![]() |
LAPACK
3.4.1
LAPACK: Linear Algebra PACKage
|
00001 *> \brief \b ZERRPO 00002 * 00003 * =========== DOCUMENTATION =========== 00004 * 00005 * Online html documentation available at 00006 * http://www.netlib.org/lapack/explore-html/ 00007 * 00008 * Definition: 00009 * =========== 00010 * 00011 * SUBROUTINE ZERRPO( PATH, NUNIT ) 00012 * 00013 * .. Scalar Arguments .. 00014 * CHARACTER*3 PATH 00015 * INTEGER NUNIT 00016 * .. 00017 * 00018 * 00019 *> \par Purpose: 00020 * ============= 00021 *> 00022 *> \verbatim 00023 *> 00024 *> ZERRPO tests the error exits for the COMPLEX*16 routines 00025 *> for Hermitian positive definite matrices. 00026 *> \endverbatim 00027 * 00028 * Arguments: 00029 * ========== 00030 * 00031 *> \param[in] PATH 00032 *> \verbatim 00033 *> PATH is CHARACTER*3 00034 *> The LAPACK path name for the routines to be tested. 00035 *> \endverbatim 00036 *> 00037 *> \param[in] NUNIT 00038 *> \verbatim 00039 *> NUNIT is INTEGER 00040 *> The unit number for output. 00041 *> \endverbatim 00042 * 00043 * Authors: 00044 * ======== 00045 * 00046 *> \author Univ. of Tennessee 00047 *> \author Univ. of California Berkeley 00048 *> \author Univ. of Colorado Denver 00049 *> \author NAG Ltd. 00050 * 00051 *> \date November 2011 00052 * 00053 *> \ingroup complex16_lin 00054 * 00055 * ===================================================================== 00056 SUBROUTINE ZERRPO( PATH, NUNIT ) 00057 * 00058 * -- LAPACK test routine (version 3.4.0) -- 00059 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00060 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00061 * November 2011 00062 * 00063 * .. Scalar Arguments .. 00064 CHARACTER*3 PATH 00065 INTEGER NUNIT 00066 * .. 00067 * 00068 * ===================================================================== 00069 * 00070 * .. Parameters .. 00071 INTEGER NMAX 00072 PARAMETER ( NMAX = 4 ) 00073 * .. 00074 * .. Local Scalars .. 00075 CHARACTER*2 C2 00076 INTEGER I, INFO, J 00077 DOUBLE PRECISION ANRM, RCOND 00078 * .. 00079 * .. Local Arrays .. 00080 DOUBLE PRECISION R( NMAX ), R1( NMAX ), R2( NMAX ) 00081 COMPLEX*16 A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ), 00082 $ W( 2*NMAX ), X( NMAX ) 00083 * .. 00084 * .. External Functions .. 00085 LOGICAL LSAMEN 00086 EXTERNAL LSAMEN 00087 * .. 00088 * .. External Subroutines .. 00089 EXTERNAL ALAESM, CHKXER, ZPBCON, ZPBEQU, ZPBRFS, ZPBTF2, 00090 $ ZPBTRF, ZPBTRS, ZPOCON, ZPOEQU, ZPORFS, ZPOTF2, 00091 $ ZPOTRF, ZPOTRI, ZPOTRS, ZPPCON, ZPPEQU, ZPPRFS, 00092 $ ZPPTRF, ZPPTRI, ZPPTRS 00093 * .. 00094 * .. Scalars in Common .. 00095 LOGICAL LERR, OK 00096 CHARACTER*32 SRNAMT 00097 INTEGER INFOT, NOUT 00098 * .. 00099 * .. Common blocks .. 00100 COMMON / INFOC / INFOT, NOUT, OK, LERR 00101 COMMON / SRNAMC / SRNAMT 00102 * .. 00103 * .. Intrinsic Functions .. 00104 INTRINSIC DBLE, DCMPLX 00105 * .. 00106 * .. Executable Statements .. 00107 * 00108 NOUT = NUNIT 00109 WRITE( NOUT, FMT = * ) 00110 C2 = PATH( 2: 3 ) 00111 * 00112 * Set the variables to innocuous values. 00113 * 00114 DO 20 J = 1, NMAX 00115 DO 10 I = 1, NMAX 00116 A( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ), 00117 $ -1.D0 / DBLE( I+J ) ) 00118 AF( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ), 00119 $ -1.D0 / DBLE( I+J ) ) 00120 10 CONTINUE 00121 B( J ) = 0.D0 00122 R1( J ) = 0.D0 00123 R2( J ) = 0.D0 00124 W( J ) = 0.D0 00125 X( J ) = 0.D0 00126 20 CONTINUE 00127 ANRM = 1.D0 00128 OK = .TRUE. 00129 * 00130 * Test error exits of the routines that use the Cholesky 00131 * decomposition of a Hermitian positive definite matrix. 00132 * 00133 IF( LSAMEN( 2, C2, 'PO' ) ) THEN 00134 * 00135 * ZPOTRF 00136 * 00137 SRNAMT = 'ZPOTRF' 00138 INFOT = 1 00139 CALL ZPOTRF( '/', 0, A, 1, INFO ) 00140 CALL CHKXER( 'ZPOTRF', INFOT, NOUT, LERR, OK ) 00141 INFOT = 2 00142 CALL ZPOTRF( 'U', -1, A, 1, INFO ) 00143 CALL CHKXER( 'ZPOTRF', INFOT, NOUT, LERR, OK ) 00144 INFOT = 4 00145 CALL ZPOTRF( 'U', 2, A, 1, INFO ) 00146 CALL CHKXER( 'ZPOTRF', INFOT, NOUT, LERR, OK ) 00147 * 00148 * ZPOTF2 00149 * 00150 SRNAMT = 'ZPOTF2' 00151 INFOT = 1 00152 CALL ZPOTF2( '/', 0, A, 1, INFO ) 00153 CALL CHKXER( 'ZPOTF2', INFOT, NOUT, LERR, OK ) 00154 INFOT = 2 00155 CALL ZPOTF2( 'U', -1, A, 1, INFO ) 00156 CALL CHKXER( 'ZPOTF2', INFOT, NOUT, LERR, OK ) 00157 INFOT = 4 00158 CALL ZPOTF2( 'U', 2, A, 1, INFO ) 00159 CALL CHKXER( 'ZPOTF2', INFOT, NOUT, LERR, OK ) 00160 * 00161 * ZPOTRI 00162 * 00163 SRNAMT = 'ZPOTRI' 00164 INFOT = 1 00165 CALL ZPOTRI( '/', 0, A, 1, INFO ) 00166 CALL CHKXER( 'ZPOTRI', INFOT, NOUT, LERR, OK ) 00167 INFOT = 2 00168 CALL ZPOTRI( 'U', -1, A, 1, INFO ) 00169 CALL CHKXER( 'ZPOTRI', INFOT, NOUT, LERR, OK ) 00170 INFOT = 4 00171 CALL ZPOTRI( 'U', 2, A, 1, INFO ) 00172 CALL CHKXER( 'ZPOTRI', INFOT, NOUT, LERR, OK ) 00173 * 00174 * ZPOTRS 00175 * 00176 SRNAMT = 'ZPOTRS' 00177 INFOT = 1 00178 CALL ZPOTRS( '/', 0, 0, A, 1, B, 1, INFO ) 00179 CALL CHKXER( 'ZPOTRS', INFOT, NOUT, LERR, OK ) 00180 INFOT = 2 00181 CALL ZPOTRS( 'U', -1, 0, A, 1, B, 1, INFO ) 00182 CALL CHKXER( 'ZPOTRS', INFOT, NOUT, LERR, OK ) 00183 INFOT = 3 00184 CALL ZPOTRS( 'U', 0, -1, A, 1, B, 1, INFO ) 00185 CALL CHKXER( 'ZPOTRS', INFOT, NOUT, LERR, OK ) 00186 INFOT = 5 00187 CALL ZPOTRS( 'U', 2, 1, A, 1, B, 2, INFO ) 00188 CALL CHKXER( 'ZPOTRS', INFOT, NOUT, LERR, OK ) 00189 INFOT = 7 00190 CALL ZPOTRS( 'U', 2, 1, A, 2, B, 1, INFO ) 00191 CALL CHKXER( 'ZPOTRS', INFOT, NOUT, LERR, OK ) 00192 * 00193 * ZPORFS 00194 * 00195 SRNAMT = 'ZPORFS' 00196 INFOT = 1 00197 CALL ZPORFS( '/', 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, R, 00198 $ INFO ) 00199 CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK ) 00200 INFOT = 2 00201 CALL ZPORFS( 'U', -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, R, 00202 $ INFO ) 00203 CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK ) 00204 INFOT = 3 00205 CALL ZPORFS( 'U', 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, R, 00206 $ INFO ) 00207 CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK ) 00208 INFOT = 5 00209 CALL ZPORFS( 'U', 2, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W, R, 00210 $ INFO ) 00211 CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK ) 00212 INFOT = 7 00213 CALL ZPORFS( 'U', 2, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W, R, 00214 $ INFO ) 00215 CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK ) 00216 INFOT = 9 00217 CALL ZPORFS( 'U', 2, 1, A, 2, AF, 2, B, 1, X, 2, R1, R2, W, R, 00218 $ INFO ) 00219 CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK ) 00220 INFOT = 11 00221 CALL ZPORFS( 'U', 2, 1, A, 2, AF, 2, B, 2, X, 1, R1, R2, W, R, 00222 $ INFO ) 00223 CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK ) 00224 * 00225 * ZPOCON 00226 * 00227 SRNAMT = 'ZPOCON' 00228 INFOT = 1 00229 CALL ZPOCON( '/', 0, A, 1, ANRM, RCOND, W, R, INFO ) 00230 CALL CHKXER( 'ZPOCON', INFOT, NOUT, LERR, OK ) 00231 INFOT = 2 00232 CALL ZPOCON( 'U', -1, A, 1, ANRM, RCOND, W, R, INFO ) 00233 CALL CHKXER( 'ZPOCON', INFOT, NOUT, LERR, OK ) 00234 INFOT = 4 00235 CALL ZPOCON( 'U', 2, A, 1, ANRM, RCOND, W, R, INFO ) 00236 CALL CHKXER( 'ZPOCON', INFOT, NOUT, LERR, OK ) 00237 INFOT = 5 00238 CALL ZPOCON( 'U', 1, A, 1, -ANRM, RCOND, W, R, INFO ) 00239 CALL CHKXER( 'ZPOCON', INFOT, NOUT, LERR, OK ) 00240 * 00241 * ZPOEQU 00242 * 00243 SRNAMT = 'ZPOEQU' 00244 INFOT = 1 00245 CALL ZPOEQU( -1, A, 1, R1, RCOND, ANRM, INFO ) 00246 CALL CHKXER( 'ZPOEQU', INFOT, NOUT, LERR, OK ) 00247 INFOT = 3 00248 CALL ZPOEQU( 2, A, 1, R1, RCOND, ANRM, INFO ) 00249 CALL CHKXER( 'ZPOEQU', INFOT, NOUT, LERR, OK ) 00250 * 00251 * Test error exits of the routines that use the Cholesky 00252 * decomposition of a Hermitian positive definite packed matrix. 00253 * 00254 ELSE IF( LSAMEN( 2, C2, 'PP' ) ) THEN 00255 * 00256 * ZPPTRF 00257 * 00258 SRNAMT = 'ZPPTRF' 00259 INFOT = 1 00260 CALL ZPPTRF( '/', 0, A, INFO ) 00261 CALL CHKXER( 'ZPPTRF', INFOT, NOUT, LERR, OK ) 00262 INFOT = 2 00263 CALL ZPPTRF( 'U', -1, A, INFO ) 00264 CALL CHKXER( 'ZPPTRF', INFOT, NOUT, LERR, OK ) 00265 * 00266 * ZPPTRI 00267 * 00268 SRNAMT = 'ZPPTRI' 00269 INFOT = 1 00270 CALL ZPPTRI( '/', 0, A, INFO ) 00271 CALL CHKXER( 'ZPPTRI', INFOT, NOUT, LERR, OK ) 00272 INFOT = 2 00273 CALL ZPPTRI( 'U', -1, A, INFO ) 00274 CALL CHKXER( 'ZPPTRI', INFOT, NOUT, LERR, OK ) 00275 * 00276 * ZPPTRS 00277 * 00278 SRNAMT = 'ZPPTRS' 00279 INFOT = 1 00280 CALL ZPPTRS( '/', 0, 0, A, B, 1, INFO ) 00281 CALL CHKXER( 'ZPPTRS', INFOT, NOUT, LERR, OK ) 00282 INFOT = 2 00283 CALL ZPPTRS( 'U', -1, 0, A, B, 1, INFO ) 00284 CALL CHKXER( 'ZPPTRS', INFOT, NOUT, LERR, OK ) 00285 INFOT = 3 00286 CALL ZPPTRS( 'U', 0, -1, A, B, 1, INFO ) 00287 CALL CHKXER( 'ZPPTRS', INFOT, NOUT, LERR, OK ) 00288 INFOT = 6 00289 CALL ZPPTRS( 'U', 2, 1, A, B, 1, INFO ) 00290 CALL CHKXER( 'ZPPTRS', INFOT, NOUT, LERR, OK ) 00291 * 00292 * ZPPRFS 00293 * 00294 SRNAMT = 'ZPPRFS' 00295 INFOT = 1 00296 CALL ZPPRFS( '/', 0, 0, A, AF, B, 1, X, 1, R1, R2, W, R, INFO ) 00297 CALL CHKXER( 'ZPPRFS', INFOT, NOUT, LERR, OK ) 00298 INFOT = 2 00299 CALL ZPPRFS( 'U', -1, 0, A, AF, B, 1, X, 1, R1, R2, W, R, 00300 $ INFO ) 00301 CALL CHKXER( 'ZPPRFS', INFOT, NOUT, LERR, OK ) 00302 INFOT = 3 00303 CALL ZPPRFS( 'U', 0, -1, A, AF, B, 1, X, 1, R1, R2, W, R, 00304 $ INFO ) 00305 CALL CHKXER( 'ZPPRFS', INFOT, NOUT, LERR, OK ) 00306 INFOT = 7 00307 CALL ZPPRFS( 'U', 2, 1, A, AF, B, 1, X, 2, R1, R2, W, R, INFO ) 00308 CALL CHKXER( 'ZPPRFS', INFOT, NOUT, LERR, OK ) 00309 INFOT = 9 00310 CALL ZPPRFS( 'U', 2, 1, A, AF, B, 2, X, 1, R1, R2, W, R, INFO ) 00311 CALL CHKXER( 'ZPPRFS', INFOT, NOUT, LERR, OK ) 00312 * 00313 * ZPPCON 00314 * 00315 SRNAMT = 'ZPPCON' 00316 INFOT = 1 00317 CALL ZPPCON( '/', 0, A, ANRM, RCOND, W, R, INFO ) 00318 CALL CHKXER( 'ZPPCON', INFOT, NOUT, LERR, OK ) 00319 INFOT = 2 00320 CALL ZPPCON( 'U', -1, A, ANRM, RCOND, W, R, INFO ) 00321 CALL CHKXER( 'ZPPCON', INFOT, NOUT, LERR, OK ) 00322 INFOT = 4 00323 CALL ZPPCON( 'U', 1, A, -ANRM, RCOND, W, R, INFO ) 00324 CALL CHKXER( 'ZPPCON', INFOT, NOUT, LERR, OK ) 00325 * 00326 * ZPPEQU 00327 * 00328 SRNAMT = 'ZPPEQU' 00329 INFOT = 1 00330 CALL ZPPEQU( '/', 0, A, R1, RCOND, ANRM, INFO ) 00331 CALL CHKXER( 'ZPPEQU', INFOT, NOUT, LERR, OK ) 00332 INFOT = 2 00333 CALL ZPPEQU( 'U', -1, A, R1, RCOND, ANRM, INFO ) 00334 CALL CHKXER( 'ZPPEQU', INFOT, NOUT, LERR, OK ) 00335 * 00336 * Test error exits of the routines that use the Cholesky 00337 * decomposition of a Hermitian positive definite band matrix. 00338 * 00339 ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN 00340 * 00341 * ZPBTRF 00342 * 00343 SRNAMT = 'ZPBTRF' 00344 INFOT = 1 00345 CALL ZPBTRF( '/', 0, 0, A, 1, INFO ) 00346 CALL CHKXER( 'ZPBTRF', INFOT, NOUT, LERR, OK ) 00347 INFOT = 2 00348 CALL ZPBTRF( 'U', -1, 0, A, 1, INFO ) 00349 CALL CHKXER( 'ZPBTRF', INFOT, NOUT, LERR, OK ) 00350 INFOT = 3 00351 CALL ZPBTRF( 'U', 1, -1, A, 1, INFO ) 00352 CALL CHKXER( 'ZPBTRF', INFOT, NOUT, LERR, OK ) 00353 INFOT = 5 00354 CALL ZPBTRF( 'U', 2, 1, A, 1, INFO ) 00355 CALL CHKXER( 'ZPBTRF', INFOT, NOUT, LERR, OK ) 00356 * 00357 * ZPBTF2 00358 * 00359 SRNAMT = 'ZPBTF2' 00360 INFOT = 1 00361 CALL ZPBTF2( '/', 0, 0, A, 1, INFO ) 00362 CALL CHKXER( 'ZPBTF2', INFOT, NOUT, LERR, OK ) 00363 INFOT = 2 00364 CALL ZPBTF2( 'U', -1, 0, A, 1, INFO ) 00365 CALL CHKXER( 'ZPBTF2', INFOT, NOUT, LERR, OK ) 00366 INFOT = 3 00367 CALL ZPBTF2( 'U', 1, -1, A, 1, INFO ) 00368 CALL CHKXER( 'ZPBTF2', INFOT, NOUT, LERR, OK ) 00369 INFOT = 5 00370 CALL ZPBTF2( 'U', 2, 1, A, 1, INFO ) 00371 CALL CHKXER( 'ZPBTF2', INFOT, NOUT, LERR, OK ) 00372 * 00373 * ZPBTRS 00374 * 00375 SRNAMT = 'ZPBTRS' 00376 INFOT = 1 00377 CALL ZPBTRS( '/', 0, 0, 0, A, 1, B, 1, INFO ) 00378 CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK ) 00379 INFOT = 2 00380 CALL ZPBTRS( 'U', -1, 0, 0, A, 1, B, 1, INFO ) 00381 CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK ) 00382 INFOT = 3 00383 CALL ZPBTRS( 'U', 1, -1, 0, A, 1, B, 1, INFO ) 00384 CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK ) 00385 INFOT = 4 00386 CALL ZPBTRS( 'U', 0, 0, -1, A, 1, B, 1, INFO ) 00387 CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK ) 00388 INFOT = 6 00389 CALL ZPBTRS( 'U', 2, 1, 1, A, 1, B, 1, INFO ) 00390 CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK ) 00391 INFOT = 8 00392 CALL ZPBTRS( 'U', 2, 0, 1, A, 1, B, 1, INFO ) 00393 CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK ) 00394 * 00395 * ZPBRFS 00396 * 00397 SRNAMT = 'ZPBRFS' 00398 INFOT = 1 00399 CALL ZPBRFS( '/', 0, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, 00400 $ R, INFO ) 00401 CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK ) 00402 INFOT = 2 00403 CALL ZPBRFS( 'U', -1, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, 00404 $ R, INFO ) 00405 CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK ) 00406 INFOT = 3 00407 CALL ZPBRFS( 'U', 1, -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, 00408 $ R, INFO ) 00409 CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK ) 00410 INFOT = 4 00411 CALL ZPBRFS( 'U', 0, 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, 00412 $ R, INFO ) 00413 CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK ) 00414 INFOT = 6 00415 CALL ZPBRFS( 'U', 2, 1, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W, 00416 $ R, INFO ) 00417 CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK ) 00418 INFOT = 8 00419 CALL ZPBRFS( 'U', 2, 1, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W, 00420 $ R, INFO ) 00421 CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK ) 00422 INFOT = 10 00423 CALL ZPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 1, X, 2, R1, R2, W, 00424 $ R, INFO ) 00425 CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK ) 00426 INFOT = 12 00427 CALL ZPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 2, X, 1, R1, R2, W, 00428 $ R, INFO ) 00429 CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK ) 00430 * 00431 * ZPBCON 00432 * 00433 SRNAMT = 'ZPBCON' 00434 INFOT = 1 00435 CALL ZPBCON( '/', 0, 0, A, 1, ANRM, RCOND, W, R, INFO ) 00436 CALL CHKXER( 'ZPBCON', INFOT, NOUT, LERR, OK ) 00437 INFOT = 2 00438 CALL ZPBCON( 'U', -1, 0, A, 1, ANRM, RCOND, W, R, INFO ) 00439 CALL CHKXER( 'ZPBCON', INFOT, NOUT, LERR, OK ) 00440 INFOT = 3 00441 CALL ZPBCON( 'U', 1, -1, A, 1, ANRM, RCOND, W, R, INFO ) 00442 CALL CHKXER( 'ZPBCON', INFOT, NOUT, LERR, OK ) 00443 INFOT = 5 00444 CALL ZPBCON( 'U', 2, 1, A, 1, ANRM, RCOND, W, R, INFO ) 00445 CALL CHKXER( 'ZPBCON', INFOT, NOUT, LERR, OK ) 00446 INFOT = 6 00447 CALL ZPBCON( 'U', 1, 0, A, 1, -ANRM, RCOND, W, R, INFO ) 00448 CALL CHKXER( 'ZPBCON', INFOT, NOUT, LERR, OK ) 00449 * 00450 * ZPBEQU 00451 * 00452 SRNAMT = 'ZPBEQU' 00453 INFOT = 1 00454 CALL ZPBEQU( '/', 0, 0, A, 1, R1, RCOND, ANRM, INFO ) 00455 CALL CHKXER( 'ZPBEQU', INFOT, NOUT, LERR, OK ) 00456 INFOT = 2 00457 CALL ZPBEQU( 'U', -1, 0, A, 1, R1, RCOND, ANRM, INFO ) 00458 CALL CHKXER( 'ZPBEQU', INFOT, NOUT, LERR, OK ) 00459 INFOT = 3 00460 CALL ZPBEQU( 'U', 1, -1, A, 1, R1, RCOND, ANRM, INFO ) 00461 CALL CHKXER( 'ZPBEQU', INFOT, NOUT, LERR, OK ) 00462 INFOT = 5 00463 CALL ZPBEQU( 'U', 2, 1, A, 1, R1, RCOND, ANRM, INFO ) 00464 CALL CHKXER( 'ZPBEQU', INFOT, NOUT, LERR, OK ) 00465 END IF 00466 * 00467 * Print a summary line. 00468 * 00469 CALL ALAESM( PATH, OK, NOUT ) 00470 * 00471 RETURN 00472 * 00473 * End of ZERRPO 00474 * 00475 END