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, 00288 $ CNDNUM, ANORM, KL, KU, PACKIT, A, LDA, WORK, 00289 $ INFO ) 00290 * 00291 * Check error code from DLATMS. 00292 * 00293 IF( INFO.NE.0 ) THEN 00294 CALL ALAERH( PATH, 'DLATMS', INFO, 0, UPLO, N, N, -1, 00295 $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) 00296 GO TO 160 00297 END IF 00298 * 00299 * For types 3-6, zero one or more rows and columns of the 00300 * matrix to test that INFO is returned correctly. 00301 * 00302 IF( ZEROT ) THEN 00303 IF( IMAT.EQ.3 ) THEN 00304 IZERO = 1 00305 ELSE IF( IMAT.EQ.4 ) THEN 00306 IZERO = N 00307 ELSE 00308 IZERO = N / 2 + 1 00309 END IF 00310 * 00311 IF( IMAT.LT.6 ) THEN 00312 * 00313 * Set row and column IZERO to zero. 00314 * 00315 IF( IUPLO.EQ.1 ) THEN 00316 IOFF = ( IZERO-1 )*IZERO / 2 00317 DO 20 I = 1, IZERO - 1 00318 A( IOFF+I ) = ZERO 00319 20 CONTINUE 00320 IOFF = IOFF + IZERO 00321 DO 30 I = IZERO, N 00322 A( IOFF ) = ZERO 00323 IOFF = IOFF + I 00324 30 CONTINUE 00325 ELSE 00326 IOFF = IZERO 00327 DO 40 I = 1, IZERO - 1 00328 A( IOFF ) = ZERO 00329 IOFF = IOFF + N - I 00330 40 CONTINUE 00331 IOFF = IOFF - IZERO 00332 DO 50 I = IZERO, N 00333 A( IOFF+I ) = ZERO 00334 50 CONTINUE 00335 END IF 00336 ELSE 00337 IOFF = 0 00338 IF( IUPLO.EQ.1 ) THEN 00339 * 00340 * Set the first IZERO rows and columns to zero. 00341 * 00342 DO 70 J = 1, N 00343 I2 = MIN( J, IZERO ) 00344 DO 60 I = 1, I2 00345 A( IOFF+I ) = ZERO 00346 60 CONTINUE 00347 IOFF = IOFF + J 00348 70 CONTINUE 00349 ELSE 00350 * 00351 * Set the last IZERO rows and columns to zero. 00352 * 00353 DO 90 J = 1, N 00354 I1 = MAX( J, IZERO ) 00355 DO 80 I = I1, N 00356 A( IOFF+I ) = ZERO 00357 80 CONTINUE 00358 IOFF = IOFF + N - J 00359 90 CONTINUE 00360 END IF 00361 END IF 00362 ELSE 00363 IZERO = 0 00364 END IF 00365 * 00366 DO 150 IFACT = 1, NFACT 00367 * 00368 * Do first for FACT = 'F', then for other values. 00369 * 00370 FACT = FACTS( IFACT ) 00371 * 00372 * Compute the condition number for comparison with 00373 * the value returned by DSPSVX. 00374 * 00375 IF( ZEROT ) THEN 00376 IF( IFACT.EQ.1 ) 00377 $ GO TO 150 00378 RCONDC = ZERO 00379 * 00380 ELSE IF( IFACT.EQ.1 ) THEN 00381 * 00382 * Compute the 1-norm of A. 00383 * 00384 ANORM = DLANSP( '1', UPLO, N, A, RWORK ) 00385 * 00386 * Factor the matrix A. 00387 * 00388 CALL DCOPY( NPP, A, 1, AFAC, 1 ) 00389 CALL DSPTRF( UPLO, N, AFAC, IWORK, INFO ) 00390 * 00391 * Compute inv(A) and take its norm. 00392 * 00393 CALL DCOPY( NPP, AFAC, 1, AINV, 1 ) 00394 CALL DSPTRI( UPLO, N, AINV, IWORK, WORK, INFO ) 00395 AINVNM = DLANSP( '1', UPLO, N, AINV, RWORK ) 00396 * 00397 * Compute the 1-norm condition number of A. 00398 * 00399 IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN 00400 RCONDC = ONE 00401 ELSE 00402 RCONDC = ( ONE / ANORM ) / AINVNM 00403 END IF 00404 END IF 00405 * 00406 * Form an exact solution and set the right hand side. 00407 * 00408 SRNAMT = 'DLARHS' 00409 CALL DLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU, 00410 $ NRHS, A, LDA, XACT, LDA, B, LDA, ISEED, 00411 $ INFO ) 00412 XTYPE = 'C' 00413 * 00414 * --- Test DSPSV --- 00415 * 00416 IF( IFACT.EQ.2 ) THEN 00417 CALL DCOPY( NPP, A, 1, AFAC, 1 ) 00418 CALL DLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) 00419 * 00420 * Factor the matrix and solve the system using DSPSV. 00421 * 00422 SRNAMT = 'DSPSV ' 00423 CALL DSPSV( UPLO, N, NRHS, AFAC, IWORK, X, LDA, 00424 $ INFO ) 00425 * 00426 * Adjust the expected value of INFO to account for 00427 * pivoting. 00428 * 00429 K = IZERO 00430 IF( K.GT.0 ) THEN 00431 100 CONTINUE 00432 IF( IWORK( K ).LT.0 ) THEN 00433 IF( IWORK( K ).NE.-K ) THEN 00434 K = -IWORK( K ) 00435 GO TO 100 00436 END IF 00437 ELSE IF( IWORK( K ).NE.K ) THEN 00438 K = IWORK( K ) 00439 GO TO 100 00440 END IF 00441 END IF 00442 * 00443 * Check error code from DSPSV . 00444 * 00445 IF( INFO.NE.K ) THEN 00446 CALL ALAERH( PATH, 'DSPSV ', INFO, K, UPLO, N, 00447 $ N, -1, -1, NRHS, IMAT, NFAIL, 00448 $ NERRS, NOUT ) 00449 GO TO 120 00450 ELSE IF( INFO.NE.0 ) THEN 00451 GO TO 120 00452 END IF 00453 * 00454 * Reconstruct matrix from factors and compute 00455 * residual. 00456 * 00457 CALL DSPT01( UPLO, N, A, AFAC, IWORK, AINV, LDA, 00458 $ RWORK, RESULT( 1 ) ) 00459 * 00460 * Compute residual of the computed solution. 00461 * 00462 CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00463 CALL DPPT02( UPLO, N, NRHS, A, X, LDA, WORK, LDA, 00464 $ RWORK, RESULT( 2 ) ) 00465 * 00466 * Check solution from generated exact solution. 00467 * 00468 CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00469 $ RESULT( 3 ) ) 00470 NT = 3 00471 * 00472 * Print information about the tests that did not pass 00473 * the threshold. 00474 * 00475 DO 110 K = 1, NT 00476 IF( RESULT( K ).GE.THRESH ) THEN 00477 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00478 $ CALL ALADHD( NOUT, PATH ) 00479 WRITE( NOUT, FMT = 9999 )'DSPSV ', UPLO, N, 00480 $ IMAT, K, RESULT( K ) 00481 NFAIL = NFAIL + 1 00482 END IF 00483 110 CONTINUE 00484 NRUN = NRUN + NT 00485 120 CONTINUE 00486 END IF 00487 * 00488 * --- Test DSPSVX --- 00489 * 00490 IF( IFACT.EQ.2 .AND. NPP.GT.0 ) 00491 $ CALL DLASET( 'Full', NPP, 1, ZERO, ZERO, AFAC, 00492 $ NPP ) 00493 CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDA ) 00494 * 00495 * Solve the system and compute the condition number and 00496 * error bounds using DSPSVX. 00497 * 00498 SRNAMT = 'DSPSVX' 00499 CALL DSPSVX( FACT, UPLO, N, NRHS, A, AFAC, IWORK, B, 00500 $ LDA, X, LDA, RCOND, RWORK, 00501 $ RWORK( NRHS+1 ), WORK, IWORK( N+1 ), 00502 $ INFO ) 00503 * 00504 * Adjust the expected value of INFO to account for 00505 * pivoting. 00506 * 00507 K = IZERO 00508 IF( K.GT.0 ) THEN 00509 130 CONTINUE 00510 IF( IWORK( K ).LT.0 ) THEN 00511 IF( IWORK( K ).NE.-K ) THEN 00512 K = -IWORK( K ) 00513 GO TO 130 00514 END IF 00515 ELSE IF( IWORK( K ).NE.K ) THEN 00516 K = IWORK( K ) 00517 GO TO 130 00518 END IF 00519 END IF 00520 * 00521 * Check the error code from DSPSVX. 00522 * 00523 IF( INFO.NE.K ) THEN 00524 CALL ALAERH( PATH, 'DSPSVX', INFO, K, FACT // UPLO, 00525 $ N, N, -1, -1, NRHS, IMAT, NFAIL, 00526 $ NERRS, NOUT ) 00527 GO TO 150 00528 END IF 00529 * 00530 IF( INFO.EQ.0 ) THEN 00531 IF( IFACT.GE.2 ) THEN 00532 * 00533 * Reconstruct matrix from factors and compute 00534 * residual. 00535 * 00536 CALL DSPT01( UPLO, N, A, AFAC, IWORK, AINV, LDA, 00537 $ RWORK( 2*NRHS+1 ), RESULT( 1 ) ) 00538 K1 = 1 00539 ELSE 00540 K1 = 2 00541 END IF 00542 * 00543 * Compute residual of the computed solution. 00544 * 00545 CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00546 CALL DPPT02( UPLO, N, NRHS, A, X, LDA, WORK, LDA, 00547 $ RWORK( 2*NRHS+1 ), RESULT( 2 ) ) 00548 * 00549 * Check solution from generated exact solution. 00550 * 00551 CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00552 $ RESULT( 3 ) ) 00553 * 00554 * Check the error bounds from iterative refinement. 00555 * 00556 CALL DPPT05( UPLO, N, NRHS, A, B, LDA, X, LDA, 00557 $ XACT, LDA, RWORK, RWORK( NRHS+1 ), 00558 $ RESULT( 4 ) ) 00559 ELSE 00560 K1 = 6 00561 END IF 00562 * 00563 * Compare RCOND from DSPSVX with the computed value 00564 * in RCONDC. 00565 * 00566 RESULT( 6 ) = DGET06( RCOND, RCONDC ) 00567 * 00568 * Print information about the tests that did not pass 00569 * the threshold. 00570 * 00571 DO 140 K = K1, 6 00572 IF( RESULT( K ).GE.THRESH ) THEN 00573 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00574 $ CALL ALADHD( NOUT, PATH ) 00575 WRITE( NOUT, FMT = 9998 )'DSPSVX', FACT, UPLO, 00576 $ N, IMAT, K, RESULT( K ) 00577 NFAIL = NFAIL + 1 00578 END IF 00579 140 CONTINUE 00580 NRUN = NRUN + 7 - K1 00581 * 00582 150 CONTINUE 00583 * 00584 160 CONTINUE 00585 170 CONTINUE 00586 180 CONTINUE 00587 * 00588 * Print a summary of the results. 00589 * 00590 CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS ) 00591 * 00592 9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2, 00593 $ ', test ', I2, ', ratio =', G12.5 ) 00594 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5, 00595 $ ', type ', I2, ', test ', I2, ', ratio =', G12.5 ) 00596 RETURN 00597 * 00598 * End of DDRVSP 00599 * 00600 END