LAPACK  3.4.1
LAPACK: Linear Algebra PACKage
cchksy.f
Go to the documentation of this file.
00001 *> \brief \b CCHKSY
00002 *
00003 *  =========== DOCUMENTATION ===========
00004 *
00005 * Online html documentation available at 
00006 *            http://www.netlib.org/lapack/explore-html/ 
00007 *
00008 *  Definition:
00009 *  ===========
00010 *
00011 *       SUBROUTINE CCHKSY( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
00012 *                          THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
00013 *                          XACT, WORK, RWORK, IWORK, NOUT )
00014 * 
00015 *       .. Scalar Arguments ..
00016 *       LOGICAL            TSTERR
00017 *       INTEGER            NMAX, NN, NNB, NNS, NOUT
00018 *       REAL               THRESH
00019 *       ..
00020 *       .. Array Arguments ..
00021 *       LOGICAL            DOTYPE( * )
00022 *       INTEGER            IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
00023 *       REAL               RWORK( * )
00024 *       COMPLEX            A( * ), AFAC( * ), AINV( * ), B( * ),
00025 *      $                   WORK( * ), X( * ), XACT( * )
00026 *       ..
00027 *  
00028 *
00029 *> \par Purpose:
00030 *  =============
00031 *>
00032 *> \verbatim
00033 *>
00034 *> CCHKSY tests CSYTRF, -TRI2, -TRS, -TRS2, -RFS, and -CON.
00035 *> \endverbatim
00036 *
00037 *  Arguments:
00038 *  ==========
00039 *
00040 *> \param[in] DOTYPE
00041 *> \verbatim
00042 *>          DOTYPE is LOGICAL array, dimension (NTYPES)
00043 *>          The matrix types to be used for testing.  Matrices of type j
00044 *>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
00045 *>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
00046 *> \endverbatim
00047 *>
00048 *> \param[in] NN
00049 *> \verbatim
00050 *>          NN is INTEGER
00051 *>          The number of values of N contained in the vector NVAL.
00052 *> \endverbatim
00053 *>
00054 *> \param[in] NVAL
00055 *> \verbatim
00056 *>          NVAL is INTEGER array, dimension (NN)
00057 *>          The values of the matrix dimension N.
00058 *> \endverbatim
00059 *>
00060 *> \param[in] NNB
00061 *> \verbatim
00062 *>          NNB is INTEGER
00063 *>          The number of values of NB contained in the vector NBVAL.
00064 *> \endverbatim
00065 *>
00066 *> \param[in] NBVAL
00067 *> \verbatim
00068 *>          NBVAL is INTEGER array, dimension (NBVAL)
00069 *>          The values of the blocksize NB.
00070 *> \endverbatim
00071 *>
00072 *> \param[in] NNS
00073 *> \verbatim
00074 *>          NNS is INTEGER
00075 *>          The number of values of NRHS contained in the vector NSVAL.
00076 *> \endverbatim
00077 *>
00078 *> \param[in] NSVAL
00079 *> \verbatim
00080 *>          NSVAL is INTEGER array, dimension (NNS)
00081 *>          The values of the number of right hand sides NRHS.
00082 *> \endverbatim
00083 *>
00084 *> \param[in] THRESH
00085 *> \verbatim
00086 *>          THRESH is REAL
00087 *>          The threshold value for the test ratios.  A result is
00088 *>          included in the output file if RESULT >= THRESH.  To have
00089 *>          every test ratio printed, use THRESH = 0.
00090 *> \endverbatim
00091 *>
00092 *> \param[in] TSTERR
00093 *> \verbatim
00094 *>          TSTERR is LOGICAL
00095 *>          Flag that indicates whether error exits are to be tested.
00096 *> \endverbatim
00097 *>
00098 *> \param[in] NMAX
00099 *> \verbatim
00100 *>          NMAX is INTEGER
00101 *>          The maximum value permitted for N, used in dimensioning the
00102 *>          work arrays.
00103 *> \endverbatim
00104 *>
00105 *> \param[out] A
00106 *> \verbatim
00107 *>          A is COMPLEX array, dimension (NMAX*NMAX)
00108 *> \endverbatim
00109 *>
00110 *> \param[out] AFAC
00111 *> \verbatim
00112 *>          AFAC is COMPLEX array, dimension (NMAX*NMAX)
00113 *> \endverbatim
00114 *>
00115 *> \param[out] AINV
00116 *> \verbatim
00117 *>          AINV is COMPLEX array, dimension (NMAX*NMAX)
00118 *> \endverbatim
00119 *>
00120 *> \param[out] B
00121 *> \verbatim
00122 *>          B is COMPLEX array, dimension (NMAX*NSMAX)
00123 *>          where NSMAX is the largest entry in NSVAL.
00124 *> \endverbatim
00125 *>
00126 *> \param[out] X
00127 *> \verbatim
00128 *>          X is COMPLEX array, dimension (NMAX*NSMAX)
00129 *> \endverbatim
00130 *>
00131 *> \param[out] XACT
00132 *> \verbatim
00133 *>          XACT is COMPLEX array, dimension (NMAX*NSMAX)
00134 *> \endverbatim
00135 *>
00136 *> \param[out] WORK
00137 *> \verbatim
00138 *>          WORK is COMPLEX array, dimension
00139 *>                      (NMAX*max(2,NSMAX))
00140 *> \endverbatim
00141 *>
00142 *> \param[out] RWORK
00143 *> \verbatim
00144 *>          RWORK is REAL array,
00145 *>                                 dimension (NMAX+2*NSMAX)
00146 *> \endverbatim
00147 *>
00148 *> \param[out] IWORK
00149 *> \verbatim
00150 *>          IWORK is INTEGER array, dimension (NMAX)
00151 *> \endverbatim
00152 *>
00153 *> \param[in] NOUT
00154 *> \verbatim
00155 *>          NOUT is INTEGER
00156 *>          The unit number for output.
00157 *> \endverbatim
00158 *
00159 *  Authors:
00160 *  ========
00161 *
00162 *> \author Univ. of Tennessee 
00163 *> \author Univ. of California Berkeley 
00164 *> \author Univ. of Colorado Denver 
00165 *> \author NAG Ltd. 
00166 *
00167 *> \date April 2012
00168 *
00169 *> \ingroup complex_lin
00170 *
00171 *  =====================================================================
00172       SUBROUTINE CCHKSY( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
00173      $                   THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
00174      $                   XACT, WORK, RWORK, IWORK, NOUT )
00175 *
00176 *  -- LAPACK test routine (version 3.4.1) --
00177 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00178 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00179 *     April 2012
00180 *
00181 *     .. Scalar Arguments ..
00182       LOGICAL            TSTERR
00183       INTEGER            NMAX, NN, NNB, NNS, NOUT
00184       REAL               THRESH
00185 *     ..
00186 *     .. Array Arguments ..
00187       LOGICAL            DOTYPE( * )
00188       INTEGER            IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
00189       REAL               RWORK( * )
00190       COMPLEX            A( * ), AFAC( * ), AINV( * ), B( * ),
00191      $                   WORK( * ), X( * ), XACT( * )
00192 *     ..
00193 *
00194 *  =====================================================================
00195 *
00196 *     .. Parameters ..
00197       REAL               ZERO
00198       PARAMETER          ( ZERO = 0.0E+0 )
00199       COMPLEX            CZERO
00200       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 )  )
00201       INTEGER            NTYPES
00202       PARAMETER          ( NTYPES = 11 )
00203       INTEGER            NTESTS
00204       PARAMETER          ( NTESTS = 9 )
00205 *     ..
00206 *     .. Local Scalars ..
00207       LOGICAL            TRFCON, ZEROT
00208       CHARACTER          DIST, TYPE, UPLO, XTYPE
00209       CHARACTER*3        PATH
00210       INTEGER            I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
00211      $                   IUPLO, IZERO, J, K, KL, KU, LDA, LWORK, MODE,
00212      $                   N, NB, NERRS, NFAIL, NIMAT, NRHS, NRUN, NT
00213       REAL               ANORM, CNDNUM, RCOND, RCONDC
00214 *     ..
00215 *     .. Local Arrays ..
00216       CHARACTER          UPLOS( 2 )
00217       INTEGER            ISEED( 4 ), ISEEDY( 4 )
00218       REAL               RESULT( NTESTS )
00219 *     ..
00220 *     .. External Functions ..
00221       REAL               SGET06, CLANSY
00222       EXTERNAL           SGET06, CLANSY
00223 *     ..
00224 *     .. External Subroutines ..
00225       EXTERNAL           ALAERH, ALAHD, ALASUM, CERRSY, CGET04, CLACPY,
00226      $                   CLARHS, CLATB4, CLATMS, CLATSY, CPOT05, CSYCON,
00227      $                   CSYRFS, CSYT01, CSYT02, CSYT03, CSYTRF,
00228      $                   CSYTRI2, CSYTRS, XLAENV
00229 *     ..
00230 *     .. Intrinsic Functions ..
00231       INTRINSIC          MAX, MIN
00232 *     ..
00233 *     .. Scalars in Common ..
00234       LOGICAL            LERR, OK
00235       CHARACTER*32       SRNAMT
00236       INTEGER            INFOT, NUNIT
00237 *     ..
00238 *     .. Common blocks ..
00239       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
00240       COMMON             / SRNAMC / SRNAMT
00241 *     ..
00242 *     .. Data statements ..
00243       DATA               ISEEDY / 1988, 1989, 1990, 1991 /
00244       DATA               UPLOS / 'U', 'L' /
00245 *     ..
00246 *     .. Executable Statements ..
00247 *
00248 *     Initialize constants and the random number seed.
00249 *
00250       PATH( 1: 1 ) = 'Complex precision'
00251       PATH( 2: 3 ) = 'SY'
00252       NRUN = 0
00253       NFAIL = 0
00254       NERRS = 0
00255       DO 10 I = 1, 4
00256          ISEED( I ) = ISEEDY( I )
00257    10 CONTINUE
00258 *
00259 *     Test the error exits
00260 *
00261       IF( TSTERR )
00262      $   CALL CERRSY( PATH, NOUT )
00263       INFOT = 0
00264 *
00265 *     Set the minimum block size for which the block routine should
00266 *     be used, which will be later returned by ILAENV
00267 *
00268       CALL XLAENV( 2, 2 )
00269 *
00270 *     Do for each value of N in NVAL
00271 *
00272       DO 180 IN = 1, NN
00273          N = NVAL( IN )
00274          LDA = MAX( N, 1 )
00275          XTYPE = 'N'
00276          NIMAT = NTYPES
00277          IF( N.LE.0 )
00278      $      NIMAT = 1
00279 *
00280          IZERO = 0
00281 *
00282 *        Do for each value of matrix type IMAT
00283 *
00284          DO 170 IMAT = 1, NIMAT
00285 *
00286 *           Do the tests only if DOTYPE( IMAT ) is true.
00287 *
00288             IF( .NOT.DOTYPE( IMAT ) )
00289      $         GO TO 170
00290 *
00291 *           Skip types 3, 4, 5, or 6 if the matrix size is too small.
00292 *
00293             ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
00294             IF( ZEROT .AND. N.LT.IMAT-2 )
00295      $         GO TO 170
00296 *
00297 *           Do first for UPLO = 'U', then for UPLO = 'L'
00298 *
00299             DO 160 IUPLO = 1, 2
00300                UPLO = UPLOS( IUPLO )
00301 *
00302                IF( IMAT.NE.NTYPES ) THEN
00303 *
00304 *                 Begin generate the test matrix A.
00305 *
00306 *                 Set up parameters with CLATB4 for the matrix generator
00307 *                 based on the type of matrix to be generated.
00308 *
00309                   CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
00310      $                         MODE, CNDNUM, DIST )
00311 *
00312 *                 Generate a matrix with CLATMS.
00313 *
00314                   SRNAMT = 'CLATMS'
00315                   CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
00316      $                         CNDNUM, ANORM, KL, KU, 'N', A, LDA, WORK,
00317      $                         INFO )
00318 *
00319 *                 Check error code from CLATMS and handle error.
00320 *
00321                   IF( INFO.NE.0 ) THEN
00322                      CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N, N,
00323      $                            -1, -1, -1, IMAT, NFAIL, NERRS, NOUT )
00324                      GO TO 160
00325                   END IF
00326 *
00327 *                 For matrix types 3-6, zero one or more rows and
00328 *                 columns of the matrix to test that INFO is returned
00329 *                 correctly.
00330 *
00331                   IF( ZEROT ) THEN
00332                      IF( IMAT.EQ.3 ) THEN
00333                         IZERO = 1
00334                      ELSE IF( IMAT.EQ.4 ) THEN
00335                         IZERO = N
00336                      ELSE
00337                         IZERO = N / 2 + 1
00338                      END IF
00339 *
00340                      IF( IMAT.LT.6 ) THEN
00341 *
00342 *                       Set row and column IZERO to zero.
00343 *
00344                         IF( IUPLO.EQ.1 ) THEN
00345                            IOFF = ( IZERO-1 )*LDA
00346                            DO 20 I = 1, IZERO - 1
00347                               A( IOFF+I ) = CZERO
00348    20                      CONTINUE
00349                            IOFF = IOFF + IZERO
00350                            DO 30 I = IZERO, N
00351                               A( IOFF ) = CZERO
00352                               IOFF = IOFF + LDA
00353    30                      CONTINUE
00354                         ELSE
00355                            IOFF = IZERO
00356                            DO 40 I = 1, IZERO - 1
00357                               A( IOFF ) = CZERO
00358                               IOFF = IOFF + LDA
00359    40                      CONTINUE
00360                            IOFF = IOFF - IZERO
00361                            DO 50 I = IZERO, N
00362                               A( IOFF+I ) = CZERO
00363    50                      CONTINUE
00364                         END IF
00365                      ELSE
00366                         IF( IUPLO.EQ.1 ) THEN
00367 *
00368 *                          Set the first IZERO rows to zero.
00369 *
00370                            IOFF = 0
00371                            DO 70 J = 1, N
00372                               I2 = MIN( J, IZERO )
00373                               DO 60 I = 1, I2
00374                                  A( IOFF+I ) = CZERO
00375    60                         CONTINUE
00376                               IOFF = IOFF + LDA
00377    70                      CONTINUE
00378                         ELSE
00379 *
00380 *                          Set the last IZERO rows to zero.
00381 *
00382                            IOFF = 0
00383                            DO 90 J = 1, N
00384                               I1 = MAX( J, IZERO )
00385                               DO 80 I = I1, N
00386                                  A( IOFF+I ) = CZERO
00387    80                         CONTINUE
00388                               IOFF = IOFF + LDA
00389    90                      CONTINUE
00390                         END IF
00391                      END IF
00392                   ELSE
00393                      IZERO = 0
00394                   END IF
00395 *
00396 *                 End generate the test matrix A.
00397 *
00398                ELSE
00399 *
00400 *                 Use a special block diagonal matrix to test alternate
00401 *                 code for the 2 x 2 blocks.
00402 *
00403                   CALL CLATSY( UPLO, N, A, LDA, ISEED )
00404 *
00405                END IF
00406 *
00407 *              Do for each value of NB in NBVAL
00408 *
00409                DO 150 INB = 1, NNB
00410 *
00411 *                 Set the optimal blocksize, which will be later
00412 *                 returned by ILAENV.
00413 *
00414                   NB = NBVAL( INB )
00415                   CALL XLAENV( 1, NB )
00416 *
00417 *                 Copy the test matrix A into matrix AFAC which
00418 *                 will be factorized in place. This is needed to
00419 *                 preserve the test matrix A for subsequent tests.
00420 *
00421                   CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
00422 *
00423 *                 Compute the L*D*L**T or U*D*U**T factorization of the
00424 *                 matrix. IWORK stores details of the interchanges and
00425 *                 the block structure of D. AINV is a work array for
00426 *                 block factorization, LWORK is the length of AINV.
00427 *
00428                   LWORK = MAX( 2, NB )*LDA
00429                   SRNAMT = 'CSYTRF'
00430                   CALL CSYTRF( UPLO, N, AFAC, LDA, IWORK, AINV, LWORK,
00431      $                         INFO )
00432 *
00433 *                 Adjust the expected value of INFO to account for
00434 *                 pivoting.
00435 *
00436                   K = IZERO
00437                   IF( K.GT.0 ) THEN
00438   100                CONTINUE
00439                      IF( IWORK( K ).LT.0 ) THEN
00440                         IF( IWORK( K ).NE.-K ) THEN
00441                            K = -IWORK( K )
00442                            GO TO 100
00443                         END IF
00444                      ELSE IF( IWORK( K ).NE.K ) THEN
00445                         K = IWORK( K )
00446                         GO TO 100
00447                      END IF
00448                   END IF
00449 *
00450 *                 Check error code from CSYTRF and handle error.
00451 *
00452                   IF( INFO.NE.K )
00453      $               CALL ALAERH( PATH, 'CSYTRF', INFO, K, UPLO, N, N,
00454      $                            -1, -1, NB, IMAT, NFAIL, NERRS, NOUT )
00455 *
00456 *                 Set the condition estimate flag if the INFO is not 0.
00457 *
00458                   IF( INFO.NE.0 ) THEN
00459                      TRFCON = .TRUE.
00460                   ELSE
00461                      TRFCON = .FALSE.
00462                   END IF
00463 *
00464 *+    TEST 1
00465 *                 Reconstruct matrix from factors and compute residual.
00466 *
00467                   CALL CSYT01( UPLO, N, A, LDA, AFAC, LDA, IWORK, AINV,
00468      $                         LDA, RWORK, RESULT( 1 ) )
00469                   NT = 1
00470 *
00471 *+    TEST 2
00472 *                 Form the inverse and compute the residual,
00473 *                 if the factorization was competed without INFO > 0
00474 *                 (i.e. there is no zero rows and columns).
00475 *                 Do it only for the first block size.
00476 *
00477                   IF( INB.EQ.1 .AND. .NOT.TRFCON ) THEN
00478                      CALL CLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
00479                      SRNAMT = 'CSYTRI2'
00480                      LWORK = (N+NB+1)*(NB+3)
00481                      CALL CSYTRI2( UPLO, N, AINV, LDA, IWORK, WORK,
00482      $                            LWORK, INFO )
00483 *
00484 *                    Check error code from CSYTRI2 and handle error.
00485 *
00486                      IF( INFO.NE.0 )
00487      $                  CALL ALAERH( PATH, 'CSYTRI2', INFO, 0, UPLO, N,
00488      $                               N, -1, -1, -1, IMAT, NFAIL, NERRS,
00489      $                               NOUT )
00490 *
00491 *                    Compute the residual for a symmetric matrix times
00492 *                    its inverse.
00493 *
00494                      CALL CSYT03( UPLO, N, A, LDA, AINV, LDA, WORK, LDA,
00495      $                            RWORK, RCONDC, RESULT( 2 ) )
00496                      NT = 2
00497                   END IF
00498 *
00499 *                 Print information about the tests that did not pass
00500 *                 the threshold.
00501 *
00502                   DO 110 K = 1, NT
00503                      IF( RESULT( K ).GE.THRESH ) THEN
00504                         IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00505      $                     CALL ALAHD( NOUT, PATH )
00506                         WRITE( NOUT, FMT = 9999 )UPLO, N, NB, IMAT, K,
00507      $                     RESULT( K )
00508                         NFAIL = NFAIL + 1
00509                      END IF
00510   110             CONTINUE
00511                   NRUN = NRUN + NT
00512 *
00513 *                 Skip the other tests if this is not the first block
00514 *                 size.
00515 *
00516                   IF( INB.GT.1 )
00517      $               GO TO 150
00518 *
00519 *                 Do only the condition estimate if INFO is not 0.
00520 *
00521                   IF( TRFCON ) THEN
00522                      RCONDC = ZERO
00523                      GO TO 140
00524                   END IF
00525 *
00526                   DO 130 IRHS = 1, NNS
00527                      NRHS = NSVAL( IRHS )
00528 *
00529 *+    TEST 3 (Using TRS)
00530 *                 Solve and compute residual for  A * X = B.
00531 *
00532 *                    Choose a set of NRHS random solution vectors
00533 *                    stored in XACT and set up the right hand side B
00534 *
00535                      SRNAMT = 'CLARHS'
00536                      CALL CLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
00537      $                            NRHS, A, LDA, XACT, LDA, B, LDA,
00538      $                            ISEED, INFO )
00539                      CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
00540 *
00541                      SRNAMT = 'CSYTRS'
00542                      CALL CSYTRS( UPLO, N, NRHS, AFAC, LDA, IWORK, X,
00543      $                            LDA, INFO )
00544 *
00545 *                    Check error code from CSYTRS and handle error.
00546 *
00547                      IF( INFO.NE.0 )
00548      $                  CALL ALAERH( PATH, 'CSYTRS', INFO, 0, UPLO, N,
00549      $                               N, -1, -1, NRHS, IMAT, NFAIL,
00550      $                               NERRS, NOUT )
00551 *
00552                      CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00553 *
00554 *                    Compute the residual for the solution
00555 *
00556                      CALL CSYT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
00557      $                            LDA, RWORK, RESULT( 3 ) )
00558 *
00559 *+    TEST 4 (Using TRS2)
00560 *                 Solve and compute residual for  A * X = B.
00561 *
00562 *                    Choose a set of NRHS random solution vectors
00563 *                    stored in XACT and set up the right hand side B
00564 *
00565                      SRNAMT = 'CLARHS'
00566                      CALL CLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
00567      $                            NRHS, A, LDA, XACT, LDA, B, LDA,
00568      $                            ISEED, INFO )
00569                      CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
00570 *
00571                      SRNAMT = 'CSYTRS2'
00572                      CALL CSYTRS2( UPLO, N, NRHS, AFAC, LDA, IWORK, X,
00573      $                            LDA, WORK, INFO )
00574 *
00575 *                    Check error code from CSYTRS2 and handle error.
00576 *
00577                      IF( INFO.NE.0 )
00578      $                  CALL ALAERH( PATH, 'CSYTRS2', INFO, 0, UPLO, N,
00579      $                               N, -1, -1, NRHS, IMAT, NFAIL,
00580      $                               NERRS, NOUT )
00581 *
00582                      CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00583 *
00584 *                    Compute the residual for the solution
00585 *
00586                      CALL CSYT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
00587      $                            LDA, RWORK, RESULT( 4 ) )
00588 *
00589 *+    TEST 5
00590 *                 Check solution from generated exact solution.
00591 *
00592                      CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00593      $                            RESULT( 5 ) )
00594 *
00595 *+    TESTS 6, 7, and 8
00596 *                 Use iterative refinement to improve the solution.
00597 *
00598                      SRNAMT = 'CSYRFS'
00599                      CALL CSYRFS( UPLO, N, NRHS, A, LDA, AFAC, LDA,
00600      $                            IWORK, B, LDA, X, LDA, RWORK,
00601      $                            RWORK( NRHS+1 ), WORK,
00602      $                            RWORK( 2*NRHS+1 ), INFO )
00603 *
00604 *                 Check error code from CSYRFS.
00605 *
00606                      IF( INFO.NE.0 )
00607      $                  CALL ALAERH( PATH, 'CSYRFS', INFO, 0, UPLO, N,
00608      $                               N, -1, -1, NRHS, IMAT, NFAIL,
00609      $                               NERRS, NOUT )
00610 *
00611                      CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00612      $                            RESULT( 6 ) )
00613                      CALL CPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA,
00614      $                            XACT, LDA, RWORK, RWORK( NRHS+1 ),
00615      $                            RESULT( 7 ) )
00616 *
00617 *                    Print information about the tests that did not pass
00618 *                    the threshold.
00619 *
00620                      DO 120 K = 3, 8
00621                         IF( RESULT( K ).GE.THRESH ) THEN
00622                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00623      $                        CALL ALAHD( NOUT, PATH )
00624                            WRITE( NOUT, FMT = 9998 )UPLO, N, NRHS,
00625      $                        IMAT, K, RESULT( K )
00626                            NFAIL = NFAIL + 1
00627                         END IF
00628   120                CONTINUE
00629                      NRUN = NRUN + 6
00630   130             CONTINUE
00631 *
00632 *+    TEST 9
00633 *                 Get an estimate of RCOND = 1/CNDNUM.
00634 *
00635   140             CONTINUE
00636                   ANORM = CLANSY( '1', UPLO, N, A, LDA, RWORK )
00637                   SRNAMT = 'CSYCON'
00638                   CALL CSYCON( UPLO, N, AFAC, LDA, IWORK, ANORM, RCOND,
00639      $                         WORK, INFO )
00640 *
00641 *                 Check error code from CSYCON and handle error.
00642 *
00643                   IF( INFO.NE.0 )
00644      $               CALL ALAERH( PATH, 'CSYCON', INFO, 0, UPLO, N, N,
00645      $                            -1, -1, -1, IMAT, NFAIL, NERRS, NOUT )
00646 *
00647 *                 Compute the test ratio to compare to values of RCOND
00648 *
00649                   RESULT( 9 ) = SGET06( RCOND, RCONDC )
00650 *
00651 *                 Print information about the tests that did not pass
00652 *                 the threshold.
00653 *
00654                   IF( RESULT( 9 ).GE.THRESH ) THEN
00655                      IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00656      $                  CALL ALAHD( NOUT, PATH )
00657                      WRITE( NOUT, FMT = 9997 )UPLO, N, IMAT, 9,
00658      $                  RESULT( 9 )
00659                      NFAIL = NFAIL + 1
00660                   END IF
00661                   NRUN = NRUN + 1
00662   150          CONTINUE
00663   160       CONTINUE
00664   170    CONTINUE
00665   180 CONTINUE
00666 *
00667 *     Print a summary of the results.
00668 *
00669       CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
00670 *
00671  9999 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NB =', I4, ', type ',
00672      $      I2, ', test ', I2, ', ratio =', G12.5 )
00673  9998 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NRHS=', I3, ', type ',
00674      $      I2, ', test(', I2, ') =', G12.5 )
00675  9997 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ',', 10X, ' type ', I2,
00676      $      ', test(', I2, ') =', G12.5 )
00677       RETURN
00678 *
00679 *     End of CCHKSY
00680 *
00681       END
 All Files Functions