![]() |
LAPACK
3.4.1
LAPACK: Linear Algebra PACKage
|
00001 *> \brief \b CCHKLQ 00002 * 00003 * =========== DOCUMENTATION =========== 00004 * 00005 * Online html documentation available at 00006 * http://www.netlib.org/lapack/explore-html/ 00007 * 00008 * Definition: 00009 * =========== 00010 * 00011 * SUBROUTINE CCHKLQ( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, 00012 * NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AL, AC, 00013 * B, X, XACT, TAU, WORK, RWORK, NOUT ) 00014 * 00015 * .. Scalar Arguments .. 00016 * LOGICAL TSTERR 00017 * INTEGER NM, NMAX, NN, NNB, NOUT, NRHS 00018 * REAL THRESH 00019 * .. 00020 * .. Array Arguments .. 00021 * LOGICAL DOTYPE( * ) 00022 * INTEGER MVAL( * ), NBVAL( * ), NVAL( * ), 00023 * $ NXVAL( * ) 00024 * REAL RWORK( * ) 00025 * COMPLEX A( * ), AC( * ), AF( * ), AL( * ), AQ( * ), 00026 * $ B( * ), TAU( * ), WORK( * ), X( * ), XACT( * ) 00027 * .. 00028 * 00029 * 00030 *> \par Purpose: 00031 * ============= 00032 *> 00033 *> \verbatim 00034 *> 00035 *> CCHKLQ tests CGELQF, CUNGLQ and CUNMLQ. 00036 *> \endverbatim 00037 * 00038 * Arguments: 00039 * ========== 00040 * 00041 *> \param[in] DOTYPE 00042 *> \verbatim 00043 *> DOTYPE is LOGICAL array, dimension (NTYPES) 00044 *> The matrix types to be used for testing. Matrices of type j 00045 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = 00046 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. 00047 *> \endverbatim 00048 *> 00049 *> \param[in] NM 00050 *> \verbatim 00051 *> NM is INTEGER 00052 *> The number of values of M contained in the vector MVAL. 00053 *> \endverbatim 00054 *> 00055 *> \param[in] MVAL 00056 *> \verbatim 00057 *> MVAL is INTEGER array, dimension (NM) 00058 *> The values of the matrix row dimension M. 00059 *> \endverbatim 00060 *> 00061 *> \param[in] NN 00062 *> \verbatim 00063 *> NN is INTEGER 00064 *> The number of values of N contained in the vector NVAL. 00065 *> \endverbatim 00066 *> 00067 *> \param[in] NVAL 00068 *> \verbatim 00069 *> NVAL is INTEGER array, dimension (NN) 00070 *> The values of the matrix column dimension N. 00071 *> \endverbatim 00072 *> 00073 *> \param[in] NNB 00074 *> \verbatim 00075 *> NNB is INTEGER 00076 *> The number of values of NB and NX contained in the 00077 *> vectors NBVAL and NXVAL. The blocking parameters are used 00078 *> in pairs (NB,NX). 00079 *> \endverbatim 00080 *> 00081 *> \param[in] NBVAL 00082 *> \verbatim 00083 *> NBVAL is INTEGER array, dimension (NNB) 00084 *> The values of the blocksize NB. 00085 *> \endverbatim 00086 *> 00087 *> \param[in] NXVAL 00088 *> \verbatim 00089 *> NXVAL is INTEGER array, dimension (NNB) 00090 *> The values of the crossover point NX. 00091 *> \endverbatim 00092 *> 00093 *> \param[in] NRHS 00094 *> \verbatim 00095 *> NRHS is INTEGER 00096 *> The number of right hand side vectors to be generated for 00097 *> each linear system. 00098 *> \endverbatim 00099 *> 00100 *> \param[in] THRESH 00101 *> \verbatim 00102 *> THRESH is REAL 00103 *> The threshold value for the test ratios. A result is 00104 *> included in the output file if RESULT >= THRESH. To have 00105 *> every test ratio printed, use THRESH = 0. 00106 *> \endverbatim 00107 *> 00108 *> \param[in] TSTERR 00109 *> \verbatim 00110 *> TSTERR is LOGICAL 00111 *> Flag that indicates whether error exits are to be tested. 00112 *> \endverbatim 00113 *> 00114 *> \param[in] NMAX 00115 *> \verbatim 00116 *> NMAX is INTEGER 00117 *> The maximum value permitted for M or N, used in dimensioning 00118 *> the work arrays. 00119 *> \endverbatim 00120 *> 00121 *> \param[out] A 00122 *> \verbatim 00123 *> A is COMPLEX array, dimension (NMAX*NMAX) 00124 *> \endverbatim 00125 *> 00126 *> \param[out] AF 00127 *> \verbatim 00128 *> AF is COMPLEX array, dimension (NMAX*NMAX) 00129 *> \endverbatim 00130 *> 00131 *> \param[out] AQ 00132 *> \verbatim 00133 *> AQ is COMPLEX array, dimension (NMAX*NMAX) 00134 *> \endverbatim 00135 *> 00136 *> \param[out] AL 00137 *> \verbatim 00138 *> AL is COMPLEX array, dimension (NMAX*NMAX) 00139 *> \endverbatim 00140 *> 00141 *> \param[out] AC 00142 *> \verbatim 00143 *> AC is COMPLEX array, dimension (NMAX*NMAX) 00144 *> \endverbatim 00145 *> 00146 *> \param[out] B 00147 *> \verbatim 00148 *> B is COMPLEX array, dimension (NMAX*NRHS) 00149 *> \endverbatim 00150 *> 00151 *> \param[out] X 00152 *> \verbatim 00153 *> X is COMPLEX array, dimension (NMAX*NRHS) 00154 *> \endverbatim 00155 *> 00156 *> \param[out] XACT 00157 *> \verbatim 00158 *> XACT is COMPLEX array, dimension (NMAX*NRHS) 00159 *> \endverbatim 00160 *> 00161 *> \param[out] TAU 00162 *> \verbatim 00163 *> TAU is COMPLEX array, dimension (NMAX) 00164 *> \endverbatim 00165 *> 00166 *> \param[out] WORK 00167 *> \verbatim 00168 *> WORK is COMPLEX array, dimension (NMAX*NMAX) 00169 *> \endverbatim 00170 *> 00171 *> \param[out] RWORK 00172 *> \verbatim 00173 *> RWORK is REAL array, dimension (NMAX) 00174 *> \endverbatim 00175 *> 00176 *> \param[in] NOUT 00177 *> \verbatim 00178 *> NOUT is INTEGER 00179 *> The unit number for output. 00180 *> \endverbatim 00181 * 00182 * Authors: 00183 * ======== 00184 * 00185 *> \author Univ. of Tennessee 00186 *> \author Univ. of California Berkeley 00187 *> \author Univ. of Colorado Denver 00188 *> \author NAG Ltd. 00189 * 00190 *> \date November 2011 00191 * 00192 *> \ingroup complex_lin 00193 * 00194 * ===================================================================== 00195 SUBROUTINE CCHKLQ( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, 00196 $ NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AL, AC, 00197 $ B, X, XACT, TAU, WORK, RWORK, NOUT ) 00198 * 00199 * -- LAPACK test routine (version 3.4.0) -- 00200 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00201 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00202 * November 2011 00203 * 00204 * .. Scalar Arguments .. 00205 LOGICAL TSTERR 00206 INTEGER NM, NMAX, NN, NNB, NOUT, NRHS 00207 REAL THRESH 00208 * .. 00209 * .. Array Arguments .. 00210 LOGICAL DOTYPE( * ) 00211 INTEGER MVAL( * ), NBVAL( * ), NVAL( * ), 00212 $ NXVAL( * ) 00213 REAL RWORK( * ) 00214 COMPLEX A( * ), AC( * ), AF( * ), AL( * ), AQ( * ), 00215 $ B( * ), TAU( * ), WORK( * ), X( * ), XACT( * ) 00216 * .. 00217 * 00218 * ===================================================================== 00219 * 00220 * .. Parameters .. 00221 INTEGER NTESTS 00222 PARAMETER ( NTESTS = 7 ) 00223 INTEGER NTYPES 00224 PARAMETER ( NTYPES = 8 ) 00225 REAL ZERO 00226 PARAMETER ( ZERO = 0.0E0 ) 00227 * .. 00228 * .. Local Scalars .. 00229 CHARACTER DIST, TYPE 00230 CHARACTER*3 PATH 00231 INTEGER I, IK, IM, IMAT, IN, INB, INFO, K, KL, KU, LDA, 00232 $ LWORK, M, MINMN, MODE, N, NB, NERRS, NFAIL, NK, 00233 $ NRUN, NT, NX 00234 REAL ANORM, CNDNUM 00235 * .. 00236 * .. Local Arrays .. 00237 INTEGER ISEED( 4 ), ISEEDY( 4 ), KVAL( 4 ) 00238 REAL RESULT( NTESTS ) 00239 * .. 00240 * .. External Subroutines .. 00241 EXTERNAL ALAERH, ALAHD, ALASUM, CERRLQ, CGELQS, CGET02, 00242 $ CLACPY, CLARHS, CLATB4, CLATMS, CLQT01, CLQT02, 00243 $ CLQT03, XLAENV 00244 * .. 00245 * .. Intrinsic Functions .. 00246 INTRINSIC MAX, MIN 00247 * .. 00248 * .. Scalars in Common .. 00249 LOGICAL LERR, OK 00250 CHARACTER*32 SRNAMT 00251 INTEGER INFOT, NUNIT 00252 * .. 00253 * .. Common blocks .. 00254 COMMON / INFOC / INFOT, NUNIT, OK, LERR 00255 COMMON / SRNAMC / SRNAMT 00256 * .. 00257 * .. Data statements .. 00258 DATA ISEEDY / 1988, 1989, 1990, 1991 / 00259 * .. 00260 * .. Executable Statements .. 00261 * 00262 * Initialize constants and the random number seed. 00263 * 00264 PATH( 1: 1 ) = 'Complex precision' 00265 PATH( 2: 3 ) = 'LQ' 00266 NRUN = 0 00267 NFAIL = 0 00268 NERRS = 0 00269 DO 10 I = 1, 4 00270 ISEED( I ) = ISEEDY( I ) 00271 10 CONTINUE 00272 * 00273 * Test the error exits 00274 * 00275 IF( TSTERR ) 00276 $ CALL CERRLQ( PATH, NOUT ) 00277 INFOT = 0 00278 CALL XLAENV( 2, 2 ) 00279 * 00280 LDA = NMAX 00281 LWORK = NMAX*MAX( NMAX, NRHS ) 00282 * 00283 * Do for each value of M in MVAL. 00284 * 00285 DO 70 IM = 1, NM 00286 M = MVAL( IM ) 00287 * 00288 * Do for each value of N in NVAL. 00289 * 00290 DO 60 IN = 1, NN 00291 N = NVAL( IN ) 00292 MINMN = MIN( M, N ) 00293 DO 50 IMAT = 1, NTYPES 00294 * 00295 * Do the tests only if DOTYPE( IMAT ) is true. 00296 * 00297 IF( .NOT.DOTYPE( IMAT ) ) 00298 $ GO TO 50 00299 * 00300 * Set up parameters with CLATB4 and generate a test matrix 00301 * with CLATMS. 00302 * 00303 CALL CLATB4( PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, 00304 $ CNDNUM, DIST ) 00305 * 00306 SRNAMT = 'CLATMS' 00307 CALL CLATMS( M, N, DIST, ISEED, TYPE, RWORK, MODE, 00308 $ CNDNUM, ANORM, KL, KU, 'No packing', A, LDA, 00309 $ WORK, INFO ) 00310 * 00311 * Check error code from CLATMS. 00312 * 00313 IF( INFO.NE.0 ) THEN 00314 CALL ALAERH( PATH, 'CLATMS', INFO, 0, ' ', M, N, -1, 00315 $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) 00316 GO TO 50 00317 END IF 00318 * 00319 * Set some values for K: the first value must be MINMN, 00320 * corresponding to the call of CLQT01; other values are 00321 * used in the calls of CLQT02, and must not exceed MINMN. 00322 * 00323 KVAL( 1 ) = MINMN 00324 KVAL( 2 ) = 0 00325 KVAL( 3 ) = 1 00326 KVAL( 4 ) = MINMN / 2 00327 IF( MINMN.EQ.0 ) THEN 00328 NK = 1 00329 ELSE IF( MINMN.EQ.1 ) THEN 00330 NK = 2 00331 ELSE IF( MINMN.LE.3 ) THEN 00332 NK = 3 00333 ELSE 00334 NK = 4 00335 END IF 00336 * 00337 * Do for each value of K in KVAL 00338 * 00339 DO 40 IK = 1, NK 00340 K = KVAL( IK ) 00341 * 00342 * Do for each pair of values (NB,NX) in NBVAL and NXVAL. 00343 * 00344 DO 30 INB = 1, NNB 00345 NB = NBVAL( INB ) 00346 CALL XLAENV( 1, NB ) 00347 NX = NXVAL( INB ) 00348 CALL XLAENV( 3, NX ) 00349 DO I = 1, NTESTS 00350 RESULT( I ) = ZERO 00351 END DO 00352 NT = 2 00353 IF( IK.EQ.1 ) THEN 00354 * 00355 * Test CGELQF 00356 * 00357 CALL CLQT01( M, N, A, AF, AQ, AL, LDA, TAU, 00358 $ WORK, LWORK, RWORK, RESULT( 1 ) ) 00359 ELSE IF( M.LE.N ) THEN 00360 * 00361 * Test CUNGLQ, using factorization 00362 * returned by CLQT01 00363 * 00364 CALL CLQT02( M, N, K, A, AF, AQ, AL, LDA, TAU, 00365 $ WORK, LWORK, RWORK, RESULT( 1 ) ) 00366 END IF 00367 IF( M.GE.K ) THEN 00368 * 00369 * Test CUNMLQ, using factorization returned 00370 * by CLQT01 00371 * 00372 CALL CLQT03( M, N, K, AF, AC, AL, AQ, LDA, TAU, 00373 $ WORK, LWORK, RWORK, RESULT( 3 ) ) 00374 NT = NT + 4 00375 * 00376 * If M>=N and K=N, call CGELQS to solve a system 00377 * with NRHS right hand sides and compute the 00378 * residual. 00379 * 00380 IF( K.EQ.M .AND. INB.EQ.1 ) THEN 00381 * 00382 * Generate a solution and set the right 00383 * hand side. 00384 * 00385 SRNAMT = 'CLARHS' 00386 CALL CLARHS( PATH, 'New', 'Full', 00387 $ 'No transpose', M, N, 0, 0, 00388 $ NRHS, A, LDA, XACT, LDA, B, LDA, 00389 $ ISEED, INFO ) 00390 * 00391 CALL CLACPY( 'Full', M, NRHS, B, LDA, X, 00392 $ LDA ) 00393 SRNAMT = 'CGELQS' 00394 CALL CGELQS( M, N, NRHS, AF, LDA, TAU, X, 00395 $ LDA, WORK, LWORK, INFO ) 00396 * 00397 * Check error code from CGELQS. 00398 * 00399 IF( INFO.NE.0 ) 00400 $ CALL ALAERH( PATH, 'CGELQS', INFO, 0, ' ', 00401 $ M, N, NRHS, -1, NB, IMAT, 00402 $ NFAIL, NERRS, NOUT ) 00403 * 00404 CALL CGET02( 'No transpose', M, N, NRHS, A, 00405 $ LDA, X, LDA, B, LDA, RWORK, 00406 $ RESULT( 7 ) ) 00407 NT = NT + 1 00408 END IF 00409 END IF 00410 * 00411 * Print information about the tests that did not 00412 * pass the threshold. 00413 * 00414 DO 20 I = 1, NT 00415 IF( RESULT( I ).GE.THRESH ) THEN 00416 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00417 $ CALL ALAHD( NOUT, PATH ) 00418 WRITE( NOUT, FMT = 9999 )M, N, K, NB, NX, 00419 $ IMAT, I, RESULT( I ) 00420 NFAIL = NFAIL + 1 00421 END IF 00422 20 CONTINUE 00423 NRUN = NRUN + NT 00424 30 CONTINUE 00425 40 CONTINUE 00426 50 CONTINUE 00427 60 CONTINUE 00428 70 CONTINUE 00429 * 00430 * Print a summary of the results. 00431 * 00432 CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) 00433 * 00434 9999 FORMAT( ' M=', I5, ', N=', I5, ', K=', I5, ', NB=', I4, ', NX=', 00435 $ I5, ', type ', I2, ', test(', I2, ')=', G12.5 ) 00436 RETURN 00437 * 00438 * End of CCHKLQ 00439 * 00440 END