LAPACK  3.4.1
LAPACK: Linear Algebra PACKage
ddrvpb.f
Go to the documentation of this file.
00001 *> \brief \b DDRVPB
00002 *
00003 *  =========== DOCUMENTATION ===========
00004 *
00005 * Online html documentation available at 
00006 *            http://www.netlib.org/lapack/explore-html/ 
00007 *
00008 *  Definition:
00009 *  ===========
00010 *
00011 *       SUBROUTINE DDRVPB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
00012 *                          A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
00013 *                          RWORK, IWORK, NOUT )
00014 * 
00015 *       .. Scalar Arguments ..
00016 *       LOGICAL            TSTERR
00017 *       INTEGER            NMAX, NN, NOUT, NRHS
00018 *       DOUBLE PRECISION   THRESH
00019 *       ..
00020 *       .. Array Arguments ..
00021 *       LOGICAL            DOTYPE( * )
00022 *       INTEGER            IWORK( * ), NVAL( * )
00023 *       DOUBLE PRECISION   A( * ), AFAC( * ), ASAV( * ), B( * ),
00024 *      $                   BSAV( * ), RWORK( * ), S( * ), WORK( * ),
00025 *      $                   X( * ), XACT( * )
00026 *       ..
00027 *  
00028 *
00029 *> \par Purpose:
00030 *  =============
00031 *>
00032 *> \verbatim
00033 *>
00034 *> DDRVPB tests the driver routines DPBSV and -SVX.
00035 *> \endverbatim
00036 *
00037 *  Arguments:
00038 *  ==========
00039 *
00040 *> \param[in] DOTYPE
00041 *> \verbatim
00042 *>          DOTYPE is LOGICAL array, dimension (NTYPES)
00043 *>          The matrix types to be used for testing.  Matrices of type j
00044 *>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
00045 *>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
00046 *> \endverbatim
00047 *>
00048 *> \param[in] NN
00049 *> \verbatim
00050 *>          NN is INTEGER
00051 *>          The number of values of N contained in the vector NVAL.
00052 *> \endverbatim
00053 *>
00054 *> \param[in] NVAL
00055 *> \verbatim
00056 *>          NVAL is INTEGER array, dimension (NN)
00057 *>          The values of the matrix dimension N.
00058 *> \endverbatim
00059 *>
00060 *> \param[in] NRHS
00061 *> \verbatim
00062 *>          NRHS is INTEGER
00063 *>          The number of right hand side vectors to be generated for
00064 *>          each linear system.
00065 *> \endverbatim
00066 *>
00067 *> \param[in] THRESH
00068 *> \verbatim
00069 *>          THRESH is DOUBLE PRECISION
00070 *>          The threshold value for the test ratios.  A result is
00071 *>          included in the output file if RESULT >= THRESH.  To have
00072 *>          every test ratio printed, use THRESH = 0.
00073 *> \endverbatim
00074 *>
00075 *> \param[in] TSTERR
00076 *> \verbatim
00077 *>          TSTERR is LOGICAL
00078 *>          Flag that indicates whether error exits are to be tested.
00079 *> \endverbatim
00080 *>
00081 *> \param[in] NMAX
00082 *> \verbatim
00083 *>          NMAX is INTEGER
00084 *>          The maximum value permitted for N, used in dimensioning the
00085 *>          work arrays.
00086 *> \endverbatim
00087 *>
00088 *> \param[out] A
00089 *> \verbatim
00090 *>          A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
00091 *> \endverbatim
00092 *>
00093 *> \param[out] AFAC
00094 *> \verbatim
00095 *>          AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
00096 *> \endverbatim
00097 *>
00098 *> \param[out] ASAV
00099 *> \verbatim
00100 *>          ASAV is DOUBLE PRECISION array, dimension (NMAX*NMAX)
00101 *> \endverbatim
00102 *>
00103 *> \param[out] B
00104 *> \verbatim
00105 *>          B is DOUBLE PRECISION array, dimension (NMAX*NRHS)
00106 *> \endverbatim
00107 *>
00108 *> \param[out] BSAV
00109 *> \verbatim
00110 *>          BSAV is DOUBLE PRECISION array, dimension (NMAX*NRHS)
00111 *> \endverbatim
00112 *>
00113 *> \param[out] X
00114 *> \verbatim
00115 *>          X is DOUBLE PRECISION array, dimension (NMAX*NRHS)
00116 *> \endverbatim
00117 *>
00118 *> \param[out] XACT
00119 *> \verbatim
00120 *>          XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)
00121 *> \endverbatim
00122 *>
00123 *> \param[out] S
00124 *> \verbatim
00125 *>          S is DOUBLE PRECISION array, dimension (NMAX)
00126 *> \endverbatim
00127 *>
00128 *> \param[out] WORK
00129 *> \verbatim
00130 *>          WORK is DOUBLE PRECISION array, dimension
00131 *>                      (NMAX*max(3,NRHS))
00132 *> \endverbatim
00133 *>
00134 *> \param[out] RWORK
00135 *> \verbatim
00136 *>          RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
00137 *> \endverbatim
00138 *>
00139 *> \param[out] IWORK
00140 *> \verbatim
00141 *>          IWORK is INTEGER array, dimension (NMAX)
00142 *> \endverbatim
00143 *>
00144 *> \param[in] NOUT
00145 *> \verbatim
00146 *>          NOUT is INTEGER
00147 *>          The unit number for output.
00148 *> \endverbatim
00149 *
00150 *  Authors:
00151 *  ========
00152 *
00153 *> \author Univ. of Tennessee 
00154 *> \author Univ. of California Berkeley 
00155 *> \author Univ. of Colorado Denver 
00156 *> \author NAG Ltd. 
00157 *
00158 *> \date November 2011
00159 *
00160 *> \ingroup double_lin
00161 *
00162 *  =====================================================================
00163       SUBROUTINE DDRVPB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
00164      $                   A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
00165      $                   RWORK, IWORK, NOUT )
00166 *
00167 *  -- LAPACK test routine (version 3.4.0) --
00168 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00169 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00170 *     November 2011
00171 *
00172 *     .. Scalar Arguments ..
00173       LOGICAL            TSTERR
00174       INTEGER            NMAX, NN, NOUT, NRHS
00175       DOUBLE PRECISION   THRESH
00176 *     ..
00177 *     .. Array Arguments ..
00178       LOGICAL            DOTYPE( * )
00179       INTEGER            IWORK( * ), NVAL( * )
00180       DOUBLE PRECISION   A( * ), AFAC( * ), ASAV( * ), B( * ),
00181      $                   BSAV( * ), RWORK( * ), S( * ), WORK( * ),
00182      $                   X( * ), XACT( * )
00183 *     ..
00184 *
00185 *  =====================================================================
00186 *
00187 *     .. Parameters ..
00188       DOUBLE PRECISION   ONE, ZERO
00189       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
00190       INTEGER            NTYPES, NTESTS
00191       PARAMETER          ( NTYPES = 8, NTESTS = 6 )
00192       INTEGER            NBW
00193       PARAMETER          ( NBW = 4 )
00194 *     ..
00195 *     .. Local Scalars ..
00196       LOGICAL            EQUIL, NOFACT, PREFAC, ZEROT
00197       CHARACTER          DIST, EQUED, FACT, PACKIT, TYPE, UPLO, XTYPE
00198       CHARACTER*3        PATH
00199       INTEGER            I, I1, I2, IEQUED, IFACT, IKD, IMAT, IN, INFO,
00200      $                   IOFF, IUPLO, IW, IZERO, K, K1, KD, KL, KOFF,
00201      $                   KU, LDA, LDAB, MODE, N, NB, NBMIN, NERRS,
00202      $                   NFACT, NFAIL, NIMAT, NKD, NRUN, NT
00203       DOUBLE PRECISION   AINVNM, AMAX, ANORM, CNDNUM, RCOND, RCONDC,
00204      $                   ROLDC, SCOND
00205 *     ..
00206 *     .. Local Arrays ..
00207       CHARACTER          EQUEDS( 2 ), FACTS( 3 )
00208       INTEGER            ISEED( 4 ), ISEEDY( 4 ), KDVAL( NBW )
00209       DOUBLE PRECISION   RESULT( NTESTS )
00210 *     ..
00211 *     .. External Functions ..
00212       LOGICAL            LSAME
00213       DOUBLE PRECISION   DGET06, DLANGE, DLANSB
00214       EXTERNAL           LSAME, DGET06, DLANGE, DLANSB
00215 *     ..
00216 *     .. External Subroutines ..
00217       EXTERNAL           ALADHD, ALAERH, ALASVM, DCOPY, DERRVX, DGET04,
00218      $                   DLACPY, DLAQSB, DLARHS, DLASET, DLATB4, DLATMS,
00219      $                   DPBEQU, DPBSV, DPBSVX, DPBT01, DPBT02, DPBT05,
00220      $                   DPBTRF, DPBTRS, DSWAP, XLAENV
00221 *     ..
00222 *     .. Intrinsic Functions ..
00223       INTRINSIC          MAX, MIN
00224 *     ..
00225 *     .. Scalars in Common ..
00226       LOGICAL            LERR, OK
00227       CHARACTER*32       SRNAMT
00228       INTEGER            INFOT, NUNIT
00229 *     ..
00230 *     .. Common blocks ..
00231       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
00232       COMMON             / SRNAMC / SRNAMT
00233 *     ..
00234 *     .. Data statements ..
00235       DATA               ISEEDY / 1988, 1989, 1990, 1991 /
00236       DATA               FACTS / 'F', 'N', 'E' /
00237       DATA               EQUEDS / 'N', 'Y' /
00238 *     ..
00239 *     .. Executable Statements ..
00240 *
00241 *     Initialize constants and the random number seed.
00242 *
00243       PATH( 1: 1 ) = 'Double precision'
00244       PATH( 2: 3 ) = 'PB'
00245       NRUN = 0
00246       NFAIL = 0
00247       NERRS = 0
00248       DO 10 I = 1, 4
00249          ISEED( I ) = ISEEDY( I )
00250    10 CONTINUE
00251 *
00252 *     Test the error exits
00253 *
00254       IF( TSTERR )
00255      $   CALL DERRVX( PATH, NOUT )
00256       INFOT = 0
00257       KDVAL( 1 ) = 0
00258 *
00259 *     Set the block size and minimum block size for testing.
00260 *
00261       NB = 1
00262       NBMIN = 2
00263       CALL XLAENV( 1, NB )
00264       CALL XLAENV( 2, NBMIN )
00265 *
00266 *     Do for each value of N in NVAL
00267 *
00268       DO 110 IN = 1, NN
00269          N = NVAL( IN )
00270          LDA = MAX( N, 1 )
00271          XTYPE = 'N'
00272 *
00273 *        Set limits on the number of loop iterations.
00274 *
00275          NKD = MAX( 1, MIN( N, 4 ) )
00276          NIMAT = NTYPES
00277          IF( N.EQ.0 )
00278      $      NIMAT = 1
00279 *
00280          KDVAL( 2 ) = N + ( N+1 ) / 4
00281          KDVAL( 3 ) = ( 3*N-1 ) / 4
00282          KDVAL( 4 ) = ( N+1 ) / 4
00283 *
00284          DO 100 IKD = 1, NKD
00285 *
00286 *           Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order
00287 *           makes it easier to skip redundant values for small values
00288 *           of N.
00289 *
00290             KD = KDVAL( IKD )
00291             LDAB = KD + 1
00292 *
00293 *           Do first for UPLO = 'U', then for UPLO = 'L'
00294 *
00295             DO 90 IUPLO = 1, 2
00296                KOFF = 1
00297                IF( IUPLO.EQ.1 ) THEN
00298                   UPLO = 'U'
00299                   PACKIT = 'Q'
00300                   KOFF = MAX( 1, KD+2-N )
00301                ELSE
00302                   UPLO = 'L'
00303                   PACKIT = 'B'
00304                END IF
00305 *
00306                DO 80 IMAT = 1, NIMAT
00307 *
00308 *                 Do the tests only if DOTYPE( IMAT ) is true.
00309 *
00310                   IF( .NOT.DOTYPE( IMAT ) )
00311      $               GO TO 80
00312 *
00313 *                 Skip types 2, 3, or 4 if the matrix size is too small.
00314 *
00315                   ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
00316                   IF( ZEROT .AND. N.LT.IMAT-1 )
00317      $               GO TO 80
00318 *
00319                   IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 1 ) ) THEN
00320 *
00321 *                    Set up parameters with DLATB4 and generate a test
00322 *                    matrix with DLATMS.
00323 *
00324                      CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
00325      $                            MODE, CNDNUM, DIST )
00326 *
00327                      SRNAMT = 'DLATMS'
00328                      CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
00329      $                            CNDNUM, ANORM, KD, KD, PACKIT,
00330      $                            A( KOFF ), LDAB, WORK, INFO )
00331 *
00332 *                    Check error code from DLATMS.
00333 *
00334                      IF( INFO.NE.0 ) THEN
00335                         CALL ALAERH( PATH, 'DLATMS', INFO, 0, UPLO, N,
00336      $                               N, -1, -1, -1, IMAT, NFAIL, NERRS,
00337      $                               NOUT )
00338                         GO TO 80
00339                      END IF
00340                   ELSE IF( IZERO.GT.0 ) THEN
00341 *
00342 *                    Use the same matrix for types 3 and 4 as for type
00343 *                    2 by copying back the zeroed out column,
00344 *
00345                      IW = 2*LDA + 1
00346                      IF( IUPLO.EQ.1 ) THEN
00347                         IOFF = ( IZERO-1 )*LDAB + KD + 1
00348                         CALL DCOPY( IZERO-I1, WORK( IW ), 1,
00349      $                              A( IOFF-IZERO+I1 ), 1 )
00350                         IW = IW + IZERO - I1
00351                         CALL DCOPY( I2-IZERO+1, WORK( IW ), 1,
00352      $                              A( IOFF ), MAX( LDAB-1, 1 ) )
00353                      ELSE
00354                         IOFF = ( I1-1 )*LDAB + 1
00355                         CALL DCOPY( IZERO-I1, WORK( IW ), 1,
00356      $                              A( IOFF+IZERO-I1 ),
00357      $                              MAX( LDAB-1, 1 ) )
00358                         IOFF = ( IZERO-1 )*LDAB + 1
00359                         IW = IW + IZERO - I1
00360                         CALL DCOPY( I2-IZERO+1, WORK( IW ), 1,
00361      $                              A( IOFF ), 1 )
00362                      END IF
00363                   END IF
00364 *
00365 *                 For types 2-4, zero one row and column of the matrix
00366 *                 to test that INFO is returned correctly.
00367 *
00368                   IZERO = 0
00369                   IF( ZEROT ) THEN
00370                      IF( IMAT.EQ.2 ) THEN
00371                         IZERO = 1
00372                      ELSE IF( IMAT.EQ.3 ) THEN
00373                         IZERO = N
00374                      ELSE
00375                         IZERO = N / 2 + 1
00376                      END IF
00377 *
00378 *                    Save the zeroed out row and column in WORK(*,3)
00379 *
00380                      IW = 2*LDA
00381                      DO 20 I = 1, MIN( 2*KD+1, N )
00382                         WORK( IW+I ) = ZERO
00383    20                CONTINUE
00384                      IW = IW + 1
00385                      I1 = MAX( IZERO-KD, 1 )
00386                      I2 = MIN( IZERO+KD, N )
00387 *
00388                      IF( IUPLO.EQ.1 ) THEN
00389                         IOFF = ( IZERO-1 )*LDAB + KD + 1
00390                         CALL DSWAP( IZERO-I1, A( IOFF-IZERO+I1 ), 1,
00391      $                              WORK( IW ), 1 )
00392                         IW = IW + IZERO - I1
00393                         CALL DSWAP( I2-IZERO+1, A( IOFF ),
00394      $                              MAX( LDAB-1, 1 ), WORK( IW ), 1 )
00395                      ELSE
00396                         IOFF = ( I1-1 )*LDAB + 1
00397                         CALL DSWAP( IZERO-I1, A( IOFF+IZERO-I1 ),
00398      $                              MAX( LDAB-1, 1 ), WORK( IW ), 1 )
00399                         IOFF = ( IZERO-1 )*LDAB + 1
00400                         IW = IW + IZERO - I1
00401                         CALL DSWAP( I2-IZERO+1, A( IOFF ), 1,
00402      $                              WORK( IW ), 1 )
00403                      END IF
00404                   END IF
00405 *
00406 *                 Save a copy of the matrix A in ASAV.
00407 *
00408                   CALL DLACPY( 'Full', KD+1, N, A, LDAB, ASAV, LDAB )
00409 *
00410                   DO 70 IEQUED = 1, 2
00411                      EQUED = EQUEDS( IEQUED )
00412                      IF( IEQUED.EQ.1 ) THEN
00413                         NFACT = 3
00414                      ELSE
00415                         NFACT = 1
00416                      END IF
00417 *
00418                      DO 60 IFACT = 1, NFACT
00419                         FACT = FACTS( IFACT )
00420                         PREFAC = LSAME( FACT, 'F' )
00421                         NOFACT = LSAME( FACT, 'N' )
00422                         EQUIL = LSAME( FACT, 'E' )
00423 *
00424                         IF( ZEROT ) THEN
00425                            IF( PREFAC )
00426      $                        GO TO 60
00427                            RCONDC = ZERO
00428 *
00429                         ELSE IF( .NOT.LSAME( FACT, 'N' ) ) THEN
00430 *
00431 *                          Compute the condition number for comparison
00432 *                          with the value returned by DPBSVX (FACT =
00433 *                          'N' reuses the condition number from the
00434 *                          previous iteration with FACT = 'F').
00435 *
00436                            CALL DLACPY( 'Full', KD+1, N, ASAV, LDAB,
00437      $                                  AFAC, LDAB )
00438                            IF( EQUIL .OR. IEQUED.GT.1 ) THEN
00439 *
00440 *                             Compute row and column scale factors to
00441 *                             equilibrate the matrix A.
00442 *
00443                               CALL DPBEQU( UPLO, N, KD, AFAC, LDAB, S,
00444      $                                     SCOND, AMAX, INFO )
00445                               IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
00446                                  IF( IEQUED.GT.1 )
00447      $                              SCOND = ZERO
00448 *
00449 *                                Equilibrate the matrix.
00450 *
00451                                  CALL DLAQSB( UPLO, N, KD, AFAC, LDAB,
00452      $                                        S, SCOND, AMAX, EQUED )
00453                               END IF
00454                            END IF
00455 *
00456 *                          Save the condition number of the
00457 *                          non-equilibrated system for use in DGET04.
00458 *
00459                            IF( EQUIL )
00460      $                        ROLDC = RCONDC
00461 *
00462 *                          Compute the 1-norm of A.
00463 *
00464                            ANORM = DLANSB( '1', UPLO, N, KD, AFAC, LDAB,
00465      $                             RWORK )
00466 *
00467 *                          Factor the matrix A.
00468 *
00469                            CALL DPBTRF( UPLO, N, KD, AFAC, LDAB, INFO )
00470 *
00471 *                          Form the inverse of A.
00472 *
00473                            CALL DLASET( 'Full', N, N, ZERO, ONE, A,
00474      $                                  LDA )
00475                            SRNAMT = 'DPBTRS'
00476                            CALL DPBTRS( UPLO, N, KD, N, AFAC, LDAB, A,
00477      $                                  LDA, INFO )
00478 *
00479 *                          Compute the 1-norm condition number of A.
00480 *
00481                            AINVNM = DLANGE( '1', N, N, A, LDA, RWORK )
00482                            IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
00483                               RCONDC = ONE
00484                            ELSE
00485                               RCONDC = ( ONE / ANORM ) / AINVNM
00486                            END IF
00487                         END IF
00488 *
00489 *                       Restore the matrix A.
00490 *
00491                         CALL DLACPY( 'Full', KD+1, N, ASAV, LDAB, A,
00492      $                               LDAB )
00493 *
00494 *                       Form an exact solution and set the right hand
00495 *                       side.
00496 *
00497                         SRNAMT = 'DLARHS'
00498                         CALL DLARHS( PATH, XTYPE, UPLO, ' ', N, N, KD,
00499      $                               KD, NRHS, A, LDAB, XACT, LDA, B,
00500      $                               LDA, ISEED, INFO )
00501                         XTYPE = 'C'
00502                         CALL DLACPY( 'Full', N, NRHS, B, LDA, BSAV,
00503      $                               LDA )
00504 *
00505                         IF( NOFACT ) THEN
00506 *
00507 *                          --- Test DPBSV  ---
00508 *
00509 *                          Compute the L*L' or U'*U factorization of the
00510 *                          matrix and solve the system.
00511 *
00512                            CALL DLACPY( 'Full', KD+1, N, A, LDAB, AFAC,
00513      $                                  LDAB )
00514                            CALL DLACPY( 'Full', N, NRHS, B, LDA, X,
00515      $                                  LDA )
00516 *
00517                            SRNAMT = 'DPBSV '
00518                            CALL DPBSV( UPLO, N, KD, NRHS, AFAC, LDAB, X,
00519      $                                 LDA, INFO )
00520 *
00521 *                          Check error code from DPBSV .
00522 *
00523                            IF( INFO.NE.IZERO ) THEN
00524                               CALL ALAERH( PATH, 'DPBSV ', INFO, IZERO,
00525      $                                     UPLO, N, N, KD, KD, NRHS,
00526      $                                     IMAT, NFAIL, NERRS, NOUT )
00527                               GO TO 40
00528                            ELSE IF( INFO.NE.0 ) THEN
00529                               GO TO 40
00530                            END IF
00531 *
00532 *                          Reconstruct matrix from factors and compute
00533 *                          residual.
00534 *
00535                            CALL DPBT01( UPLO, N, KD, A, LDAB, AFAC,
00536      $                                  LDAB, RWORK, RESULT( 1 ) )
00537 *
00538 *                          Compute residual of the computed solution.
00539 *
00540                            CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK,
00541      $                                  LDA )
00542                            CALL DPBT02( UPLO, N, KD, NRHS, A, LDAB, X,
00543      $                                  LDA, WORK, LDA, RWORK,
00544      $                                  RESULT( 2 ) )
00545 *
00546 *                          Check solution from generated exact solution.
00547 *
00548                            CALL DGET04( N, NRHS, X, LDA, XACT, LDA,
00549      $                                  RCONDC, RESULT( 3 ) )
00550                            NT = 3
00551 *
00552 *                          Print information about the tests that did
00553 *                          not pass the threshold.
00554 *
00555                            DO 30 K = 1, NT
00556                               IF( RESULT( K ).GE.THRESH ) THEN
00557                                  IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00558      $                              CALL ALADHD( NOUT, PATH )
00559                                  WRITE( NOUT, FMT = 9999 )'DPBSV ',
00560      $                              UPLO, N, KD, IMAT, K, RESULT( K )
00561                                  NFAIL = NFAIL + 1
00562                               END IF
00563    30                      CONTINUE
00564                            NRUN = NRUN + NT
00565    40                      CONTINUE
00566                         END IF
00567 *
00568 *                       --- Test DPBSVX ---
00569 *
00570                         IF( .NOT.PREFAC )
00571      $                     CALL DLASET( 'Full', KD+1, N, ZERO, ZERO,
00572      $                                  AFAC, LDAB )
00573                         CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, X,
00574      $                               LDA )
00575                         IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
00576 *
00577 *                          Equilibrate the matrix if FACT='F' and
00578 *                          EQUED='Y'
00579 *
00580                            CALL DLAQSB( UPLO, N, KD, A, LDAB, S, SCOND,
00581      $                                  AMAX, EQUED )
00582                         END IF
00583 *
00584 *                       Solve the system and compute the condition
00585 *                       number and error bounds using DPBSVX.
00586 *
00587                         SRNAMT = 'DPBSVX'
00588                         CALL DPBSVX( FACT, UPLO, N, KD, NRHS, A, LDAB,
00589      $                               AFAC, LDAB, EQUED, S, B, LDA, X,
00590      $                               LDA, RCOND, RWORK, RWORK( NRHS+1 ),
00591      $                               WORK, IWORK, INFO )
00592 *
00593 *                       Check the error code from DPBSVX.
00594 *
00595                         IF( INFO.NE.IZERO ) THEN
00596                            CALL ALAERH( PATH, 'DPBSVX', INFO, IZERO,
00597      $                                  FACT // UPLO, N, N, KD, KD,
00598      $                                  NRHS, IMAT, NFAIL, NERRS, NOUT )
00599                            GO TO 60
00600                         END IF
00601 *
00602                         IF( INFO.EQ.0 ) THEN
00603                            IF( .NOT.PREFAC ) THEN
00604 *
00605 *                             Reconstruct matrix from factors and
00606 *                             compute residual.
00607 *
00608                               CALL DPBT01( UPLO, N, KD, A, LDAB, AFAC,
00609      $                                     LDAB, RWORK( 2*NRHS+1 ),
00610      $                                     RESULT( 1 ) )
00611                               K1 = 1
00612                            ELSE
00613                               K1 = 2
00614                            END IF
00615 *
00616 *                          Compute residual of the computed solution.
00617 *
00618                            CALL DLACPY( 'Full', N, NRHS, BSAV, LDA,
00619      $                                  WORK, LDA )
00620                            CALL DPBT02( UPLO, N, KD, NRHS, ASAV, LDAB,
00621      $                                  X, LDA, WORK, LDA,
00622      $                                  RWORK( 2*NRHS+1 ), RESULT( 2 ) )
00623 *
00624 *                          Check solution from generated exact solution.
00625 *
00626                            IF( NOFACT .OR. ( PREFAC .AND. LSAME( EQUED,
00627      $                         'N' ) ) ) THEN
00628                               CALL DGET04( N, NRHS, X, LDA, XACT, LDA,
00629      $                                     RCONDC, RESULT( 3 ) )
00630                            ELSE
00631                               CALL DGET04( N, NRHS, X, LDA, XACT, LDA,
00632      $                                     ROLDC, RESULT( 3 ) )
00633                            END IF
00634 *
00635 *                          Check the error bounds from iterative
00636 *                          refinement.
00637 *
00638                            CALL DPBT05( UPLO, N, KD, NRHS, ASAV, LDAB,
00639      $                                  B, LDA, X, LDA, XACT, LDA,
00640      $                                  RWORK, RWORK( NRHS+1 ),
00641      $                                  RESULT( 4 ) )
00642                         ELSE
00643                            K1 = 6
00644                         END IF
00645 *
00646 *                       Compare RCOND from DPBSVX with the computed
00647 *                       value in RCONDC.
00648 *
00649                         RESULT( 6 ) = DGET06( RCOND, RCONDC )
00650 *
00651 *                       Print information about the tests that did not
00652 *                       pass the threshold.
00653 *
00654                         DO 50 K = K1, 6
00655                            IF( RESULT( K ).GE.THRESH ) THEN
00656                               IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00657      $                           CALL ALADHD( NOUT, PATH )
00658                               IF( PREFAC ) THEN
00659                                  WRITE( NOUT, FMT = 9997 )'DPBSVX',
00660      $                              FACT, UPLO, N, KD, EQUED, IMAT, K,
00661      $                              RESULT( K )
00662                               ELSE
00663                                  WRITE( NOUT, FMT = 9998 )'DPBSVX',
00664      $                              FACT, UPLO, N, KD, IMAT, K,
00665      $                              RESULT( K )
00666                               END IF
00667                               NFAIL = NFAIL + 1
00668                            END IF
00669    50                   CONTINUE
00670                         NRUN = NRUN + 7 - K1
00671    60                CONTINUE
00672    70             CONTINUE
00673    80          CONTINUE
00674    90       CONTINUE
00675   100    CONTINUE
00676   110 CONTINUE
00677 *
00678 *     Print a summary of the results.
00679 *
00680       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
00681 *
00682  9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', KD =', I5,
00683      $      ', type ', I1, ', test(', I1, ')=', G12.5 )
00684  9998 FORMAT( 1X, A, '( ''', A1, ''', ''', A1, ''', ', I5, ', ', I5,
00685      $      ', ... ), type ', I1, ', test(', I1, ')=', G12.5 )
00686  9997 FORMAT( 1X, A, '( ''', A1, ''', ''', A1, ''', ', I5, ', ', I5,
00687      $      ', ... ), EQUED=''', A1, ''', type ', I1, ', test(', I1,
00688      $      ')=', G12.5 )
00689       RETURN
00690 *
00691 *     End of DDRVPB
00692 *
00693       END
 All Files Functions