![]() |
LAPACK
3.4.1
LAPACK: Linear Algebra PACKage
|
00001 *> \brief \b DDRVPP 00002 * 00003 * =========== DOCUMENTATION =========== 00004 * 00005 * Online html documentation available at 00006 * http://www.netlib.org/lapack/explore-html/ 00007 * 00008 * Definition: 00009 * =========== 00010 * 00011 * SUBROUTINE DDRVPP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, 00012 * A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, 00013 * RWORK, IWORK, NOUT ) 00014 * 00015 * .. Scalar Arguments .. 00016 * LOGICAL TSTERR 00017 * INTEGER NMAX, NN, NOUT, NRHS 00018 * DOUBLE PRECISION THRESH 00019 * .. 00020 * .. Array Arguments .. 00021 * LOGICAL DOTYPE( * ) 00022 * INTEGER IWORK( * ), NVAL( * ) 00023 * DOUBLE PRECISION A( * ), AFAC( * ), ASAV( * ), B( * ), 00024 * $ BSAV( * ), RWORK( * ), S( * ), WORK( * ), 00025 * $ X( * ), XACT( * ) 00026 * .. 00027 * 00028 * 00029 *> \par Purpose: 00030 * ============= 00031 *> 00032 *> \verbatim 00033 *> 00034 *> DDRVPP tests the driver routines DPPSV and -SVX. 00035 *> \endverbatim 00036 * 00037 * Arguments: 00038 * ========== 00039 * 00040 *> \param[in] DOTYPE 00041 *> \verbatim 00042 *> DOTYPE is LOGICAL array, dimension (NTYPES) 00043 *> The matrix types to be used for testing. Matrices of type j 00044 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = 00045 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. 00046 *> \endverbatim 00047 *> 00048 *> \param[in] NN 00049 *> \verbatim 00050 *> NN is INTEGER 00051 *> The number of values of N contained in the vector NVAL. 00052 *> \endverbatim 00053 *> 00054 *> \param[in] NVAL 00055 *> \verbatim 00056 *> NVAL is INTEGER array, dimension (NN) 00057 *> The values of the matrix dimension N. 00058 *> \endverbatim 00059 *> 00060 *> \param[in] NRHS 00061 *> \verbatim 00062 *> NRHS is INTEGER 00063 *> The number of right hand side vectors to be generated for 00064 *> each linear system. 00065 *> \endverbatim 00066 *> 00067 *> \param[in] THRESH 00068 *> \verbatim 00069 *> THRESH is DOUBLE PRECISION 00070 *> The threshold value for the test ratios. A result is 00071 *> included in the output file if RESULT >= THRESH. To have 00072 *> every test ratio printed, use THRESH = 0. 00073 *> \endverbatim 00074 *> 00075 *> \param[in] TSTERR 00076 *> \verbatim 00077 *> TSTERR is LOGICAL 00078 *> Flag that indicates whether error exits are to be tested. 00079 *> \endverbatim 00080 *> 00081 *> \param[in] NMAX 00082 *> \verbatim 00083 *> NMAX is INTEGER 00084 *> The maximum value permitted for N, used in dimensioning the 00085 *> work arrays. 00086 *> \endverbatim 00087 *> 00088 *> \param[out] A 00089 *> \verbatim 00090 *> A is DOUBLE PRECISION array, dimension 00091 *> (NMAX*(NMAX+1)/2) 00092 *> \endverbatim 00093 *> 00094 *> \param[out] AFAC 00095 *> \verbatim 00096 *> AFAC is DOUBLE PRECISION array, dimension 00097 *> (NMAX*(NMAX+1)/2) 00098 *> \endverbatim 00099 *> 00100 *> \param[out] ASAV 00101 *> \verbatim 00102 *> ASAV is DOUBLE PRECISION array, dimension 00103 *> (NMAX*(NMAX+1)/2) 00104 *> \endverbatim 00105 *> 00106 *> \param[out] B 00107 *> \verbatim 00108 *> B is DOUBLE PRECISION array, dimension (NMAX*NRHS) 00109 *> \endverbatim 00110 *> 00111 *> \param[out] BSAV 00112 *> \verbatim 00113 *> BSAV is DOUBLE PRECISION array, dimension (NMAX*NRHS) 00114 *> \endverbatim 00115 *> 00116 *> \param[out] X 00117 *> \verbatim 00118 *> X is DOUBLE PRECISION array, dimension (NMAX*NRHS) 00119 *> \endverbatim 00120 *> 00121 *> \param[out] XACT 00122 *> \verbatim 00123 *> XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS) 00124 *> \endverbatim 00125 *> 00126 *> \param[out] S 00127 *> \verbatim 00128 *> S is DOUBLE PRECISION array, dimension (NMAX) 00129 *> \endverbatim 00130 *> 00131 *> \param[out] WORK 00132 *> \verbatim 00133 *> WORK is DOUBLE PRECISION array, dimension 00134 *> (NMAX*max(3,NRHS)) 00135 *> \endverbatim 00136 *> 00137 *> \param[out] RWORK 00138 *> \verbatim 00139 *> RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS) 00140 *> \endverbatim 00141 *> 00142 *> \param[out] IWORK 00143 *> \verbatim 00144 *> IWORK is INTEGER array, dimension (NMAX) 00145 *> \endverbatim 00146 *> 00147 *> \param[in] NOUT 00148 *> \verbatim 00149 *> NOUT is INTEGER 00150 *> The unit number for output. 00151 *> \endverbatim 00152 * 00153 * Authors: 00154 * ======== 00155 * 00156 *> \author Univ. of Tennessee 00157 *> \author Univ. of California Berkeley 00158 *> \author Univ. of Colorado Denver 00159 *> \author NAG Ltd. 00160 * 00161 *> \date November 2011 00162 * 00163 *> \ingroup double_lin 00164 * 00165 * ===================================================================== 00166 SUBROUTINE DDRVPP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, 00167 $ A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, 00168 $ RWORK, IWORK, NOUT ) 00169 * 00170 * -- LAPACK test routine (version 3.4.0) -- 00171 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00172 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00173 * November 2011 00174 * 00175 * .. Scalar Arguments .. 00176 LOGICAL TSTERR 00177 INTEGER NMAX, NN, NOUT, NRHS 00178 DOUBLE PRECISION THRESH 00179 * .. 00180 * .. Array Arguments .. 00181 LOGICAL DOTYPE( * ) 00182 INTEGER IWORK( * ), NVAL( * ) 00183 DOUBLE PRECISION A( * ), AFAC( * ), ASAV( * ), B( * ), 00184 $ BSAV( * ), RWORK( * ), S( * ), WORK( * ), 00185 $ X( * ), XACT( * ) 00186 * .. 00187 * 00188 * ===================================================================== 00189 * 00190 * .. Parameters .. 00191 DOUBLE PRECISION ONE, ZERO 00192 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) 00193 INTEGER NTYPES 00194 PARAMETER ( NTYPES = 9 ) 00195 INTEGER NTESTS 00196 PARAMETER ( NTESTS = 6 ) 00197 * .. 00198 * .. Local Scalars .. 00199 LOGICAL EQUIL, NOFACT, PREFAC, ZEROT 00200 CHARACTER DIST, EQUED, FACT, PACKIT, TYPE, UPLO, XTYPE 00201 CHARACTER*3 PATH 00202 INTEGER I, IEQUED, IFACT, IMAT, IN, INFO, IOFF, IUPLO, 00203 $ IZERO, K, K1, KL, KU, LDA, MODE, N, NERRS, 00204 $ NFACT, NFAIL, NIMAT, NPP, NRUN, NT 00205 DOUBLE PRECISION AINVNM, AMAX, ANORM, CNDNUM, RCOND, RCONDC, 00206 $ ROLDC, SCOND 00207 * .. 00208 * .. Local Arrays .. 00209 CHARACTER EQUEDS( 2 ), FACTS( 3 ), PACKS( 2 ), UPLOS( 2 ) 00210 INTEGER ISEED( 4 ), ISEEDY( 4 ) 00211 DOUBLE PRECISION RESULT( NTESTS ) 00212 * .. 00213 * .. External Functions .. 00214 LOGICAL LSAME 00215 DOUBLE PRECISION DGET06, DLANSP 00216 EXTERNAL LSAME, DGET06, DLANSP 00217 * .. 00218 * .. External Subroutines .. 00219 EXTERNAL ALADHD, ALAERH, ALASVM, DCOPY, DERRVX, DGET04, 00220 $ DLACPY, DLAQSP, DLARHS, DLASET, DLATB4, DLATMS, 00221 $ DPPEQU, DPPSV, DPPSVX, DPPT01, DPPT02, DPPT05, 00222 $ DPPTRF, DPPTRI 00223 * .. 00224 * .. Scalars in Common .. 00225 LOGICAL LERR, OK 00226 CHARACTER*32 SRNAMT 00227 INTEGER INFOT, NUNIT 00228 * .. 00229 * .. Common blocks .. 00230 COMMON / INFOC / INFOT, NUNIT, OK, LERR 00231 COMMON / SRNAMC / SRNAMT 00232 * .. 00233 * .. Intrinsic Functions .. 00234 INTRINSIC MAX 00235 * .. 00236 * .. Data statements .. 00237 DATA ISEEDY / 1988, 1989, 1990, 1991 / 00238 DATA UPLOS / 'U', 'L' / , FACTS / 'F', 'N', 'E' / , 00239 $ PACKS / 'C', 'R' / , EQUEDS / 'N', 'Y' / 00240 * .. 00241 * .. Executable Statements .. 00242 * 00243 * Initialize constants and the random number seed. 00244 * 00245 PATH( 1: 1 ) = 'Double precision' 00246 PATH( 2: 3 ) = 'PP' 00247 NRUN = 0 00248 NFAIL = 0 00249 NERRS = 0 00250 DO 10 I = 1, 4 00251 ISEED( I ) = ISEEDY( I ) 00252 10 CONTINUE 00253 * 00254 * Test the error exits 00255 * 00256 IF( TSTERR ) 00257 $ CALL DERRVX( PATH, NOUT ) 00258 INFOT = 0 00259 * 00260 * Do for each value of N in NVAL 00261 * 00262 DO 140 IN = 1, NN 00263 N = NVAL( IN ) 00264 LDA = MAX( N, 1 ) 00265 NPP = N*( N+1 ) / 2 00266 XTYPE = 'N' 00267 NIMAT = NTYPES 00268 IF( N.LE.0 ) 00269 $ NIMAT = 1 00270 * 00271 DO 130 IMAT = 1, NIMAT 00272 * 00273 * Do the tests only if DOTYPE( IMAT ) is true. 00274 * 00275 IF( .NOT.DOTYPE( IMAT ) ) 00276 $ GO TO 130 00277 * 00278 * Skip types 3, 4, or 5 if the matrix size is too small. 00279 * 00280 ZEROT = IMAT.GE.3 .AND. IMAT.LE.5 00281 IF( ZEROT .AND. N.LT.IMAT-2 ) 00282 $ GO TO 130 00283 * 00284 * Do first for UPLO = 'U', then for UPLO = 'L' 00285 * 00286 DO 120 IUPLO = 1, 2 00287 UPLO = UPLOS( IUPLO ) 00288 PACKIT = PACKS( IUPLO ) 00289 * 00290 * Set up parameters with DLATB4 and generate a test matrix 00291 * with DLATMS. 00292 * 00293 CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE, 00294 $ CNDNUM, DIST ) 00295 RCONDC = ONE / CNDNUM 00296 * 00297 SRNAMT = 'DLATMS' 00298 CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, 00299 $ CNDNUM, ANORM, KL, KU, PACKIT, A, LDA, WORK, 00300 $ INFO ) 00301 * 00302 * Check error code from DLATMS. 00303 * 00304 IF( INFO.NE.0 ) THEN 00305 CALL ALAERH( PATH, 'DLATMS', INFO, 0, UPLO, N, N, -1, 00306 $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) 00307 GO TO 120 00308 END IF 00309 * 00310 * For types 3-5, zero one row and column of the matrix to 00311 * test that INFO is returned correctly. 00312 * 00313 IF( ZEROT ) THEN 00314 IF( IMAT.EQ.3 ) THEN 00315 IZERO = 1 00316 ELSE IF( IMAT.EQ.4 ) THEN 00317 IZERO = N 00318 ELSE 00319 IZERO = N / 2 + 1 00320 END IF 00321 * 00322 * Set row and column IZERO of A to 0. 00323 * 00324 IF( IUPLO.EQ.1 ) THEN 00325 IOFF = ( IZERO-1 )*IZERO / 2 00326 DO 20 I = 1, IZERO - 1 00327 A( IOFF+I ) = ZERO 00328 20 CONTINUE 00329 IOFF = IOFF + IZERO 00330 DO 30 I = IZERO, N 00331 A( IOFF ) = ZERO 00332 IOFF = IOFF + I 00333 30 CONTINUE 00334 ELSE 00335 IOFF = IZERO 00336 DO 40 I = 1, IZERO - 1 00337 A( IOFF ) = ZERO 00338 IOFF = IOFF + N - I 00339 40 CONTINUE 00340 IOFF = IOFF - IZERO 00341 DO 50 I = IZERO, N 00342 A( IOFF+I ) = ZERO 00343 50 CONTINUE 00344 END IF 00345 ELSE 00346 IZERO = 0 00347 END IF 00348 * 00349 * Save a copy of the matrix A in ASAV. 00350 * 00351 CALL DCOPY( NPP, A, 1, ASAV, 1 ) 00352 * 00353 DO 110 IEQUED = 1, 2 00354 EQUED = EQUEDS( IEQUED ) 00355 IF( IEQUED.EQ.1 ) THEN 00356 NFACT = 3 00357 ELSE 00358 NFACT = 1 00359 END IF 00360 * 00361 DO 100 IFACT = 1, NFACT 00362 FACT = FACTS( IFACT ) 00363 PREFAC = LSAME( FACT, 'F' ) 00364 NOFACT = LSAME( FACT, 'N' ) 00365 EQUIL = LSAME( FACT, 'E' ) 00366 * 00367 IF( ZEROT ) THEN 00368 IF( PREFAC ) 00369 $ GO TO 100 00370 RCONDC = ZERO 00371 * 00372 ELSE IF( .NOT.LSAME( FACT, 'N' ) ) THEN 00373 * 00374 * Compute the condition number for comparison with 00375 * the value returned by DPPSVX (FACT = 'N' reuses 00376 * the condition number from the previous iteration 00377 * with FACT = 'F'). 00378 * 00379 CALL DCOPY( NPP, ASAV, 1, AFAC, 1 ) 00380 IF( EQUIL .OR. IEQUED.GT.1 ) THEN 00381 * 00382 * Compute row and column scale factors to 00383 * equilibrate the matrix A. 00384 * 00385 CALL DPPEQU( UPLO, N, AFAC, S, SCOND, AMAX, 00386 $ INFO ) 00387 IF( INFO.EQ.0 .AND. N.GT.0 ) THEN 00388 IF( IEQUED.GT.1 ) 00389 $ SCOND = ZERO 00390 * 00391 * Equilibrate the matrix. 00392 * 00393 CALL DLAQSP( UPLO, N, AFAC, S, SCOND, 00394 $ AMAX, EQUED ) 00395 END IF 00396 END IF 00397 * 00398 * Save the condition number of the 00399 * non-equilibrated system for use in DGET04. 00400 * 00401 IF( EQUIL ) 00402 $ ROLDC = RCONDC 00403 * 00404 * Compute the 1-norm of A. 00405 * 00406 ANORM = DLANSP( '1', UPLO, N, AFAC, RWORK ) 00407 * 00408 * Factor the matrix A. 00409 * 00410 CALL DPPTRF( UPLO, N, AFAC, INFO ) 00411 * 00412 * Form the inverse of A. 00413 * 00414 CALL DCOPY( NPP, AFAC, 1, A, 1 ) 00415 CALL DPPTRI( UPLO, N, A, INFO ) 00416 * 00417 * Compute the 1-norm condition number of A. 00418 * 00419 AINVNM = DLANSP( '1', UPLO, N, A, RWORK ) 00420 IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN 00421 RCONDC = ONE 00422 ELSE 00423 RCONDC = ( ONE / ANORM ) / AINVNM 00424 END IF 00425 END IF 00426 * 00427 * Restore the matrix A. 00428 * 00429 CALL DCOPY( NPP, ASAV, 1, A, 1 ) 00430 * 00431 * Form an exact solution and set the right hand side. 00432 * 00433 SRNAMT = 'DLARHS' 00434 CALL DLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU, 00435 $ NRHS, A, LDA, XACT, LDA, B, LDA, 00436 $ ISEED, INFO ) 00437 XTYPE = 'C' 00438 CALL DLACPY( 'Full', N, NRHS, B, LDA, BSAV, LDA ) 00439 * 00440 IF( NOFACT ) THEN 00441 * 00442 * --- Test DPPSV --- 00443 * 00444 * Compute the L*L' or U'*U factorization of the 00445 * matrix and solve the system. 00446 * 00447 CALL DCOPY( NPP, A, 1, AFAC, 1 ) 00448 CALL DLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) 00449 * 00450 SRNAMT = 'DPPSV ' 00451 CALL DPPSV( UPLO, N, NRHS, AFAC, X, LDA, INFO ) 00452 * 00453 * Check error code from DPPSV . 00454 * 00455 IF( INFO.NE.IZERO ) THEN 00456 CALL ALAERH( PATH, 'DPPSV ', INFO, IZERO, 00457 $ UPLO, N, N, -1, -1, NRHS, IMAT, 00458 $ NFAIL, NERRS, NOUT ) 00459 GO TO 70 00460 ELSE IF( INFO.NE.0 ) THEN 00461 GO TO 70 00462 END IF 00463 * 00464 * Reconstruct matrix from factors and compute 00465 * residual. 00466 * 00467 CALL DPPT01( UPLO, N, A, AFAC, RWORK, 00468 $ RESULT( 1 ) ) 00469 * 00470 * Compute residual of the computed solution. 00471 * 00472 CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK, 00473 $ LDA ) 00474 CALL DPPT02( UPLO, N, NRHS, A, X, LDA, WORK, 00475 $ LDA, RWORK, RESULT( 2 ) ) 00476 * 00477 * Check solution from generated exact solution. 00478 * 00479 CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00480 $ RESULT( 3 ) ) 00481 NT = 3 00482 * 00483 * Print information about the tests that did not 00484 * pass the threshold. 00485 * 00486 DO 60 K = 1, NT 00487 IF( RESULT( K ).GE.THRESH ) THEN 00488 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00489 $ CALL ALADHD( NOUT, PATH ) 00490 WRITE( NOUT, FMT = 9999 )'DPPSV ', UPLO, 00491 $ N, IMAT, K, RESULT( K ) 00492 NFAIL = NFAIL + 1 00493 END IF 00494 60 CONTINUE 00495 NRUN = NRUN + NT 00496 70 CONTINUE 00497 END IF 00498 * 00499 * --- Test DPPSVX --- 00500 * 00501 IF( .NOT.PREFAC .AND. NPP.GT.0 ) 00502 $ CALL DLASET( 'Full', NPP, 1, ZERO, ZERO, AFAC, 00503 $ NPP ) 00504 CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDA ) 00505 IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN 00506 * 00507 * Equilibrate the matrix if FACT='F' and 00508 * EQUED='Y'. 00509 * 00510 CALL DLAQSP( UPLO, N, A, S, SCOND, AMAX, EQUED ) 00511 END IF 00512 * 00513 * Solve the system and compute the condition number 00514 * and error bounds using DPPSVX. 00515 * 00516 SRNAMT = 'DPPSVX' 00517 CALL DPPSVX( FACT, UPLO, N, NRHS, A, AFAC, EQUED, 00518 $ S, B, LDA, X, LDA, RCOND, RWORK, 00519 $ RWORK( NRHS+1 ), WORK, IWORK, INFO ) 00520 * 00521 * Check the error code from DPPSVX. 00522 * 00523 IF( INFO.NE.IZERO ) THEN 00524 CALL ALAERH( PATH, 'DPPSVX', INFO, IZERO, 00525 $ FACT // UPLO, N, N, -1, -1, NRHS, 00526 $ IMAT, NFAIL, NERRS, NOUT ) 00527 GO TO 90 00528 END IF 00529 * 00530 IF( INFO.EQ.0 ) THEN 00531 IF( .NOT.PREFAC ) THEN 00532 * 00533 * Reconstruct matrix from factors and compute 00534 * residual. 00535 * 00536 CALL DPPT01( UPLO, N, A, AFAC, 00537 $ RWORK( 2*NRHS+1 ), RESULT( 1 ) ) 00538 K1 = 1 00539 ELSE 00540 K1 = 2 00541 END IF 00542 * 00543 * Compute residual of the computed solution. 00544 * 00545 CALL DLACPY( 'Full', N, NRHS, BSAV, LDA, WORK, 00546 $ LDA ) 00547 CALL DPPT02( UPLO, N, NRHS, ASAV, X, LDA, WORK, 00548 $ LDA, RWORK( 2*NRHS+1 ), 00549 $ RESULT( 2 ) ) 00550 * 00551 * Check solution from generated exact solution. 00552 * 00553 IF( NOFACT .OR. ( PREFAC .AND. LSAME( EQUED, 00554 $ 'N' ) ) ) THEN 00555 CALL DGET04( N, NRHS, X, LDA, XACT, LDA, 00556 $ RCONDC, RESULT( 3 ) ) 00557 ELSE 00558 CALL DGET04( N, NRHS, X, LDA, XACT, LDA, 00559 $ ROLDC, RESULT( 3 ) ) 00560 END IF 00561 * 00562 * Check the error bounds from iterative 00563 * refinement. 00564 * 00565 CALL DPPT05( UPLO, N, NRHS, ASAV, B, LDA, X, 00566 $ LDA, XACT, LDA, RWORK, 00567 $ RWORK( NRHS+1 ), RESULT( 4 ) ) 00568 ELSE 00569 K1 = 6 00570 END IF 00571 * 00572 * Compare RCOND from DPPSVX with the computed value 00573 * in RCONDC. 00574 * 00575 RESULT( 6 ) = DGET06( RCOND, RCONDC ) 00576 * 00577 * Print information about the tests that did not pass 00578 * the threshold. 00579 * 00580 DO 80 K = K1, 6 00581 IF( RESULT( K ).GE.THRESH ) THEN 00582 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00583 $ CALL ALADHD( NOUT, PATH ) 00584 IF( PREFAC ) THEN 00585 WRITE( NOUT, FMT = 9997 )'DPPSVX', FACT, 00586 $ UPLO, N, EQUED, IMAT, K, RESULT( K ) 00587 ELSE 00588 WRITE( NOUT, FMT = 9998 )'DPPSVX', FACT, 00589 $ UPLO, N, IMAT, K, RESULT( K ) 00590 END IF 00591 NFAIL = NFAIL + 1 00592 END IF 00593 80 CONTINUE 00594 NRUN = NRUN + 7 - K1 00595 90 CONTINUE 00596 100 CONTINUE 00597 110 CONTINUE 00598 120 CONTINUE 00599 130 CONTINUE 00600 140 CONTINUE 00601 * 00602 * Print a summary of the results. 00603 * 00604 CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS ) 00605 * 00606 9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I1, 00607 $ ', test(', I1, ')=', G12.5 ) 00608 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N=', I5, 00609 $ ', type ', I1, ', test(', I1, ')=', G12.5 ) 00610 9997 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N=', I5, 00611 $ ', EQUED=''', A1, ''', type ', I1, ', test(', I1, ')=', 00612 $ G12.5 ) 00613 RETURN 00614 * 00615 * End of DDRVPP 00616 * 00617 END