![]() |
LAPACK
3.4.1
LAPACK: Linear Algebra PACKage
|
00001 *> \brief \b ZSYTF2 00002 * 00003 * =========== DOCUMENTATION =========== 00004 * 00005 * Online html documentation available at 00006 * http://www.netlib.org/lapack/explore-html/ 00007 * 00008 *> \htmlonly 00009 *> Download ZSYTF2 + dependencies 00010 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytf2.f"> 00011 *> [TGZ]</a> 00012 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytf2.f"> 00013 *> [ZIP]</a> 00014 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytf2.f"> 00015 *> [TXT]</a> 00016 *> \endhtmlonly 00017 * 00018 * Definition: 00019 * =========== 00020 * 00021 * SUBROUTINE ZSYTF2( UPLO, N, A, LDA, IPIV, INFO ) 00022 * 00023 * .. Scalar Arguments .. 00024 * CHARACTER UPLO 00025 * INTEGER INFO, LDA, N 00026 * .. 00027 * .. Array Arguments .. 00028 * INTEGER IPIV( * ) 00029 * COMPLEX*16 A( LDA, * ) 00030 * .. 00031 * 00032 * 00033 *> \par Purpose: 00034 * ============= 00035 *> 00036 *> \verbatim 00037 *> 00038 *> ZSYTF2 computes the factorization of a complex symmetric matrix A 00039 *> using the Bunch-Kaufman diagonal pivoting method: 00040 *> 00041 *> A = U*D*U**T or A = L*D*L**T 00042 *> 00043 *> where U (or L) is a product of permutation and unit upper (lower) 00044 *> triangular matrices, U**T is the transpose of U, and D is symmetric and 00045 *> block diagonal with 1-by-1 and 2-by-2 diagonal blocks. 00046 *> 00047 *> This is the unblocked version of the algorithm, calling Level 2 BLAS. 00048 *> \endverbatim 00049 * 00050 * Arguments: 00051 * ========== 00052 * 00053 *> \param[in] UPLO 00054 *> \verbatim 00055 *> UPLO is CHARACTER*1 00056 *> Specifies whether the upper or lower triangular part of the 00057 *> symmetric matrix A is stored: 00058 *> = 'U': Upper triangular 00059 *> = 'L': Lower triangular 00060 *> \endverbatim 00061 *> 00062 *> \param[in] N 00063 *> \verbatim 00064 *> N is INTEGER 00065 *> The order of the matrix A. N >= 0. 00066 *> \endverbatim 00067 *> 00068 *> \param[in,out] A 00069 *> \verbatim 00070 *> A is COMPLEX*16 array, dimension (LDA,N) 00071 *> On entry, the symmetric matrix A. If UPLO = 'U', the leading 00072 *> n-by-n upper triangular part of A contains the upper 00073 *> triangular part of the matrix A, and the strictly lower 00074 *> triangular part of A is not referenced. If UPLO = 'L', the 00075 *> leading n-by-n lower triangular part of A contains the lower 00076 *> triangular part of the matrix A, and the strictly upper 00077 *> triangular part of A is not referenced. 00078 *> 00079 *> On exit, the block diagonal matrix D and the multipliers used 00080 *> to obtain the factor U or L (see below for further details). 00081 *> \endverbatim 00082 *> 00083 *> \param[in] LDA 00084 *> \verbatim 00085 *> LDA is INTEGER 00086 *> The leading dimension of the array A. LDA >= max(1,N). 00087 *> \endverbatim 00088 *> 00089 *> \param[out] IPIV 00090 *> \verbatim 00091 *> IPIV is INTEGER array, dimension (N) 00092 *> Details of the interchanges and the block structure of D. 00093 *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were 00094 *> interchanged and D(k,k) is a 1-by-1 diagonal block. 00095 *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and 00096 *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) 00097 *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = 00098 *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were 00099 *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. 00100 *> \endverbatim 00101 *> 00102 *> \param[out] INFO 00103 *> \verbatim 00104 *> INFO is INTEGER 00105 *> = 0: successful exit 00106 *> < 0: if INFO = -k, the k-th argument had an illegal value 00107 *> > 0: if INFO = k, D(k,k) is exactly zero. The factorization 00108 *> has been completed, but the block diagonal matrix D is 00109 *> exactly singular, and division by zero will occur if it 00110 *> is used to solve a system of equations. 00111 *> \endverbatim 00112 * 00113 * Authors: 00114 * ======== 00115 * 00116 *> \author Univ. of Tennessee 00117 *> \author Univ. of California Berkeley 00118 *> \author Univ. of Colorado Denver 00119 *> \author NAG Ltd. 00120 * 00121 *> \date November 2011 00122 * 00123 *> \ingroup complex16SYcomputational 00124 * 00125 *> \par Further Details: 00126 * ===================== 00127 *> 00128 *> \verbatim 00129 *> 00130 *> If UPLO = 'U', then A = U*D*U**T, where 00131 *> U = P(n)*U(n)* ... *P(k)U(k)* ..., 00132 *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to 00133 *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 00134 *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as 00135 *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such 00136 *> that if the diagonal block D(k) is of order s (s = 1 or 2), then 00137 *> 00138 *> ( I v 0 ) k-s 00139 *> U(k) = ( 0 I 0 ) s 00140 *> ( 0 0 I ) n-k 00141 *> k-s s n-k 00142 *> 00143 *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). 00144 *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), 00145 *> and A(k,k), and v overwrites A(1:k-2,k-1:k). 00146 *> 00147 *> If UPLO = 'L', then A = L*D*L**T, where 00148 *> L = P(1)*L(1)* ... *P(k)*L(k)* ..., 00149 *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to 00150 *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 00151 *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as 00152 *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such 00153 *> that if the diagonal block D(k) is of order s (s = 1 or 2), then 00154 *> 00155 *> ( I 0 0 ) k-1 00156 *> L(k) = ( 0 I 0 ) s 00157 *> ( 0 v I ) n-k-s+1 00158 *> k-1 s n-k-s+1 00159 *> 00160 *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). 00161 *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), 00162 *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). 00163 *> \endverbatim 00164 * 00165 *> \par Contributors: 00166 * ================== 00167 *> 00168 *> \verbatim 00169 *> 00170 *> 09-29-06 - patch from 00171 *> Bobby Cheng, MathWorks 00172 *> 00173 *> Replace l.209 and l.377 00174 *> IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN 00175 *> by 00176 *> IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN 00177 *> 00178 *> 1-96 - Based on modifications by J. Lewis, Boeing Computer Services 00179 *> Company 00180 *> \endverbatim 00181 * 00182 * ===================================================================== 00183 SUBROUTINE ZSYTF2( UPLO, N, A, LDA, IPIV, INFO ) 00184 * 00185 * -- LAPACK computational routine (version 3.4.0) -- 00186 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00187 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00188 * November 2011 00189 * 00190 * .. Scalar Arguments .. 00191 CHARACTER UPLO 00192 INTEGER INFO, LDA, N 00193 * .. 00194 * .. Array Arguments .. 00195 INTEGER IPIV( * ) 00196 COMPLEX*16 A( LDA, * ) 00197 * .. 00198 * 00199 * ===================================================================== 00200 * 00201 * .. Parameters .. 00202 DOUBLE PRECISION ZERO, ONE 00203 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) 00204 DOUBLE PRECISION EIGHT, SEVTEN 00205 PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 ) 00206 COMPLEX*16 CONE 00207 PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) ) 00208 * .. 00209 * .. Local Scalars .. 00210 LOGICAL UPPER 00211 INTEGER I, IMAX, J, JMAX, K, KK, KP, KSTEP 00212 DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, ROWMAX 00213 COMPLEX*16 D11, D12, D21, D22, R1, T, WK, WKM1, WKP1, Z 00214 * .. 00215 * .. External Functions .. 00216 LOGICAL DISNAN, LSAME 00217 INTEGER IZAMAX 00218 EXTERNAL DISNAN, LSAME, IZAMAX 00219 * .. 00220 * .. External Subroutines .. 00221 EXTERNAL XERBLA, ZSCAL, ZSWAP, ZSYR 00222 * .. 00223 * .. Intrinsic Functions .. 00224 INTRINSIC ABS, DBLE, DIMAG, MAX, SQRT 00225 * .. 00226 * .. Statement Functions .. 00227 DOUBLE PRECISION CABS1 00228 * .. 00229 * .. Statement Function definitions .. 00230 CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) ) 00231 * .. 00232 * .. Executable Statements .. 00233 * 00234 * Test the input parameters. 00235 * 00236 INFO = 0 00237 UPPER = LSAME( UPLO, 'U' ) 00238 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN 00239 INFO = -1 00240 ELSE IF( N.LT.0 ) THEN 00241 INFO = -2 00242 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 00243 INFO = -4 00244 END IF 00245 IF( INFO.NE.0 ) THEN 00246 CALL XERBLA( 'ZSYTF2', -INFO ) 00247 RETURN 00248 END IF 00249 * 00250 * Initialize ALPHA for use in choosing pivot block size. 00251 * 00252 ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT 00253 * 00254 IF( UPPER ) THEN 00255 * 00256 * Factorize A as U*D*U**T using the upper triangle of A 00257 * 00258 * K is the main loop index, decreasing from N to 1 in steps of 00259 * 1 or 2 00260 * 00261 K = N 00262 10 CONTINUE 00263 * 00264 * If K < 1, exit from loop 00265 * 00266 IF( K.LT.1 ) 00267 $ GO TO 70 00268 KSTEP = 1 00269 * 00270 * Determine rows and columns to be interchanged and whether 00271 * a 1-by-1 or 2-by-2 pivot block will be used 00272 * 00273 ABSAKK = CABS1( A( K, K ) ) 00274 * 00275 * IMAX is the row-index of the largest off-diagonal element in 00276 * column K, and COLMAX is its absolute value 00277 * 00278 IF( K.GT.1 ) THEN 00279 IMAX = IZAMAX( K-1, A( 1, K ), 1 ) 00280 COLMAX = CABS1( A( IMAX, K ) ) 00281 ELSE 00282 COLMAX = ZERO 00283 END IF 00284 * 00285 IF( MAX( ABSAKK, COLMAX ).EQ.ZERO .OR. DISNAN(ABSAKK) ) THEN 00286 * 00287 * Column K is zero or NaN: set INFO and continue 00288 * 00289 IF( INFO.EQ.0 ) 00290 $ INFO = K 00291 KP = K 00292 ELSE 00293 IF( ABSAKK.GE.ALPHA*COLMAX ) THEN 00294 * 00295 * no interchange, use 1-by-1 pivot block 00296 * 00297 KP = K 00298 ELSE 00299 * 00300 * JMAX is the column-index of the largest off-diagonal 00301 * element in row IMAX, and ROWMAX is its absolute value 00302 * 00303 JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA ) 00304 ROWMAX = CABS1( A( IMAX, JMAX ) ) 00305 IF( IMAX.GT.1 ) THEN 00306 JMAX = IZAMAX( IMAX-1, A( 1, IMAX ), 1 ) 00307 ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) ) 00308 END IF 00309 * 00310 IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN 00311 * 00312 * no interchange, use 1-by-1 pivot block 00313 * 00314 KP = K 00315 ELSE IF( CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN 00316 * 00317 * interchange rows and columns K and IMAX, use 1-by-1 00318 * pivot block 00319 * 00320 KP = IMAX 00321 ELSE 00322 * 00323 * interchange rows and columns K-1 and IMAX, use 2-by-2 00324 * pivot block 00325 * 00326 KP = IMAX 00327 KSTEP = 2 00328 END IF 00329 END IF 00330 * 00331 KK = K - KSTEP + 1 00332 IF( KP.NE.KK ) THEN 00333 * 00334 * Interchange rows and columns KK and KP in the leading 00335 * submatrix A(1:k,1:k) 00336 * 00337 CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 ) 00338 CALL ZSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ), 00339 $ LDA ) 00340 T = A( KK, KK ) 00341 A( KK, KK ) = A( KP, KP ) 00342 A( KP, KP ) = T 00343 IF( KSTEP.EQ.2 ) THEN 00344 T = A( K-1, K ) 00345 A( K-1, K ) = A( KP, K ) 00346 A( KP, K ) = T 00347 END IF 00348 END IF 00349 * 00350 * Update the leading submatrix 00351 * 00352 IF( KSTEP.EQ.1 ) THEN 00353 * 00354 * 1-by-1 pivot block D(k): column k now holds 00355 * 00356 * W(k) = U(k)*D(k) 00357 * 00358 * where U(k) is the k-th column of U 00359 * 00360 * Perform a rank-1 update of A(1:k-1,1:k-1) as 00361 * 00362 * A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T 00363 * 00364 R1 = CONE / A( K, K ) 00365 CALL ZSYR( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA ) 00366 * 00367 * Store U(k) in column k 00368 * 00369 CALL ZSCAL( K-1, R1, A( 1, K ), 1 ) 00370 ELSE 00371 * 00372 * 2-by-2 pivot block D(k): columns k and k-1 now hold 00373 * 00374 * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) 00375 * 00376 * where U(k) and U(k-1) are the k-th and (k-1)-th columns 00377 * of U 00378 * 00379 * Perform a rank-2 update of A(1:k-2,1:k-2) as 00380 * 00381 * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T 00382 * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T 00383 * 00384 IF( K.GT.2 ) THEN 00385 * 00386 D12 = A( K-1, K ) 00387 D22 = A( K-1, K-1 ) / D12 00388 D11 = A( K, K ) / D12 00389 T = CONE / ( D11*D22-CONE ) 00390 D12 = T / D12 00391 * 00392 DO 30 J = K - 2, 1, -1 00393 WKM1 = D12*( D11*A( J, K-1 )-A( J, K ) ) 00394 WK = D12*( D22*A( J, K )-A( J, K-1 ) ) 00395 DO 20 I = J, 1, -1 00396 A( I, J ) = A( I, J ) - A( I, K )*WK - 00397 $ A( I, K-1 )*WKM1 00398 20 CONTINUE 00399 A( J, K ) = WK 00400 A( J, K-1 ) = WKM1 00401 30 CONTINUE 00402 * 00403 END IF 00404 * 00405 END IF 00406 END IF 00407 * 00408 * Store details of the interchanges in IPIV 00409 * 00410 IF( KSTEP.EQ.1 ) THEN 00411 IPIV( K ) = KP 00412 ELSE 00413 IPIV( K ) = -KP 00414 IPIV( K-1 ) = -KP 00415 END IF 00416 * 00417 * Decrease K and return to the start of the main loop 00418 * 00419 K = K - KSTEP 00420 GO TO 10 00421 * 00422 ELSE 00423 * 00424 * Factorize A as L*D*L**T using the lower triangle of A 00425 * 00426 * K is the main loop index, increasing from 1 to N in steps of 00427 * 1 or 2 00428 * 00429 K = 1 00430 40 CONTINUE 00431 * 00432 * If K > N, exit from loop 00433 * 00434 IF( K.GT.N ) 00435 $ GO TO 70 00436 KSTEP = 1 00437 * 00438 * Determine rows and columns to be interchanged and whether 00439 * a 1-by-1 or 2-by-2 pivot block will be used 00440 * 00441 ABSAKK = CABS1( A( K, K ) ) 00442 * 00443 * IMAX is the row-index of the largest off-diagonal element in 00444 * column K, and COLMAX is its absolute value 00445 * 00446 IF( K.LT.N ) THEN 00447 IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 ) 00448 COLMAX = CABS1( A( IMAX, K ) ) 00449 ELSE 00450 COLMAX = ZERO 00451 END IF 00452 * 00453 IF( MAX( ABSAKK, COLMAX ).EQ.ZERO .OR. DISNAN(ABSAKK) ) THEN 00454 * 00455 * Column K is zero or NaN: set INFO and continue 00456 * 00457 IF( INFO.EQ.0 ) 00458 $ INFO = K 00459 KP = K 00460 ELSE 00461 IF( ABSAKK.GE.ALPHA*COLMAX ) THEN 00462 * 00463 * no interchange, use 1-by-1 pivot block 00464 * 00465 KP = K 00466 ELSE 00467 * 00468 * JMAX is the column-index of the largest off-diagonal 00469 * element in row IMAX, and ROWMAX is its absolute value 00470 * 00471 JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA ) 00472 ROWMAX = CABS1( A( IMAX, JMAX ) ) 00473 IF( IMAX.LT.N ) THEN 00474 JMAX = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 ) 00475 ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) ) 00476 END IF 00477 * 00478 IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN 00479 * 00480 * no interchange, use 1-by-1 pivot block 00481 * 00482 KP = K 00483 ELSE IF( CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN 00484 * 00485 * interchange rows and columns K and IMAX, use 1-by-1 00486 * pivot block 00487 * 00488 KP = IMAX 00489 ELSE 00490 * 00491 * interchange rows and columns K+1 and IMAX, use 2-by-2 00492 * pivot block 00493 * 00494 KP = IMAX 00495 KSTEP = 2 00496 END IF 00497 END IF 00498 * 00499 KK = K + KSTEP - 1 00500 IF( KP.NE.KK ) THEN 00501 * 00502 * Interchange rows and columns KK and KP in the trailing 00503 * submatrix A(k:n,k:n) 00504 * 00505 IF( KP.LT.N ) 00506 $ CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 ) 00507 CALL ZSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ), 00508 $ LDA ) 00509 T = A( KK, KK ) 00510 A( KK, KK ) = A( KP, KP ) 00511 A( KP, KP ) = T 00512 IF( KSTEP.EQ.2 ) THEN 00513 T = A( K+1, K ) 00514 A( K+1, K ) = A( KP, K ) 00515 A( KP, K ) = T 00516 END IF 00517 END IF 00518 * 00519 * Update the trailing submatrix 00520 * 00521 IF( KSTEP.EQ.1 ) THEN 00522 * 00523 * 1-by-1 pivot block D(k): column k now holds 00524 * 00525 * W(k) = L(k)*D(k) 00526 * 00527 * where L(k) is the k-th column of L 00528 * 00529 IF( K.LT.N ) THEN 00530 * 00531 * Perform a rank-1 update of A(k+1:n,k+1:n) as 00532 * 00533 * A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T 00534 * 00535 R1 = CONE / A( K, K ) 00536 CALL ZSYR( UPLO, N-K, -R1, A( K+1, K ), 1, 00537 $ A( K+1, K+1 ), LDA ) 00538 * 00539 * Store L(k) in column K 00540 * 00541 CALL ZSCAL( N-K, R1, A( K+1, K ), 1 ) 00542 END IF 00543 ELSE 00544 * 00545 * 2-by-2 pivot block D(k) 00546 * 00547 IF( K.LT.N-1 ) THEN 00548 * 00549 * Perform a rank-2 update of A(k+2:n,k+2:n) as 00550 * 00551 * A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T 00552 * = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T 00553 * 00554 * where L(k) and L(k+1) are the k-th and (k+1)-th 00555 * columns of L 00556 * 00557 D21 = A( K+1, K ) 00558 D11 = A( K+1, K+1 ) / D21 00559 D22 = A( K, K ) / D21 00560 T = CONE / ( D11*D22-CONE ) 00561 D21 = T / D21 00562 * 00563 DO 60 J = K + 2, N 00564 WK = D21*( D11*A( J, K )-A( J, K+1 ) ) 00565 WKP1 = D21*( D22*A( J, K+1 )-A( J, K ) ) 00566 DO 50 I = J, N 00567 A( I, J ) = A( I, J ) - A( I, K )*WK - 00568 $ A( I, K+1 )*WKP1 00569 50 CONTINUE 00570 A( J, K ) = WK 00571 A( J, K+1 ) = WKP1 00572 60 CONTINUE 00573 END IF 00574 END IF 00575 END IF 00576 * 00577 * Store details of the interchanges in IPIV 00578 * 00579 IF( KSTEP.EQ.1 ) THEN 00580 IPIV( K ) = KP 00581 ELSE 00582 IPIV( K ) = -KP 00583 IPIV( K+1 ) = -KP 00584 END IF 00585 * 00586 * Increase K and return to the start of the main loop 00587 * 00588 K = K + KSTEP 00589 GO TO 40 00590 * 00591 END IF 00592 * 00593 70 CONTINUE 00594 RETURN 00595 * 00596 * End of ZSYTF2 00597 * 00598 END