LAPACK  3.4.1
LAPACK: Linear Algebra PACKage
cdrvhe.f
Go to the documentation of this file.
00001 *> \brief \b CDRVHE
00002 *
00003 *  =========== DOCUMENTATION ===========
00004 *
00005 * Online html documentation available at 
00006 *            http://www.netlib.org/lapack/explore-html/ 
00007 *
00008 *  Definition:
00009 *  ===========
00010 *
00011 *       SUBROUTINE CDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
00012 *                          A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
00013 *                          NOUT )
00014 * 
00015 *       .. Scalar Arguments ..
00016 *       LOGICAL            TSTERR
00017 *       INTEGER            NMAX, NN, NOUT, NRHS
00018 *       REAL               THRESH
00019 *       ..
00020 *       .. Array Arguments ..
00021 *       LOGICAL            DOTYPE( * )
00022 *       INTEGER            IWORK( * ), NVAL( * )
00023 *       REAL               RWORK( * )
00024 *       COMPLEX            A( * ), AFAC( * ), AINV( * ), B( * ),
00025 *      $                   WORK( * ), X( * ), XACT( * )
00026 *       ..
00027 *  
00028 *
00029 *> \par Purpose:
00030 *  =============
00031 *>
00032 *> \verbatim
00033 *>
00034 *> CDRVHE tests the driver routines CHESV and -SVX.
00035 *> \endverbatim
00036 *
00037 *  Arguments:
00038 *  ==========
00039 *
00040 *> \param[in] DOTYPE
00041 *> \verbatim
00042 *>          DOTYPE is LOGICAL array, dimension (NTYPES)
00043 *>          The matrix types to be used for testing.  Matrices of type j
00044 *>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
00045 *>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
00046 *> \endverbatim
00047 *>
00048 *> \param[in] NN
00049 *> \verbatim
00050 *>          NN is INTEGER
00051 *>          The number of values of N contained in the vector NVAL.
00052 *> \endverbatim
00053 *>
00054 *> \param[in] NVAL
00055 *> \verbatim
00056 *>          NVAL is INTEGER array, dimension (NN)
00057 *>          The values of the matrix dimension N.
00058 *> \endverbatim
00059 *>
00060 *> \param[in] NRHS
00061 *> \verbatim
00062 *>          NRHS is INTEGER
00063 *>          The number of right hand side vectors to be generated for
00064 *>          each linear system.
00065 *> \endverbatim
00066 *>
00067 *> \param[in] THRESH
00068 *> \verbatim
00069 *>          THRESH is REAL
00070 *>          The threshold value for the test ratios.  A result is
00071 *>          included in the output file if RESULT >= THRESH.  To have
00072 *>          every test ratio printed, use THRESH = 0.
00073 *> \endverbatim
00074 *>
00075 *> \param[in] TSTERR
00076 *> \verbatim
00077 *>          TSTERR is LOGICAL
00078 *>          Flag that indicates whether error exits are to be tested.
00079 *> \endverbatim
00080 *>
00081 *> \param[in] NMAX
00082 *> \verbatim
00083 *>          NMAX is INTEGER
00084 *>          The maximum value permitted for N, used in dimensioning the
00085 *>          work arrays.
00086 *> \endverbatim
00087 *>
00088 *> \param[out] A
00089 *> \verbatim
00090 *>          A is COMPLEX array, dimension (NMAX*NMAX)
00091 *> \endverbatim
00092 *>
00093 *> \param[out] AFAC
00094 *> \verbatim
00095 *>          AFAC is COMPLEX array, dimension (NMAX*NMAX)
00096 *> \endverbatim
00097 *>
00098 *> \param[out] AINV
00099 *> \verbatim
00100 *>          AINV is COMPLEX array, dimension (NMAX*NMAX)
00101 *> \endverbatim
00102 *>
00103 *> \param[out] B
00104 *> \verbatim
00105 *>          B is COMPLEX array, dimension (NMAX*NRHS)
00106 *> \endverbatim
00107 *>
00108 *> \param[out] X
00109 *> \verbatim
00110 *>          X is COMPLEX array, dimension (NMAX*NRHS)
00111 *> \endverbatim
00112 *>
00113 *> \param[out] XACT
00114 *> \verbatim
00115 *>          XACT is COMPLEX array, dimension (NMAX*NRHS)
00116 *> \endverbatim
00117 *>
00118 *> \param[out] WORK
00119 *> \verbatim
00120 *>          WORK is COMPLEX array, dimension
00121 *>                      (NMAX*max(2,NRHS))
00122 *> \endverbatim
00123 *>
00124 *> \param[out] RWORK
00125 *> \verbatim
00126 *>          RWORK is REAL array, dimension (NMAX+2*NRHS)
00127 *> \endverbatim
00128 *>
00129 *> \param[out] IWORK
00130 *> \verbatim
00131 *>          IWORK is INTEGER array, dimension (NMAX)
00132 *> \endverbatim
00133 *>
00134 *> \param[in] NOUT
00135 *> \verbatim
00136 *>          NOUT is INTEGER
00137 *>          The unit number for output.
00138 *> \endverbatim
00139 *
00140 *  Authors:
00141 *  ========
00142 *
00143 *> \author Univ. of Tennessee 
00144 *> \author Univ. of California Berkeley 
00145 *> \author Univ. of Colorado Denver 
00146 *> \author NAG Ltd. 
00147 *
00148 *> \date November 2011
00149 *
00150 *> \ingroup complex_lin
00151 *
00152 *  =====================================================================
00153       SUBROUTINE CDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
00154      $                   A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
00155      $                   NOUT )
00156 *
00157 *  -- LAPACK test routine (version 3.4.0) --
00158 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00159 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00160 *     November 2011
00161 *
00162 *     .. Scalar Arguments ..
00163       LOGICAL            TSTERR
00164       INTEGER            NMAX, NN, NOUT, NRHS
00165       REAL               THRESH
00166 *     ..
00167 *     .. Array Arguments ..
00168       LOGICAL            DOTYPE( * )
00169       INTEGER            IWORK( * ), NVAL( * )
00170       REAL               RWORK( * )
00171       COMPLEX            A( * ), AFAC( * ), AINV( * ), B( * ),
00172      $                   WORK( * ), X( * ), XACT( * )
00173 *     ..
00174 *
00175 *  =====================================================================
00176 *
00177 *     .. Parameters ..
00178       REAL               ONE, ZERO
00179       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
00180       INTEGER            NTYPES, NTESTS
00181       PARAMETER          ( NTYPES = 10, NTESTS = 6 )
00182       INTEGER            NFACT
00183       PARAMETER          ( NFACT = 2 )
00184 *     ..
00185 *     .. Local Scalars ..
00186       LOGICAL            ZEROT
00187       CHARACTER          DIST, FACT, TYPE, UPLO, XTYPE
00188       CHARACTER*3        PATH
00189       INTEGER            I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
00190      $                   IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N,
00191      $                   NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT
00192       REAL               AINVNM, ANORM, CNDNUM, RCOND, RCONDC
00193 *     ..
00194 *     .. Local Arrays ..
00195       CHARACTER          FACTS( NFACT ), UPLOS( 2 )
00196       INTEGER            ISEED( 4 ), ISEEDY( 4 )
00197       REAL               RESULT( NTESTS )
00198 *     ..
00199 *     .. External Functions ..
00200       REAL               CLANHE, SGET06
00201       EXTERNAL           CLANHE, SGET06
00202 *     ..
00203 *     .. External Subroutines ..
00204       EXTERNAL           ALADHD, ALAERH, ALASVM, CERRVX, CGET04, CHESV,
00205      $                   CHESVX, CHET01, CHETRF, CHETRI2, CLACPY,
00206      $                   CLAIPD, CLARHS, CLASET, CLATB4, CLATMS, CPOT02,
00207      $                   CPOT05, XLAENV
00208 *     ..
00209 *     .. Scalars in Common ..
00210       LOGICAL            LERR, OK
00211       CHARACTER*32       SRNAMT
00212       INTEGER            INFOT, NUNIT
00213 *     ..
00214 *     .. Common blocks ..
00215       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
00216       COMMON             / SRNAMC / SRNAMT
00217 *     ..
00218 *     .. Intrinsic Functions ..
00219       INTRINSIC          CMPLX, MAX, MIN
00220 *     ..
00221 *     .. Data statements ..
00222       DATA               ISEEDY / 1988, 1989, 1990, 1991 /
00223       DATA               UPLOS / 'U', 'L' / , FACTS / 'F', 'N' /
00224 *     ..
00225 *     .. Executable Statements ..
00226 *
00227 *     Initialize constants and the random number seed.
00228 *
00229       PATH( 1: 1 ) = 'C'
00230       PATH( 2: 3 ) = 'HE'
00231       NRUN = 0
00232       NFAIL = 0
00233       NERRS = 0
00234       DO 10 I = 1, 4
00235          ISEED( I ) = ISEEDY( I )
00236    10 CONTINUE
00237       LWORK = MAX( 2*NMAX, NMAX*NRHS )
00238 *
00239 *     Test the error exits
00240 *
00241       IF( TSTERR )
00242      $   CALL CERRVX( PATH, NOUT )
00243       INFOT = 0
00244 *
00245 *     Set the block size and minimum block size for testing.
00246 *
00247       NB = 1
00248       NBMIN = 2
00249       CALL XLAENV( 1, NB )
00250       CALL XLAENV( 2, NBMIN )
00251 *
00252 *     Do for each value of N in NVAL
00253 *
00254       DO 180 IN = 1, NN
00255          N = NVAL( IN )
00256          LDA = MAX( N, 1 )
00257          XTYPE = 'N'
00258          NIMAT = NTYPES
00259          IF( N.LE.0 )
00260      $      NIMAT = 1
00261 *
00262          DO 170 IMAT = 1, NIMAT
00263 *
00264 *           Do the tests only if DOTYPE( IMAT ) is true.
00265 *
00266             IF( .NOT.DOTYPE( IMAT ) )
00267      $         GO TO 170
00268 *
00269 *           Skip types 3, 4, 5, or 6 if the matrix size is too small.
00270 *
00271             ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
00272             IF( ZEROT .AND. N.LT.IMAT-2 )
00273      $         GO TO 170
00274 *
00275 *           Do first for UPLO = 'U', then for UPLO = 'L'
00276 *
00277             DO 160 IUPLO = 1, 2
00278                UPLO = UPLOS( IUPLO )
00279 *
00280 *              Set up parameters with CLATB4 and generate a test matrix
00281 *              with CLATMS.
00282 *
00283                CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
00284      $                      CNDNUM, DIST )
00285 *
00286                SRNAMT = 'CLATMS'
00287                CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
00288      $                      CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
00289      $                      INFO )
00290 *
00291 *              Check error code from CLATMS.
00292 *
00293                IF( INFO.NE.0 ) THEN
00294                   CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N, N, -1,
00295      $                         -1, -1, IMAT, NFAIL, NERRS, NOUT )
00296                   GO TO 160
00297                END IF
00298 *
00299 *              For types 3-6, zero one or more rows and columns of the
00300 *              matrix to test that INFO is returned correctly.
00301 *
00302                IF( ZEROT ) THEN
00303                   IF( IMAT.EQ.3 ) THEN
00304                      IZERO = 1
00305                   ELSE IF( IMAT.EQ.4 ) THEN
00306                      IZERO = N
00307                   ELSE
00308                      IZERO = N / 2 + 1
00309                   END IF
00310 *
00311                   IF( IMAT.LT.6 ) THEN
00312 *
00313 *                    Set row and column IZERO to zero.
00314 *
00315                      IF( IUPLO.EQ.1 ) THEN
00316                         IOFF = ( IZERO-1 )*LDA
00317                         DO 20 I = 1, IZERO - 1
00318                            A( IOFF+I ) = ZERO
00319    20                   CONTINUE
00320                         IOFF = IOFF + IZERO
00321                         DO 30 I = IZERO, N
00322                            A( IOFF ) = ZERO
00323                            IOFF = IOFF + LDA
00324    30                   CONTINUE
00325                      ELSE
00326                         IOFF = IZERO
00327                         DO 40 I = 1, IZERO - 1
00328                            A( IOFF ) = ZERO
00329                            IOFF = IOFF + LDA
00330    40                   CONTINUE
00331                         IOFF = IOFF - IZERO
00332                         DO 50 I = IZERO, N
00333                            A( IOFF+I ) = ZERO
00334    50                   CONTINUE
00335                      END IF
00336                   ELSE
00337                      IOFF = 0
00338                      IF( IUPLO.EQ.1 ) THEN
00339 *
00340 *                       Set the first IZERO rows and columns to zero.
00341 *
00342                         DO 70 J = 1, N
00343                            I2 = MIN( J, IZERO )
00344                            DO 60 I = 1, I2
00345                               A( IOFF+I ) = ZERO
00346    60                      CONTINUE
00347                            IOFF = IOFF + LDA
00348    70                   CONTINUE
00349                      ELSE
00350 *
00351 *                       Set the last IZERO rows and columns to zero.
00352 *
00353                         DO 90 J = 1, N
00354                            I1 = MAX( J, IZERO )
00355                            DO 80 I = I1, N
00356                               A( IOFF+I ) = ZERO
00357    80                      CONTINUE
00358                            IOFF = IOFF + LDA
00359    90                   CONTINUE
00360                      END IF
00361                   END IF
00362                ELSE
00363                   IZERO = 0
00364                END IF
00365 *
00366 *              Set the imaginary part of the diagonals.
00367 *
00368                CALL CLAIPD( N, A, LDA+1, 0 )
00369 *
00370                DO 150 IFACT = 1, NFACT
00371 *
00372 *                 Do first for FACT = 'F', then for other values.
00373 *
00374                   FACT = FACTS( IFACT )
00375 *
00376 *                 Compute the condition number for comparison with
00377 *                 the value returned by CHESVX.
00378 *
00379                   IF( ZEROT ) THEN
00380                      IF( IFACT.EQ.1 )
00381      $                  GO TO 150
00382                      RCONDC = ZERO
00383 *
00384                   ELSE IF( IFACT.EQ.1 ) THEN
00385 *
00386 *                    Compute the 1-norm of A.
00387 *
00388                      ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
00389 *
00390 *                    Factor the matrix A.
00391 *
00392                      CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
00393                      CALL CHETRF( UPLO, N, AFAC, LDA, IWORK, WORK,
00394      $                            LWORK, INFO )
00395 *
00396 *                    Compute inv(A) and take its norm.
00397 *
00398                      CALL CLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
00399                      LWORK = (N+NB+1)*(NB+3)
00400                      CALL CHETRI2( UPLO, N, AINV, LDA, IWORK, WORK,
00401      $                            LWORK, INFO )
00402                      AINVNM = CLANHE( '1', UPLO, N, AINV, LDA, RWORK )
00403 *
00404 *                    Compute the 1-norm condition number of A.
00405 *
00406                      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
00407                         RCONDC = ONE
00408                      ELSE
00409                         RCONDC = ( ONE / ANORM ) / AINVNM
00410                      END IF
00411                   END IF
00412 *
00413 *                 Form an exact solution and set the right hand side.
00414 *
00415                   SRNAMT = 'CLARHS'
00416                   CALL CLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
00417      $                         NRHS, A, LDA, XACT, LDA, B, LDA, ISEED,
00418      $                         INFO )
00419                   XTYPE = 'C'
00420 *
00421 *                 --- Test CHESV  ---
00422 *
00423                   IF( IFACT.EQ.2 ) THEN
00424                      CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
00425                      CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
00426 *
00427 *                    Factor the matrix and solve the system using CHESV.
00428 *
00429                      SRNAMT = 'CHESV '
00430                      CALL CHESV( UPLO, N, NRHS, AFAC, LDA, IWORK, X,
00431      $                           LDA, WORK, LWORK, INFO )
00432 *
00433 *                    Adjust the expected value of INFO to account for
00434 *                    pivoting.
00435 *
00436                      K = IZERO
00437                      IF( K.GT.0 ) THEN
00438   100                   CONTINUE
00439                         IF( IWORK( K ).LT.0 ) THEN
00440                            IF( IWORK( K ).NE.-K ) THEN
00441                               K = -IWORK( K )
00442                               GO TO 100
00443                            END IF
00444                         ELSE IF( IWORK( K ).NE.K ) THEN
00445                            K = IWORK( K )
00446                            GO TO 100
00447                         END IF
00448                      END IF
00449 *
00450 *                    Check error code from CHESV .
00451 *
00452                      IF( INFO.NE.K ) THEN
00453                         CALL ALAERH( PATH, 'CHESV ', INFO, K, UPLO, N,
00454      $                               N, -1, -1, NRHS, IMAT, NFAIL,
00455      $                               NERRS, NOUT )
00456                         GO TO 120
00457                      ELSE IF( INFO.NE.0 ) THEN
00458                         GO TO 120
00459                      END IF
00460 *
00461 *                    Reconstruct matrix from factors and compute
00462 *                    residual.
00463 *
00464                      CALL CHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
00465      $                            AINV, LDA, RWORK, RESULT( 1 ) )
00466 *
00467 *                    Compute residual of the computed solution.
00468 *
00469                      CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00470                      CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
00471      $                            LDA, RWORK, RESULT( 2 ) )
00472 *
00473 *                    Check solution from generated exact solution.
00474 *
00475                      CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00476      $                            RESULT( 3 ) )
00477                      NT = 3
00478 *
00479 *                    Print information about the tests that did not pass
00480 *                    the threshold.
00481 *
00482                      DO 110 K = 1, NT
00483                         IF( RESULT( K ).GE.THRESH ) THEN
00484                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00485      $                        CALL ALADHD( NOUT, PATH )
00486                            WRITE( NOUT, FMT = 9999 )'CHESV ', UPLO, N,
00487      $                        IMAT, K, RESULT( K )
00488                            NFAIL = NFAIL + 1
00489                         END IF
00490   110                CONTINUE
00491                      NRUN = NRUN + NT
00492   120                CONTINUE
00493                   END IF
00494 *
00495 *                 --- Test CHESVX ---
00496 *
00497                   IF( IFACT.EQ.2 )
00498      $               CALL CLASET( UPLO, N, N, CMPLX( ZERO ),
00499      $                            CMPLX( ZERO ), AFAC, LDA )
00500                   CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ),
00501      $                         CMPLX( ZERO ), X, LDA )
00502 *
00503 *                 Solve the system and compute the condition number and
00504 *                 error bounds using CHESVX.
00505 *
00506                   SRNAMT = 'CHESVX'
00507                   CALL CHESVX( FACT, UPLO, N, NRHS, A, LDA, AFAC, LDA,
00508      $                         IWORK, B, LDA, X, LDA, RCOND, RWORK,
00509      $                         RWORK( NRHS+1 ), WORK, LWORK,
00510      $                         RWORK( 2*NRHS+1 ), INFO )
00511 *
00512 *                 Adjust the expected value of INFO to account for
00513 *                 pivoting.
00514 *
00515                   K = IZERO
00516                   IF( K.GT.0 ) THEN
00517   130                CONTINUE
00518                      IF( IWORK( K ).LT.0 ) THEN
00519                         IF( IWORK( K ).NE.-K ) THEN
00520                            K = -IWORK( K )
00521                            GO TO 130
00522                         END IF
00523                      ELSE IF( IWORK( K ).NE.K ) THEN
00524                         K = IWORK( K )
00525                         GO TO 130
00526                      END IF
00527                   END IF
00528 *
00529 *                 Check the error code from CHESVX.
00530 *
00531                   IF( INFO.NE.K ) THEN
00532                      CALL ALAERH( PATH, 'CHESVX', INFO, K, FACT // UPLO,
00533      $                            N, N, -1, -1, NRHS, IMAT, NFAIL,
00534      $                            NERRS, NOUT )
00535                      GO TO 150
00536                   END IF
00537 *
00538                   IF( INFO.EQ.0 ) THEN
00539                      IF( IFACT.GE.2 ) THEN
00540 *
00541 *                       Reconstruct matrix from factors and compute
00542 *                       residual.
00543 *
00544                         CALL CHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
00545      $                               AINV, LDA, RWORK( 2*NRHS+1 ),
00546      $                               RESULT( 1 ) )
00547                         K1 = 1
00548                      ELSE
00549                         K1 = 2
00550                      END IF
00551 *
00552 *                    Compute residual of the computed solution.
00553 *
00554                      CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00555                      CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
00556      $                            LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) )
00557 *
00558 *                    Check solution from generated exact solution.
00559 *
00560                      CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00561      $                            RESULT( 3 ) )
00562 *
00563 *                    Check the error bounds from iterative refinement.
00564 *
00565                      CALL CPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA,
00566      $                            XACT, LDA, RWORK, RWORK( NRHS+1 ),
00567      $                            RESULT( 4 ) )
00568                   ELSE
00569                      K1 = 6
00570                   END IF
00571 *
00572 *                 Compare RCOND from CHESVX with the computed value
00573 *                 in RCONDC.
00574 *
00575                   RESULT( 6 ) = SGET06( RCOND, RCONDC )
00576 *
00577 *                 Print information about the tests that did not pass
00578 *                 the threshold.
00579 *
00580                   DO 140 K = K1, 6
00581                      IF( RESULT( K ).GE.THRESH ) THEN
00582                         IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00583      $                     CALL ALADHD( NOUT, PATH )
00584                         WRITE( NOUT, FMT = 9998 )'CHESVX', FACT, UPLO,
00585      $                     N, IMAT, K, RESULT( K )
00586                         NFAIL = NFAIL + 1
00587                      END IF
00588   140             CONTINUE
00589                   NRUN = NRUN + 7 - K1
00590 *
00591   150          CONTINUE
00592 *
00593   160       CONTINUE
00594   170    CONTINUE
00595   180 CONTINUE
00596 *
00597 *     Print a summary of the results.
00598 *
00599       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
00600 *
00601  9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2,
00602      $      ', test ', I2, ', ratio =', G12.5 )
00603  9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5,
00604      $      ', type ', I2, ', test ', I2, ', ratio =', G12.5 )
00605       RETURN
00606 *
00607 *     End of CDRVHE
00608 *
00609       END
 All Files Functions