![]() |
LAPACK
3.4.1
LAPACK: Linear Algebra PACKage
|
00001 *> \brief \b CDRVHEX 00002 * 00003 * =========== DOCUMENTATION =========== 00004 * 00005 * Online html documentation available at 00006 * http://www.netlib.org/lapack/explore-html/ 00007 * 00008 * Definition: 00009 * =========== 00010 * 00011 * SUBROUTINE CDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, 00012 * A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, 00013 * NOUT ) 00014 * 00015 * .. Scalar Arguments .. 00016 * LOGICAL TSTERR 00017 * INTEGER NMAX, NN, NOUT, NRHS 00018 * REAL THRESH 00019 * .. 00020 * .. Array Arguments .. 00021 * LOGICAL DOTYPE( * ) 00022 * INTEGER IWORK( * ), NVAL( * ) 00023 * REAL RWORK( * ) 00024 * COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ), 00025 * $ WORK( * ), X( * ), XACT( * ) 00026 * .. 00027 * 00028 * 00029 *> \par Purpose: 00030 * ============= 00031 *> 00032 *> \verbatim 00033 *> 00034 *> CDRVHE tests the driver routines CHESV, -SVX, and -SVXX. 00035 *> 00036 *> Note that this file is used only when the XBLAS are available, 00037 *> otherwise cdrvhe.f defines this subroutine. 00038 *> \endverbatim 00039 * 00040 * Arguments: 00041 * ========== 00042 * 00043 *> \param[in] DOTYPE 00044 *> \verbatim 00045 *> DOTYPE is LOGICAL array, dimension (NTYPES) 00046 *> The matrix types to be used for testing. Matrices of type j 00047 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = 00048 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. 00049 *> \endverbatim 00050 *> 00051 *> \param[in] NN 00052 *> \verbatim 00053 *> NN is INTEGER 00054 *> The number of values of N contained in the vector NVAL. 00055 *> \endverbatim 00056 *> 00057 *> \param[in] NVAL 00058 *> \verbatim 00059 *> NVAL is INTEGER array, dimension (NN) 00060 *> The values of the matrix dimension N. 00061 *> \endverbatim 00062 *> 00063 *> \param[in] NRHS 00064 *> \verbatim 00065 *> NRHS is INTEGER 00066 *> The number of right hand side vectors to be generated for 00067 *> each linear system. 00068 *> \endverbatim 00069 *> 00070 *> \param[in] THRESH 00071 *> \verbatim 00072 *> THRESH is REAL 00073 *> The threshold value for the test ratios. A result is 00074 *> included in the output file if RESULT >= THRESH. To have 00075 *> every test ratio printed, use THRESH = 0. 00076 *> \endverbatim 00077 *> 00078 *> \param[in] TSTERR 00079 *> \verbatim 00080 *> TSTERR is LOGICAL 00081 *> Flag that indicates whether error exits are to be tested. 00082 *> \endverbatim 00083 *> 00084 *> \param[in] NMAX 00085 *> \verbatim 00086 *> NMAX is INTEGER 00087 *> The maximum value permitted for N, used in dimensioning the 00088 *> work arrays. 00089 *> \endverbatim 00090 *> 00091 *> \param[out] A 00092 *> \verbatim 00093 *> A is COMPLEX array, dimension (NMAX*NMAX) 00094 *> \endverbatim 00095 *> 00096 *> \param[out] AFAC 00097 *> \verbatim 00098 *> AFAC is COMPLEX array, dimension (NMAX*NMAX) 00099 *> \endverbatim 00100 *> 00101 *> \param[out] AINV 00102 *> \verbatim 00103 *> AINV is COMPLEX array, dimension (NMAX*NMAX) 00104 *> \endverbatim 00105 *> 00106 *> \param[out] B 00107 *> \verbatim 00108 *> B is COMPLEX array, dimension (NMAX*NRHS) 00109 *> \endverbatim 00110 *> 00111 *> \param[out] X 00112 *> \verbatim 00113 *> X is COMPLEX array, dimension (NMAX*NRHS) 00114 *> \endverbatim 00115 *> 00116 *> \param[out] XACT 00117 *> \verbatim 00118 *> XACT is COMPLEX array, dimension (NMAX*NRHS) 00119 *> \endverbatim 00120 *> 00121 *> \param[out] WORK 00122 *> \verbatim 00123 *> WORK is COMPLEX array, dimension 00124 *> (NMAX*max(2,NRHS)) 00125 *> \endverbatim 00126 *> 00127 *> \param[out] RWORK 00128 *> \verbatim 00129 *> RWORK is REAL array, dimension (2*NMAX+2*NRHS) 00130 *> \endverbatim 00131 *> 00132 *> \param[out] IWORK 00133 *> \verbatim 00134 *> IWORK is INTEGER array, dimension (NMAX) 00135 *> \endverbatim 00136 *> 00137 *> \param[in] NOUT 00138 *> \verbatim 00139 *> NOUT is INTEGER 00140 *> The unit number for output. 00141 *> \endverbatim 00142 * 00143 * Authors: 00144 * ======== 00145 * 00146 *> \author Univ. of Tennessee 00147 *> \author Univ. of California Berkeley 00148 *> \author Univ. of Colorado Denver 00149 *> \author NAG Ltd. 00150 * 00151 *> \date April 2012 00152 * 00153 *> \ingroup complex_lin 00154 * 00155 * ===================================================================== 00156 SUBROUTINE CDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, 00157 $ A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, 00158 $ NOUT ) 00159 * 00160 * -- LAPACK test routine (version 3.4.1) -- 00161 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00162 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00163 * April 2012 00164 * 00165 * .. Scalar Arguments .. 00166 LOGICAL TSTERR 00167 INTEGER NMAX, NN, NOUT, NRHS 00168 REAL THRESH 00169 * .. 00170 * .. Array Arguments .. 00171 LOGICAL DOTYPE( * ) 00172 INTEGER IWORK( * ), NVAL( * ) 00173 REAL RWORK( * ) 00174 COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ), 00175 $ WORK( * ), X( * ), XACT( * ) 00176 * .. 00177 * 00178 * ===================================================================== 00179 * 00180 * .. Parameters .. 00181 REAL ONE, ZERO 00182 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) 00183 INTEGER NTYPES, NTESTS 00184 PARAMETER ( NTYPES = 10, NTESTS = 6 ) 00185 INTEGER NFACT 00186 PARAMETER ( NFACT = 2 ) 00187 * .. 00188 * .. Local Scalars .. 00189 LOGICAL ZEROT 00190 CHARACTER DIST, EQUED, FACT, TYPE, UPLO, XTYPE 00191 CHARACTER*3 PATH 00192 INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO, 00193 $ IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N, 00194 $ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT, 00195 $ N_ERR_BNDS 00196 REAL AINVNM, ANORM, CNDNUM, RCOND, RCONDC, 00197 $ RPVGRW_SVXX 00198 * .. 00199 * .. Local Arrays .. 00200 CHARACTER FACTS( NFACT ), UPLOS( 2 ) 00201 INTEGER ISEED( 4 ), ISEEDY( 4 ) 00202 REAL RESULT( NTESTS ), BERR( NRHS ), 00203 $ ERRBNDS_N( NRHS, 3 ), ERRBNDS_C( NRHS, 3 ) 00204 * .. 00205 * .. External Functions .. 00206 REAL CLANHE, SGET06 00207 EXTERNAL CLANHE, SGET06 00208 * .. 00209 * .. External Subroutines .. 00210 EXTERNAL ALADHD, ALAERH, ALASVM, CERRVX, CGET04, CHESV, 00211 $ CHESVX, CHET01, CHETRF, CHETRI2, CLACPY, 00212 $ CLAIPD, CLARHS, CLASET, CLATB4, CLATMS, CPOT02, 00213 $ CPOT05, XLAENV, CHESVXX 00214 * .. 00215 * .. Scalars in Common .. 00216 LOGICAL LERR, OK 00217 CHARACTER*32 SRNAMT 00218 INTEGER INFOT, NUNIT 00219 * .. 00220 * .. Common blocks .. 00221 COMMON / INFOC / INFOT, NUNIT, OK, LERR 00222 COMMON / SRNAMC / SRNAMT 00223 * .. 00224 * .. Intrinsic Functions .. 00225 INTRINSIC CMPLX, MAX, MIN 00226 * .. 00227 * .. Data statements .. 00228 DATA ISEEDY / 1988, 1989, 1990, 1991 / 00229 DATA UPLOS / 'U', 'L' / , FACTS / 'F', 'N' / 00230 * .. 00231 * .. Executable Statements .. 00232 * 00233 * Initialize constants and the random number seed. 00234 * 00235 PATH( 1: 1 ) = 'C' 00236 PATH( 2: 3 ) = 'HE' 00237 NRUN = 0 00238 NFAIL = 0 00239 NERRS = 0 00240 DO 10 I = 1, 4 00241 ISEED( I ) = ISEEDY( I ) 00242 10 CONTINUE 00243 LWORK = MAX( 2*NMAX, NMAX*NRHS ) 00244 * 00245 * Test the error exits 00246 * 00247 IF( TSTERR ) 00248 $ CALL CERRVX( PATH, NOUT ) 00249 INFOT = 0 00250 * 00251 * Set the block size and minimum block size for testing. 00252 * 00253 NB = 1 00254 NBMIN = 2 00255 CALL XLAENV( 1, NB ) 00256 CALL XLAENV( 2, NBMIN ) 00257 * 00258 * Do for each value of N in NVAL 00259 * 00260 DO 180 IN = 1, NN 00261 N = NVAL( IN ) 00262 LDA = MAX( N, 1 ) 00263 XTYPE = 'N' 00264 NIMAT = NTYPES 00265 IF( N.LE.0 ) 00266 $ NIMAT = 1 00267 * 00268 DO 170 IMAT = 1, NIMAT 00269 * 00270 * Do the tests only if DOTYPE( IMAT ) is true. 00271 * 00272 IF( .NOT.DOTYPE( IMAT ) ) 00273 $ GO TO 170 00274 * 00275 * Skip types 3, 4, 5, or 6 if the matrix size is too small. 00276 * 00277 ZEROT = IMAT.GE.3 .AND. IMAT.LE.6 00278 IF( ZEROT .AND. N.LT.IMAT-2 ) 00279 $ GO TO 170 00280 * 00281 * Do first for UPLO = 'U', then for UPLO = 'L' 00282 * 00283 DO 160 IUPLO = 1, 2 00284 UPLO = UPLOS( IUPLO ) 00285 * 00286 * Set up parameters with CLATB4 and generate a test matrix 00287 * with CLATMS. 00288 * 00289 CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE, 00290 $ CNDNUM, DIST ) 00291 * 00292 SRNAMT = 'CLATMS' 00293 CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, 00294 $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK, 00295 $ INFO ) 00296 * 00297 * Check error code from CLATMS. 00298 * 00299 IF( INFO.NE.0 ) THEN 00300 CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N, N, -1, 00301 $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) 00302 GO TO 160 00303 END IF 00304 * 00305 * For types 3-6, zero one or more rows and columns of the 00306 * matrix to test that INFO is returned correctly. 00307 * 00308 IF( ZEROT ) THEN 00309 IF( IMAT.EQ.3 ) THEN 00310 IZERO = 1 00311 ELSE IF( IMAT.EQ.4 ) THEN 00312 IZERO = N 00313 ELSE 00314 IZERO = N / 2 + 1 00315 END IF 00316 * 00317 IF( IMAT.LT.6 ) THEN 00318 * 00319 * Set row and column IZERO to zero. 00320 * 00321 IF( IUPLO.EQ.1 ) THEN 00322 IOFF = ( IZERO-1 )*LDA 00323 DO 20 I = 1, IZERO - 1 00324 A( IOFF+I ) = ZERO 00325 20 CONTINUE 00326 IOFF = IOFF + IZERO 00327 DO 30 I = IZERO, N 00328 A( IOFF ) = ZERO 00329 IOFF = IOFF + LDA 00330 30 CONTINUE 00331 ELSE 00332 IOFF = IZERO 00333 DO 40 I = 1, IZERO - 1 00334 A( IOFF ) = ZERO 00335 IOFF = IOFF + LDA 00336 40 CONTINUE 00337 IOFF = IOFF - IZERO 00338 DO 50 I = IZERO, N 00339 A( IOFF+I ) = ZERO 00340 50 CONTINUE 00341 END IF 00342 ELSE 00343 IOFF = 0 00344 IF( IUPLO.EQ.1 ) THEN 00345 * 00346 * Set the first IZERO rows and columns to zero. 00347 * 00348 DO 70 J = 1, N 00349 I2 = MIN( J, IZERO ) 00350 DO 60 I = 1, I2 00351 A( IOFF+I ) = ZERO 00352 60 CONTINUE 00353 IOFF = IOFF + LDA 00354 70 CONTINUE 00355 ELSE 00356 * 00357 * Set the last IZERO rows and columns to zero. 00358 * 00359 DO 90 J = 1, N 00360 I1 = MAX( J, IZERO ) 00361 DO 80 I = I1, N 00362 A( IOFF+I ) = ZERO 00363 80 CONTINUE 00364 IOFF = IOFF + LDA 00365 90 CONTINUE 00366 END IF 00367 END IF 00368 ELSE 00369 IZERO = 0 00370 END IF 00371 * 00372 * Set the imaginary part of the diagonals. 00373 * 00374 CALL CLAIPD( N, A, LDA+1, 0 ) 00375 * 00376 DO 150 IFACT = 1, NFACT 00377 * 00378 * Do first for FACT = 'F', then for other values. 00379 * 00380 FACT = FACTS( IFACT ) 00381 * 00382 * Compute the condition number for comparison with 00383 * the value returned by CHESVX. 00384 * 00385 IF( ZEROT ) THEN 00386 IF( IFACT.EQ.1 ) 00387 $ GO TO 150 00388 RCONDC = ZERO 00389 * 00390 ELSE IF( IFACT.EQ.1 ) THEN 00391 * 00392 * Compute the 1-norm of A. 00393 * 00394 ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK ) 00395 * 00396 * Factor the matrix A. 00397 * 00398 CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) 00399 CALL CHETRF( UPLO, N, AFAC, LDA, IWORK, WORK, 00400 $ LWORK, INFO ) 00401 * 00402 * Compute inv(A) and take its norm. 00403 * 00404 CALL CLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA ) 00405 LWORK = (N+NB+1)*(NB+3) 00406 CALL CHETRI2( UPLO, N, AINV, LDA, IWORK, WORK, 00407 $ LWORK, INFO ) 00408 AINVNM = CLANHE( '1', UPLO, N, AINV, LDA, RWORK ) 00409 * 00410 * Compute the 1-norm condition number of A. 00411 * 00412 IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN 00413 RCONDC = ONE 00414 ELSE 00415 RCONDC = ( ONE / ANORM ) / AINVNM 00416 END IF 00417 END IF 00418 * 00419 * Form an exact solution and set the right hand side. 00420 * 00421 SRNAMT = 'CLARHS' 00422 CALL CLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU, 00423 $ NRHS, A, LDA, XACT, LDA, B, LDA, ISEED, 00424 $ INFO ) 00425 XTYPE = 'C' 00426 * 00427 * --- Test CHESV --- 00428 * 00429 IF( IFACT.EQ.2 ) THEN 00430 CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) 00431 CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) 00432 * 00433 * Factor the matrix and solve the system using CHESV. 00434 * 00435 SRNAMT = 'CHESV ' 00436 CALL CHESV( UPLO, N, NRHS, AFAC, LDA, IWORK, X, 00437 $ LDA, WORK, LWORK, INFO ) 00438 * 00439 * Adjust the expected value of INFO to account for 00440 * pivoting. 00441 * 00442 K = IZERO 00443 IF( K.GT.0 ) THEN 00444 100 CONTINUE 00445 IF( IWORK( K ).LT.0 ) THEN 00446 IF( IWORK( K ).NE.-K ) THEN 00447 K = -IWORK( K ) 00448 GO TO 100 00449 END IF 00450 ELSE IF( IWORK( K ).NE.K ) THEN 00451 K = IWORK( K ) 00452 GO TO 100 00453 END IF 00454 END IF 00455 * 00456 * Check error code from CHESV . 00457 * 00458 IF( INFO.NE.K ) THEN 00459 CALL ALAERH( PATH, 'CHESV ', INFO, K, UPLO, N, 00460 $ N, -1, -1, NRHS, IMAT, NFAIL, 00461 $ NERRS, NOUT ) 00462 GO TO 120 00463 ELSE IF( INFO.NE.0 ) THEN 00464 GO TO 120 00465 END IF 00466 * 00467 * Reconstruct matrix from factors and compute 00468 * residual. 00469 * 00470 CALL CHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK, 00471 $ AINV, LDA, RWORK, RESULT( 1 ) ) 00472 * 00473 * Compute residual of the computed solution. 00474 * 00475 CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00476 CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, 00477 $ LDA, RWORK, RESULT( 2 ) ) 00478 * 00479 * Check solution from generated exact solution. 00480 * 00481 CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00482 $ RESULT( 3 ) ) 00483 NT = 3 00484 * 00485 * Print information about the tests that did not pass 00486 * the threshold. 00487 * 00488 DO 110 K = 1, NT 00489 IF( RESULT( K ).GE.THRESH ) THEN 00490 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00491 $ CALL ALADHD( NOUT, PATH ) 00492 WRITE( NOUT, FMT = 9999 )'CHESV ', UPLO, N, 00493 $ IMAT, K, RESULT( K ) 00494 NFAIL = NFAIL + 1 00495 END IF 00496 110 CONTINUE 00497 NRUN = NRUN + NT 00498 120 CONTINUE 00499 END IF 00500 * 00501 * --- Test CHESVX --- 00502 * 00503 IF( IFACT.EQ.2 ) 00504 $ CALL CLASET( UPLO, N, N, CMPLX( ZERO ), 00505 $ CMPLX( ZERO ), AFAC, LDA ) 00506 CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ), 00507 $ CMPLX( ZERO ), X, LDA ) 00508 * 00509 * Solve the system and compute the condition number and 00510 * error bounds using CHESVX. 00511 * 00512 SRNAMT = 'CHESVX' 00513 CALL CHESVX( FACT, UPLO, N, NRHS, A, LDA, AFAC, LDA, 00514 $ IWORK, B, LDA, X, LDA, RCOND, RWORK, 00515 $ RWORK( NRHS+1 ), WORK, LWORK, 00516 $ RWORK( 2*NRHS+1 ), INFO ) 00517 * 00518 * Adjust the expected value of INFO to account for 00519 * pivoting. 00520 * 00521 K = IZERO 00522 IF( K.GT.0 ) THEN 00523 130 CONTINUE 00524 IF( IWORK( K ).LT.0 ) THEN 00525 IF( IWORK( K ).NE.-K ) THEN 00526 K = -IWORK( K ) 00527 GO TO 130 00528 END IF 00529 ELSE IF( IWORK( K ).NE.K ) THEN 00530 K = IWORK( K ) 00531 GO TO 130 00532 END IF 00533 END IF 00534 * 00535 * Check the error code from CHESVX. 00536 * 00537 IF( INFO.NE.K ) THEN 00538 CALL ALAERH( PATH, 'CHESVX', INFO, K, FACT // UPLO, 00539 $ N, N, -1, -1, NRHS, IMAT, NFAIL, 00540 $ NERRS, NOUT ) 00541 GO TO 150 00542 END IF 00543 * 00544 IF( INFO.EQ.0 ) THEN 00545 IF( IFACT.GE.2 ) THEN 00546 * 00547 * Reconstruct matrix from factors and compute 00548 * residual. 00549 * 00550 CALL CHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK, 00551 $ AINV, LDA, RWORK( 2*NRHS+1 ), 00552 $ RESULT( 1 ) ) 00553 K1 = 1 00554 ELSE 00555 K1 = 2 00556 END IF 00557 * 00558 * Compute residual of the computed solution. 00559 * 00560 CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00561 CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, 00562 $ LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) ) 00563 * 00564 * Check solution from generated exact solution. 00565 * 00566 CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00567 $ RESULT( 3 ) ) 00568 * 00569 * Check the error bounds from iterative refinement. 00570 * 00571 CALL CPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA, 00572 $ XACT, LDA, RWORK, RWORK( NRHS+1 ), 00573 $ RESULT( 4 ) ) 00574 ELSE 00575 K1 = 6 00576 END IF 00577 * 00578 * Compare RCOND from CHESVX with the computed value 00579 * in RCONDC. 00580 * 00581 RESULT( 6 ) = SGET06( RCOND, RCONDC ) 00582 * 00583 * Print information about the tests that did not pass 00584 * the threshold. 00585 * 00586 DO 140 K = K1, 6 00587 IF( RESULT( K ).GE.THRESH ) THEN 00588 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00589 $ CALL ALADHD( NOUT, PATH ) 00590 WRITE( NOUT, FMT = 9998 )'CHESVX', FACT, UPLO, 00591 $ N, IMAT, K, RESULT( K ) 00592 NFAIL = NFAIL + 1 00593 END IF 00594 140 CONTINUE 00595 NRUN = NRUN + 7 - K1 00596 * 00597 * --- Test CHESVXX --- 00598 * 00599 * Restore the matrices A and B. 00600 * 00601 IF( IFACT.EQ.2 ) 00602 $ CALL CLASET( UPLO, N, N, CMPLX( ZERO ), 00603 $ CMPLX( ZERO ), AFAC, LDA ) 00604 CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ), 00605 $ CMPLX( ZERO ), X, LDA ) 00606 * 00607 * Solve the system and compute the condition number 00608 * and error bounds using CHESVXX. 00609 * 00610 SRNAMT = 'CHESVXX' 00611 N_ERR_BNDS = 3 00612 EQUED = 'N' 00613 CALL CHESVXX( FACT, UPLO, N, NRHS, A, LDA, AFAC, 00614 $ LDA, IWORK, EQUED, WORK( N+1 ), B, LDA, X, 00615 $ LDA, RCOND, RPVGRW_SVXX, BERR, N_ERR_BNDS, 00616 $ ERRBNDS_N, ERRBNDS_C, 0, ZERO, WORK, 00617 $ RWORK, INFO ) 00618 * 00619 * Adjust the expected value of INFO to account for 00620 * pivoting. 00621 * 00622 K = IZERO 00623 IF( K.GT.0 ) THEN 00624 135 CONTINUE 00625 IF( IWORK( K ).LT.0 ) THEN 00626 IF( IWORK( K ).NE.-K ) THEN 00627 K = -IWORK( K ) 00628 GO TO 135 00629 END IF 00630 ELSE IF( IWORK( K ).NE.K ) THEN 00631 K = IWORK( K ) 00632 GO TO 135 00633 END IF 00634 END IF 00635 * 00636 * Check the error code from CHESVXX. 00637 * 00638 IF( INFO.NE.K .AND. INFO.LE.N ) THEN 00639 CALL ALAERH( PATH, 'CHESVXX', INFO, K, 00640 $ FACT // UPLO, N, N, -1, -1, NRHS, IMAT, NFAIL, 00641 $ NERRS, NOUT ) 00642 GO TO 150 00643 END IF 00644 * 00645 IF( INFO.EQ.0 ) THEN 00646 IF( IFACT.GE.2 ) THEN 00647 * 00648 * Reconstruct matrix from factors and compute 00649 * residual. 00650 * 00651 CALL CHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK, 00652 $ AINV, LDA, RWORK(2*NRHS+1), 00653 $ RESULT( 1 ) ) 00654 K1 = 1 00655 ELSE 00656 K1 = 2 00657 END IF 00658 * 00659 * Compute residual of the computed solution. 00660 * 00661 CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) 00662 CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, 00663 $ LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) ) 00664 RESULT( 2 ) = 0.0 00665 * 00666 * Check solution from generated exact solution. 00667 * 00668 CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, 00669 $ RESULT( 3 ) ) 00670 * 00671 * Check the error bounds from iterative refinement. 00672 * 00673 CALL CPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA, 00674 $ XACT, LDA, RWORK, RWORK( NRHS+1 ), 00675 $ RESULT( 4 ) ) 00676 ELSE 00677 K1 = 6 00678 END IF 00679 * 00680 * Compare RCOND from CHESVXX with the computed value 00681 * in RCONDC. 00682 * 00683 RESULT( 6 ) = SGET06( RCOND, RCONDC ) 00684 * 00685 * Print information about the tests that did not pass 00686 * the threshold. 00687 * 00688 DO 85 K = K1, 6 00689 IF( RESULT( K ).GE.THRESH ) THEN 00690 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00691 $ CALL ALADHD( NOUT, PATH ) 00692 WRITE( NOUT, FMT = 9998 )'CHESVXX', 00693 $ FACT, UPLO, N, IMAT, K, 00694 $ RESULT( K ) 00695 NFAIL = NFAIL + 1 00696 END IF 00697 85 CONTINUE 00698 NRUN = NRUN + 7 - K1 00699 * 00700 150 CONTINUE 00701 * 00702 160 CONTINUE 00703 170 CONTINUE 00704 180 CONTINUE 00705 * 00706 * Print a summary of the results. 00707 * 00708 CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS ) 00709 * 00710 00711 * Test Error Bounds from CHESVXX 00712 00713 CALL CEBCHVXX(THRESH, PATH) 00714 00715 9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2, 00716 $ ', test ', I2, ', ratio =', G12.5 ) 00717 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5, 00718 $ ', type ', I2, ', test ', I2, ', ratio =', G12.5 ) 00719 RETURN 00720 * 00721 * End of CDRVHE 00722 * 00723 END