LAPACK  3.4.1
LAPACK: Linear Algebra PACKage
zla_hercond_c.f
Go to the documentation of this file.
00001 *> \brief \b ZLA_HERCOND_C
00002 *
00003 *  =========== DOCUMENTATION ===========
00004 *
00005 * Online html documentation available at 
00006 *            http://www.netlib.org/lapack/explore-html/ 
00007 *
00008 *> \htmlonly
00009 *> Download ZLA_HERCOND_C + dependencies 
00010 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_hercond_c.f"> 
00011 *> [TGZ]</a> 
00012 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_hercond_c.f"> 
00013 *> [ZIP]</a> 
00014 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_hercond_c.f"> 
00015 *> [TXT]</a>
00016 *> \endhtmlonly 
00017 *
00018 *  Definition:
00019 *  ===========
00020 *
00021 *       DOUBLE PRECISION FUNCTION ZLA_HERCOND_C( UPLO, N, A, LDA, AF, 
00022 *                                                LDAF, IPIV, C, CAPPLY,
00023 *                                                INFO, WORK, RWORK )
00024 * 
00025 *       .. Scalar Arguments ..
00026 *       CHARACTER          UPLO
00027 *       LOGICAL            CAPPLY
00028 *       INTEGER            N, LDA, LDAF, INFO
00029 *       ..
00030 *       .. Array Arguments ..
00031 *       INTEGER            IPIV( * )
00032 *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * )
00033 *       DOUBLE PRECISION   C ( * ), RWORK( * )
00034 *       ..
00035 *  
00036 *
00037 *> \par Purpose:
00038 *  =============
00039 *>
00040 *> \verbatim
00041 *>
00042 *>    ZLA_HERCOND_C computes the infinity norm condition number of
00043 *>    op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
00044 *> \endverbatim
00045 *
00046 *  Arguments:
00047 *  ==========
00048 *
00049 *> \param[in] UPLO
00050 *> \verbatim
00051 *>          UPLO is CHARACTER*1
00052 *>       = 'U':  Upper triangle of A is stored;
00053 *>       = 'L':  Lower triangle of A is stored.
00054 *> \endverbatim
00055 *>
00056 *> \param[in] N
00057 *> \verbatim
00058 *>          N is INTEGER
00059 *>     The number of linear equations, i.e., the order of the
00060 *>     matrix A.  N >= 0.
00061 *> \endverbatim
00062 *>
00063 *> \param[in] A
00064 *> \verbatim
00065 *>          A is COMPLEX*16 array, dimension (LDA,N)
00066 *>     On entry, the N-by-N matrix A
00067 *> \endverbatim
00068 *>
00069 *> \param[in] LDA
00070 *> \verbatim
00071 *>          LDA is INTEGER
00072 *>     The leading dimension of the array A.  LDA >= max(1,N).
00073 *> \endverbatim
00074 *>
00075 *> \param[in] AF
00076 *> \verbatim
00077 *>          AF is COMPLEX*16 array, dimension (LDAF,N)
00078 *>     The block diagonal matrix D and the multipliers used to
00079 *>     obtain the factor U or L as computed by ZHETRF.
00080 *> \endverbatim
00081 *>
00082 *> \param[in] LDAF
00083 *> \verbatim
00084 *>          LDAF is INTEGER
00085 *>     The leading dimension of the array AF.  LDAF >= max(1,N).
00086 *> \endverbatim
00087 *>
00088 *> \param[in] IPIV
00089 *> \verbatim
00090 *>          IPIV is INTEGER array, dimension (N)
00091 *>     Details of the interchanges and the block structure of D
00092 *>     as determined by CHETRF.
00093 *> \endverbatim
00094 *>
00095 *> \param[in] C
00096 *> \verbatim
00097 *>          C is DOUBLE PRECISION array, dimension (N)
00098 *>     The vector C in the formula op(A) * inv(diag(C)).
00099 *> \endverbatim
00100 *>
00101 *> \param[in] CAPPLY
00102 *> \verbatim
00103 *>          CAPPLY is LOGICAL
00104 *>     If .TRUE. then access the vector C in the formula above.
00105 *> \endverbatim
00106 *>
00107 *> \param[out] INFO
00108 *> \verbatim
00109 *>          INFO is INTEGER
00110 *>       = 0:  Successful exit.
00111 *>     i > 0:  The ith argument is invalid.
00112 *> \endverbatim
00113 *>
00114 *> \param[in] WORK
00115 *> \verbatim
00116 *>          WORK is COMPLEX*16 array, dimension (2*N).
00117 *>     Workspace.
00118 *> \endverbatim
00119 *>
00120 *> \param[in] RWORK
00121 *> \verbatim
00122 *>          RWORK is DOUBLE PRECISION array, dimension (N).
00123 *>     Workspace.
00124 *> \endverbatim
00125 *
00126 *  Authors:
00127 *  ========
00128 *
00129 *> \author Univ. of Tennessee 
00130 *> \author Univ. of California Berkeley 
00131 *> \author Univ. of Colorado Denver 
00132 *> \author NAG Ltd. 
00133 *
00134 *> \date November 2011
00135 *
00136 *> \ingroup complex16HEcomputational
00137 *
00138 *  =====================================================================
00139       DOUBLE PRECISION FUNCTION ZLA_HERCOND_C( UPLO, N, A, LDA, AF, 
00140      $                                         LDAF, IPIV, C, CAPPLY,
00141      $                                         INFO, WORK, RWORK )
00142 *
00143 *  -- LAPACK computational routine (version 3.4.0) --
00144 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00145 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00146 *     November 2011
00147 *
00148 *     .. Scalar Arguments ..
00149       CHARACTER          UPLO
00150       LOGICAL            CAPPLY
00151       INTEGER            N, LDA, LDAF, INFO
00152 *     ..
00153 *     .. Array Arguments ..
00154       INTEGER            IPIV( * )
00155       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), WORK( * )
00156       DOUBLE PRECISION   C ( * ), RWORK( * )
00157 *     ..
00158 *
00159 *  =====================================================================
00160 *
00161 *     .. Local Scalars ..
00162       INTEGER            KASE, I, J
00163       DOUBLE PRECISION   AINVNM, ANORM, TMP
00164       LOGICAL            UP, UPPER
00165       COMPLEX*16         ZDUM
00166 *     ..
00167 *     .. Local Arrays ..
00168       INTEGER            ISAVE( 3 )
00169 *     ..
00170 *     .. External Functions ..
00171       LOGICAL            LSAME
00172       EXTERNAL           LSAME
00173 *     ..
00174 *     .. External Subroutines ..
00175       EXTERNAL           ZLACN2, ZHETRS, XERBLA
00176 *     ..
00177 *     .. Intrinsic Functions ..
00178       INTRINSIC          ABS, MAX
00179 *     ..
00180 *     .. Statement Functions ..
00181       DOUBLE PRECISION   CABS1
00182 *     ..
00183 *     .. Statement Function Definitions ..
00184       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
00185 *     ..
00186 *     .. Executable Statements ..
00187 *
00188       ZLA_HERCOND_C = 0.0D+0
00189 *
00190       INFO = 0
00191       UPPER = LSAME( UPLO, 'U' )
00192       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
00193          INFO = -1
00194       ELSE IF( N.LT.0 ) THEN
00195          INFO = -2
00196       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
00197          INFO = -4
00198       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
00199          INFO = -6
00200       END IF
00201       IF( INFO.NE.0 ) THEN
00202          CALL XERBLA( 'ZLA_HERCOND_C', -INFO )
00203          RETURN
00204       END IF
00205       UP = .FALSE.
00206       IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
00207 *
00208 *     Compute norm of op(A)*op2(C).
00209 *
00210       ANORM = 0.0D+0
00211       IF ( UP ) THEN
00212          DO I = 1, N
00213             TMP = 0.0D+0
00214             IF ( CAPPLY ) THEN
00215                DO J = 1, I
00216                   TMP = TMP + CABS1( A( J, I ) ) / C( J )
00217                END DO
00218                DO J = I+1, N
00219                   TMP = TMP + CABS1( A( I, J ) ) / C( J )
00220                END DO
00221             ELSE
00222                DO J = 1, I
00223                   TMP = TMP + CABS1( A( J, I ) )
00224                END DO
00225                DO J = I+1, N
00226                   TMP = TMP + CABS1( A( I, J ) )
00227                END DO
00228             END IF
00229             RWORK( I ) = TMP
00230             ANORM = MAX( ANORM, TMP )
00231          END DO
00232       ELSE
00233          DO I = 1, N
00234             TMP = 0.0D+0
00235             IF ( CAPPLY ) THEN
00236                DO J = 1, I
00237                   TMP = TMP + CABS1( A( I, J ) ) / C( J )
00238                END DO
00239                DO J = I+1, N
00240                   TMP = TMP + CABS1( A( J, I ) ) / C( J )
00241                END DO
00242             ELSE
00243                DO J = 1, I
00244                   TMP = TMP + CABS1( A( I, J ) )
00245                END DO
00246                DO J = I+1, N
00247                   TMP = TMP + CABS1( A( J, I ) )
00248                END DO
00249             END IF
00250             RWORK( I ) = TMP
00251             ANORM = MAX( ANORM, TMP )
00252          END DO
00253       END IF
00254 *
00255 *     Quick return if possible.
00256 *
00257       IF( N.EQ.0 ) THEN
00258          ZLA_HERCOND_C = 1.0D+0
00259          RETURN
00260       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
00261          RETURN
00262       END IF
00263 *
00264 *     Estimate the norm of inv(op(A)).
00265 *
00266       AINVNM = 0.0D+0
00267 *
00268       KASE = 0
00269    10 CONTINUE
00270       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
00271       IF( KASE.NE.0 ) THEN
00272          IF( KASE.EQ.2 ) THEN
00273 *
00274 *           Multiply by R.
00275 *
00276             DO I = 1, N
00277                WORK( I ) = WORK( I ) * RWORK( I )
00278             END DO
00279 *
00280             IF ( UP ) THEN
00281                CALL ZHETRS( 'U', N, 1, AF, LDAF, IPIV,
00282      $            WORK, N, INFO )
00283             ELSE
00284                CALL ZHETRS( 'L', N, 1, AF, LDAF, IPIV,
00285      $            WORK, N, INFO )
00286             ENDIF
00287 *
00288 *           Multiply by inv(C).
00289 *
00290             IF ( CAPPLY ) THEN
00291                DO I = 1, N
00292                   WORK( I ) = WORK( I ) * C( I )
00293                END DO
00294             END IF
00295          ELSE
00296 *
00297 *           Multiply by inv(C**H).
00298 *
00299             IF ( CAPPLY ) THEN
00300                DO I = 1, N
00301                   WORK( I ) = WORK( I ) * C( I )
00302                END DO
00303             END IF
00304 *
00305             IF ( UP ) THEN
00306                CALL ZHETRS( 'U', N, 1, AF, LDAF, IPIV,
00307      $            WORK, N, INFO )
00308             ELSE
00309                CALL ZHETRS( 'L', N, 1, AF, LDAF, IPIV,
00310      $            WORK, N, INFO )
00311             END IF
00312 *
00313 *           Multiply by R.
00314 *
00315             DO I = 1, N
00316                WORK( I ) = WORK( I ) * RWORK( I )
00317             END DO
00318          END IF
00319          GO TO 10
00320       END IF
00321 *
00322 *     Compute the estimate of the reciprocal condition number.
00323 *
00324       IF( AINVNM .NE. 0.0D+0 )
00325      $   ZLA_HERCOND_C = 1.0D+0 / AINVNM
00326 *
00327       RETURN
00328 *
00329       END
 All Files Functions