LAPACK  3.4.1
LAPACK: Linear Algebra PACKage
zdrvhp.f
Go to the documentation of this file.
00001 *> \brief \b ZDRVHP
00002 *
00003 *  =========== DOCUMENTATION ===========
00004 *
00005 * Online html documentation available at 
00006 *            http://www.netlib.org/lapack/explore-html/ 
00007 *
00008 *  Definition:
00009 *  ===========
00010 *
00011 *       SUBROUTINE ZDRVHP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
00012 *                          A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
00013 *                          NOUT )
00014 * 
00015 *       .. Scalar Arguments ..
00016 *       LOGICAL            TSTERR
00017 *       INTEGER            NMAX, NN, NOUT, NRHS
00018 *       DOUBLE PRECISION   THRESH
00019 *       ..
00020 *       .. Array Arguments ..
00021 *       LOGICAL            DOTYPE( * )
00022 *       INTEGER            IWORK( * ), NVAL( * )
00023 *       DOUBLE PRECISION   RWORK( * )
00024 *       COMPLEX*16         A( * ), AFAC( * ), AINV( * ), B( * ),
00025 *      $                   WORK( * ), X( * ), XACT( * )
00026 *       ..
00027 *  
00028 *
00029 *> \par Purpose:
00030 *  =============
00031 *>
00032 *> \verbatim
00033 *>
00034 *> ZDRVHP tests the driver routines ZHPSV and -SVX.
00035 *> \endverbatim
00036 *
00037 *  Arguments:
00038 *  ==========
00039 *
00040 *> \param[in] DOTYPE
00041 *> \verbatim
00042 *>          DOTYPE is LOGICAL array, dimension (NTYPES)
00043 *>          The matrix types to be used for testing.  Matrices of type j
00044 *>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
00045 *>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
00046 *> \endverbatim
00047 *>
00048 *> \param[in] NN
00049 *> \verbatim
00050 *>          NN is INTEGER
00051 *>          The number of values of N contained in the vector NVAL.
00052 *> \endverbatim
00053 *>
00054 *> \param[in] NVAL
00055 *> \verbatim
00056 *>          NVAL is INTEGER array, dimension (NN)
00057 *>          The values of the matrix dimension N.
00058 *> \endverbatim
00059 *>
00060 *> \param[in] NRHS
00061 *> \verbatim
00062 *>          NRHS is INTEGER
00063 *>          The number of right hand side vectors to be generated for
00064 *>          each linear system.
00065 *> \endverbatim
00066 *>
00067 *> \param[in] THRESH
00068 *> \verbatim
00069 *>          THRESH is DOUBLE PRECISION
00070 *>          The threshold value for the test ratios.  A result is
00071 *>          included in the output file if RESULT >= THRESH.  To have
00072 *>          every test ratio printed, use THRESH = 0.
00073 *> \endverbatim
00074 *>
00075 *> \param[in] TSTERR
00076 *> \verbatim
00077 *>          TSTERR is LOGICAL
00078 *>          Flag that indicates whether error exits are to be tested.
00079 *> \endverbatim
00080 *>
00081 *> \param[in] NMAX
00082 *> \verbatim
00083 *>          NMAX is INTEGER
00084 *>          The maximum value permitted for N, used in dimensioning the
00085 *>          work arrays.
00086 *> \endverbatim
00087 *>
00088 *> \param[out] A
00089 *> \verbatim
00090 *>          A is COMPLEX*16 array, dimension
00091 *>                      (NMAX*(NMAX+1)/2)
00092 *> \endverbatim
00093 *>
00094 *> \param[out] AFAC
00095 *> \verbatim
00096 *>          AFAC is COMPLEX*16 array, dimension
00097 *>                      (NMAX*(NMAX+1)/2)
00098 *> \endverbatim
00099 *>
00100 *> \param[out] AINV
00101 *> \verbatim
00102 *>          AINV is COMPLEX*16 array, dimension
00103 *>                      (NMAX*(NMAX+1)/2)
00104 *> \endverbatim
00105 *>
00106 *> \param[out] B
00107 *> \verbatim
00108 *>          B is COMPLEX*16 array, dimension (NMAX*NRHS)
00109 *> \endverbatim
00110 *>
00111 *> \param[out] X
00112 *> \verbatim
00113 *>          X is COMPLEX*16 array, dimension (NMAX*NRHS)
00114 *> \endverbatim
00115 *>
00116 *> \param[out] XACT
00117 *> \verbatim
00118 *>          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
00119 *> \endverbatim
00120 *>
00121 *> \param[out] WORK
00122 *> \verbatim
00123 *>          WORK is COMPLEX*16 array, dimension
00124 *>                      (NMAX*max(2,NRHS))
00125 *> \endverbatim
00126 *>
00127 *> \param[out] RWORK
00128 *> \verbatim
00129 *>          RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
00130 *> \endverbatim
00131 *>
00132 *> \param[out] IWORK
00133 *> \verbatim
00134 *>          IWORK is INTEGER array, dimension (NMAX)
00135 *> \endverbatim
00136 *>
00137 *> \param[in] NOUT
00138 *> \verbatim
00139 *>          NOUT is INTEGER
00140 *>          The unit number for output.
00141 *> \endverbatim
00142 *
00143 *  Authors:
00144 *  ========
00145 *
00146 *> \author Univ. of Tennessee 
00147 *> \author Univ. of California Berkeley 
00148 *> \author Univ. of Colorado Denver 
00149 *> \author NAG Ltd. 
00150 *
00151 *> \date November 2011
00152 *
00153 *> \ingroup complex16_lin
00154 *
00155 *  =====================================================================
00156       SUBROUTINE ZDRVHP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
00157      $                   A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
00158      $                   NOUT )
00159 *
00160 *  -- LAPACK test routine (version 3.4.0) --
00161 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00162 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00163 *     November 2011
00164 *
00165 *     .. Scalar Arguments ..
00166       LOGICAL            TSTERR
00167       INTEGER            NMAX, NN, NOUT, NRHS
00168       DOUBLE PRECISION   THRESH
00169 *     ..
00170 *     .. Array Arguments ..
00171       LOGICAL            DOTYPE( * )
00172       INTEGER            IWORK( * ), NVAL( * )
00173       DOUBLE PRECISION   RWORK( * )
00174       COMPLEX*16         A( * ), AFAC( * ), AINV( * ), B( * ),
00175      $                   WORK( * ), X( * ), XACT( * )
00176 *     ..
00177 *
00178 *  =====================================================================
00179 *
00180 *     .. Parameters ..
00181       DOUBLE PRECISION   ONE, ZERO
00182       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
00183       INTEGER            NTYPES, NTESTS
00184       PARAMETER          ( NTYPES = 10, NTESTS = 6 )
00185       INTEGER            NFACT
00186       PARAMETER          ( NFACT = 2 )
00187 *     ..
00188 *     .. Local Scalars ..
00189       LOGICAL            ZEROT
00190       CHARACTER          DIST, FACT, PACKIT, TYPE, UPLO, XTYPE
00191       CHARACTER*3        PATH
00192       INTEGER            I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
00193      $                   IZERO, J, K, K1, KL, KU, LDA, MODE, N, NB,
00194      $                   NBMIN, NERRS, NFAIL, NIMAT, NPP, NRUN, NT
00195       DOUBLE PRECISION   AINVNM, ANORM, CNDNUM, RCOND, RCONDC
00196 *     ..
00197 *     .. Local Arrays ..
00198       CHARACTER          FACTS( NFACT )
00199       INTEGER            ISEED( 4 ), ISEEDY( 4 )
00200       DOUBLE PRECISION   RESULT( NTESTS )
00201 *     ..
00202 *     .. External Functions ..
00203       DOUBLE PRECISION   DGET06, ZLANHP
00204       EXTERNAL           DGET06, ZLANHP
00205 *     ..
00206 *     .. External Subroutines ..
00207       EXTERNAL           ALADHD, ALAERH, ALASVM, XLAENV, ZCOPY, ZERRVX,
00208      $                   ZGET04, ZHPSV, ZHPSVX, ZHPT01, ZHPTRF, ZHPTRI,
00209      $                   ZLACPY, ZLAIPD, ZLARHS, ZLASET, ZLATB4, ZLATMS,
00210      $                   ZPPT02, ZPPT05
00211 *     ..
00212 *     .. Scalars in Common ..
00213       LOGICAL            LERR, OK
00214       CHARACTER*32       SRNAMT
00215       INTEGER            INFOT, NUNIT
00216 *     ..
00217 *     .. Common blocks ..
00218       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
00219       COMMON             / SRNAMC / SRNAMT
00220 *     ..
00221 *     .. Intrinsic Functions ..
00222       INTRINSIC          DCMPLX, MAX, MIN
00223 *     ..
00224 *     .. Data statements ..
00225       DATA               ISEEDY / 1988, 1989, 1990, 1991 /
00226       DATA               FACTS / 'F', 'N' /
00227 *     ..
00228 *     .. Executable Statements ..
00229 *
00230 *     Initialize constants and the random number seed.
00231 *
00232       PATH( 1: 1 ) = 'Z'
00233       PATH( 2: 3 ) = 'HP'
00234       NRUN = 0
00235       NFAIL = 0
00236       NERRS = 0
00237       DO 10 I = 1, 4
00238          ISEED( I ) = ISEEDY( I )
00239    10 CONTINUE
00240 *
00241 *     Test the error exits
00242 *
00243       IF( TSTERR )
00244      $   CALL ZERRVX( PATH, NOUT )
00245       INFOT = 0
00246 *
00247 *     Set the block size and minimum block size for testing.
00248 *
00249       NB = 1
00250       NBMIN = 2
00251       CALL XLAENV( 1, NB )
00252       CALL XLAENV( 2, NBMIN )
00253 *
00254 *     Do for each value of N in NVAL
00255 *
00256       DO 180 IN = 1, NN
00257          N = NVAL( IN )
00258          LDA = MAX( N, 1 )
00259          NPP = N*( N+1 ) / 2
00260          XTYPE = 'N'
00261          NIMAT = NTYPES
00262          IF( N.LE.0 )
00263      $      NIMAT = 1
00264 *
00265          DO 170 IMAT = 1, NIMAT
00266 *
00267 *           Do the tests only if DOTYPE( IMAT ) is true.
00268 *
00269             IF( .NOT.DOTYPE( IMAT ) )
00270      $         GO TO 170
00271 *
00272 *           Skip types 3, 4, 5, or 6 if the matrix size is too small.
00273 *
00274             ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
00275             IF( ZEROT .AND. N.LT.IMAT-2 )
00276      $         GO TO 170
00277 *
00278 *           Do first for UPLO = 'U', then for UPLO = 'L'
00279 *
00280             DO 160 IUPLO = 1, 2
00281                IF( IUPLO.EQ.1 ) THEN
00282                   UPLO = 'U'
00283                   PACKIT = 'C'
00284                ELSE
00285                   UPLO = 'L'
00286                   PACKIT = 'R'
00287                END IF
00288 *
00289 *              Set up parameters with ZLATB4 and generate a test matrix
00290 *              with ZLATMS.
00291 *
00292                CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
00293      $                      CNDNUM, DIST )
00294 *
00295                SRNAMT = 'ZLATMS'
00296                CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
00297      $                      CNDNUM, ANORM, KL, KU, PACKIT, A, LDA, WORK,
00298      $                      INFO )
00299 *
00300 *              Check error code from ZLATMS.
00301 *
00302                IF( INFO.NE.0 ) THEN
00303                   CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N, N, -1,
00304      $                         -1, -1, IMAT, NFAIL, NERRS, NOUT )
00305                   GO TO 160
00306                END IF
00307 *
00308 *              For types 3-6, zero one or more rows and columns of the
00309 *              matrix to test that INFO is returned correctly.
00310 *
00311                IF( ZEROT ) THEN
00312                   IF( IMAT.EQ.3 ) THEN
00313                      IZERO = 1
00314                   ELSE IF( IMAT.EQ.4 ) THEN
00315                      IZERO = N
00316                   ELSE
00317                      IZERO = N / 2 + 1
00318                   END IF
00319 *
00320                   IF( IMAT.LT.6 ) THEN
00321 *
00322 *                    Set row and column IZERO to zero.
00323 *
00324                      IF( IUPLO.EQ.1 ) THEN
00325                         IOFF = ( IZERO-1 )*IZERO / 2
00326                         DO 20 I = 1, IZERO - 1
00327                            A( IOFF+I ) = ZERO
00328    20                   CONTINUE
00329                         IOFF = IOFF + IZERO
00330                         DO 30 I = IZERO, N
00331                            A( IOFF ) = ZERO
00332                            IOFF = IOFF + I
00333    30                   CONTINUE
00334                      ELSE
00335                         IOFF = IZERO
00336                         DO 40 I = 1, IZERO - 1
00337                            A( IOFF ) = ZERO
00338                            IOFF = IOFF + N - I
00339    40                   CONTINUE
00340                         IOFF = IOFF - IZERO
00341                         DO 50 I = IZERO, N
00342                            A( IOFF+I ) = ZERO
00343    50                   CONTINUE
00344                      END IF
00345                   ELSE
00346                      IOFF = 0
00347                      IF( IUPLO.EQ.1 ) THEN
00348 *
00349 *                       Set the first IZERO rows and columns to zero.
00350 *
00351                         DO 70 J = 1, N
00352                            I2 = MIN( J, IZERO )
00353                            DO 60 I = 1, I2
00354                               A( IOFF+I ) = ZERO
00355    60                      CONTINUE
00356                            IOFF = IOFF + J
00357    70                   CONTINUE
00358                      ELSE
00359 *
00360 *                       Set the last IZERO rows and columns to zero.
00361 *
00362                         DO 90 J = 1, N
00363                            I1 = MAX( J, IZERO )
00364                            DO 80 I = I1, N
00365                               A( IOFF+I ) = ZERO
00366    80                      CONTINUE
00367                            IOFF = IOFF + N - J
00368    90                   CONTINUE
00369                      END IF
00370                   END IF
00371                ELSE
00372                   IZERO = 0
00373                END IF
00374 *
00375 *              Set the imaginary part of the diagonals.
00376 *
00377                IF( IUPLO.EQ.1 ) THEN
00378                   CALL ZLAIPD( N, A, 2, 1 )
00379                ELSE
00380                   CALL ZLAIPD( N, A, N, -1 )
00381                END IF
00382 *
00383                DO 150 IFACT = 1, NFACT
00384 *
00385 *                 Do first for FACT = 'F', then for other values.
00386 *
00387                   FACT = FACTS( IFACT )
00388 *
00389 *                 Compute the condition number for comparison with
00390 *                 the value returned by ZHPSVX.
00391 *
00392                   IF( ZEROT ) THEN
00393                      IF( IFACT.EQ.1 )
00394      $                  GO TO 150
00395                      RCONDC = ZERO
00396 *
00397                   ELSE IF( IFACT.EQ.1 ) THEN
00398 *
00399 *                    Compute the 1-norm of A.
00400 *
00401                      ANORM = ZLANHP( '1', UPLO, N, A, RWORK )
00402 *
00403 *                    Factor the matrix A.
00404 *
00405                      CALL ZCOPY( NPP, A, 1, AFAC, 1 )
00406                      CALL ZHPTRF( UPLO, N, AFAC, IWORK, INFO )
00407 *
00408 *                    Compute inv(A) and take its norm.
00409 *
00410                      CALL ZCOPY( NPP, AFAC, 1, AINV, 1 )
00411                      CALL ZHPTRI( UPLO, N, AINV, IWORK, WORK, INFO )
00412                      AINVNM = ZLANHP( '1', UPLO, N, AINV, RWORK )
00413 *
00414 *                    Compute the 1-norm condition number of A.
00415 *
00416                      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
00417                         RCONDC = ONE
00418                      ELSE
00419                         RCONDC = ( ONE / ANORM ) / AINVNM
00420                      END IF
00421                   END IF
00422 *
00423 *                 Form an exact solution and set the right hand side.
00424 *
00425                   SRNAMT = 'ZLARHS'
00426                   CALL ZLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
00427      $                         NRHS, A, LDA, XACT, LDA, B, LDA, ISEED,
00428      $                         INFO )
00429                   XTYPE = 'C'
00430 *
00431 *                 --- Test ZHPSV  ---
00432 *
00433                   IF( IFACT.EQ.2 ) THEN
00434                      CALL ZCOPY( NPP, A, 1, AFAC, 1 )
00435                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
00436 *
00437 *                    Factor the matrix and solve the system using ZHPSV.
00438 *
00439                      SRNAMT = 'ZHPSV '
00440                      CALL ZHPSV( UPLO, N, NRHS, AFAC, IWORK, X, LDA,
00441      $                           INFO )
00442 *
00443 *                    Adjust the expected value of INFO to account for
00444 *                    pivoting.
00445 *
00446                      K = IZERO
00447                      IF( K.GT.0 ) THEN
00448   100                   CONTINUE
00449                         IF( IWORK( K ).LT.0 ) THEN
00450                            IF( IWORK( K ).NE.-K ) THEN
00451                               K = -IWORK( K )
00452                               GO TO 100
00453                            END IF
00454                         ELSE IF( IWORK( K ).NE.K ) THEN
00455                            K = IWORK( K )
00456                            GO TO 100
00457                         END IF
00458                      END IF
00459 *
00460 *                    Check error code from ZHPSV .
00461 *
00462                      IF( INFO.NE.K ) THEN
00463                         CALL ALAERH( PATH, 'ZHPSV ', INFO, K, UPLO, N,
00464      $                               N, -1, -1, NRHS, IMAT, NFAIL,
00465      $                               NERRS, NOUT )
00466                         GO TO 120
00467                      ELSE IF( INFO.NE.0 ) THEN
00468                         GO TO 120
00469                      END IF
00470 *
00471 *                    Reconstruct matrix from factors and compute
00472 *                    residual.
00473 *
00474                      CALL ZHPT01( UPLO, N, A, AFAC, IWORK, AINV, LDA,
00475      $                            RWORK, RESULT( 1 ) )
00476 *
00477 *                    Compute residual of the computed solution.
00478 *
00479                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00480                      CALL ZPPT02( UPLO, N, NRHS, A, X, LDA, WORK, LDA,
00481      $                            RWORK, RESULT( 2 ) )
00482 *
00483 *                    Check solution from generated exact solution.
00484 *
00485                      CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00486      $                            RESULT( 3 ) )
00487                      NT = 3
00488 *
00489 *                    Print information about the tests that did not pass
00490 *                    the threshold.
00491 *
00492                      DO 110 K = 1, NT
00493                         IF( RESULT( K ).GE.THRESH ) THEN
00494                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00495      $                        CALL ALADHD( NOUT, PATH )
00496                            WRITE( NOUT, FMT = 9999 )'ZHPSV ', UPLO, N,
00497      $                        IMAT, K, RESULT( K )
00498                            NFAIL = NFAIL + 1
00499                         END IF
00500   110                CONTINUE
00501                      NRUN = NRUN + NT
00502   120                CONTINUE
00503                   END IF
00504 *
00505 *                 --- Test ZHPSVX ---
00506 *
00507                   IF( IFACT.EQ.2 .AND. NPP.GT.0 )
00508      $               CALL ZLASET( 'Full', NPP, 1, DCMPLX( ZERO ),
00509      $                            DCMPLX( ZERO ), AFAC, NPP )
00510                   CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
00511      $                         DCMPLX( ZERO ), X, LDA )
00512 *
00513 *                 Solve the system and compute the condition number and
00514 *                 error bounds using ZHPSVX.
00515 *
00516                   SRNAMT = 'ZHPSVX'
00517                   CALL ZHPSVX( FACT, UPLO, N, NRHS, A, AFAC, IWORK, B,
00518      $                         LDA, X, LDA, RCOND, RWORK,
00519      $                         RWORK( NRHS+1 ), WORK, RWORK( 2*NRHS+1 ),
00520      $                         INFO )
00521 *
00522 *                 Adjust the expected value of INFO to account for
00523 *                 pivoting.
00524 *
00525                   K = IZERO
00526                   IF( K.GT.0 ) THEN
00527   130                CONTINUE
00528                      IF( IWORK( K ).LT.0 ) THEN
00529                         IF( IWORK( K ).NE.-K ) THEN
00530                            K = -IWORK( K )
00531                            GO TO 130
00532                         END IF
00533                      ELSE IF( IWORK( K ).NE.K ) THEN
00534                         K = IWORK( K )
00535                         GO TO 130
00536                      END IF
00537                   END IF
00538 *
00539 *                 Check the error code from ZHPSVX.
00540 *
00541                   IF( INFO.NE.K ) THEN
00542                      CALL ALAERH( PATH, 'ZHPSVX', INFO, K, FACT // UPLO,
00543      $                            N, N, -1, -1, NRHS, IMAT, NFAIL,
00544      $                            NERRS, NOUT )
00545                      GO TO 150
00546                   END IF
00547 *
00548                   IF( INFO.EQ.0 ) THEN
00549                      IF( IFACT.GE.2 ) THEN
00550 *
00551 *                       Reconstruct matrix from factors and compute
00552 *                       residual.
00553 *
00554                         CALL ZHPT01( UPLO, N, A, AFAC, IWORK, AINV, LDA,
00555      $                               RWORK( 2*NRHS+1 ), RESULT( 1 ) )
00556                         K1 = 1
00557                      ELSE
00558                         K1 = 2
00559                      END IF
00560 *
00561 *                    Compute residual of the computed solution.
00562 *
00563                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00564                      CALL ZPPT02( UPLO, N, NRHS, A, X, LDA, WORK, LDA,
00565      $                            RWORK( 2*NRHS+1 ), RESULT( 2 ) )
00566 *
00567 *                    Check solution from generated exact solution.
00568 *
00569                      CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00570      $                            RESULT( 3 ) )
00571 *
00572 *                    Check the error bounds from iterative refinement.
00573 *
00574                      CALL ZPPT05( UPLO, N, NRHS, A, B, LDA, X, LDA,
00575      $                            XACT, LDA, RWORK, RWORK( NRHS+1 ),
00576      $                            RESULT( 4 ) )
00577                   ELSE
00578                      K1 = 6
00579                   END IF
00580 *
00581 *                 Compare RCOND from ZHPSVX with the computed value
00582 *                 in RCONDC.
00583 *
00584                   RESULT( 6 ) = DGET06( RCOND, RCONDC )
00585 *
00586 *                 Print information about the tests that did not pass
00587 *                 the threshold.
00588 *
00589                   DO 140 K = K1, 6
00590                      IF( RESULT( K ).GE.THRESH ) THEN
00591                         IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00592      $                     CALL ALADHD( NOUT, PATH )
00593                         WRITE( NOUT, FMT = 9998 )'ZHPSVX', FACT, UPLO,
00594      $                     N, IMAT, K, RESULT( K )
00595                         NFAIL = NFAIL + 1
00596                      END IF
00597   140             CONTINUE
00598                   NRUN = NRUN + 7 - K1
00599 *
00600   150          CONTINUE
00601 *
00602   160       CONTINUE
00603   170    CONTINUE
00604   180 CONTINUE
00605 *
00606 *     Print a summary of the results.
00607 *
00608       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
00609 *
00610  9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2,
00611      $      ', test ', I2, ', ratio =', G12.5 )
00612  9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5,
00613      $      ', type ', I2, ', test ', I2, ', ratio =', G12.5 )
00614       RETURN
00615 *
00616 *     End of ZDRVHP
00617 *
00618       END
 All Files Functions