LAPACK  3.4.1
LAPACK: Linear Algebra PACKage
dlasq2.f
Go to the documentation of this file.
00001 *> \brief \b DLASQ2
00002 *
00003 *  =========== DOCUMENTATION ===========
00004 *
00005 * Online html documentation available at 
00006 *            http://www.netlib.org/lapack/explore-html/ 
00007 *
00008 *> \htmlonly
00009 *> Download DLASQ2 + dependencies 
00010 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasq2.f"> 
00011 *> [TGZ]</a> 
00012 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasq2.f"> 
00013 *> [ZIP]</a> 
00014 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasq2.f"> 
00015 *> [TXT]</a>
00016 *> \endhtmlonly 
00017 *
00018 *  Definition:
00019 *  ===========
00020 *
00021 *       SUBROUTINE DLASQ2( N, Z, INFO )
00022 * 
00023 *       .. Scalar Arguments ..
00024 *       INTEGER            INFO, N
00025 *       ..
00026 *       .. Array Arguments ..
00027 *       DOUBLE PRECISION   Z( * )
00028 *       ..
00029 *  
00030 *
00031 *> \par Purpose:
00032 *  =============
00033 *>
00034 *> \verbatim
00035 *>
00036 *> DLASQ2 computes all the eigenvalues of the symmetric positive 
00037 *> definite tridiagonal matrix associated with the qd array Z to high
00038 *> relative accuracy are computed to high relative accuracy, in the
00039 *> absence of denormalization, underflow and overflow.
00040 *>
00041 *> To see the relation of Z to the tridiagonal matrix, let L be a
00042 *> unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
00043 *> let U be an upper bidiagonal matrix with 1's above and diagonal
00044 *> Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
00045 *> symmetric tridiagonal to which it is similar.
00046 *>
00047 *> Note : DLASQ2 defines a logical variable, IEEE, which is true
00048 *> on machines which follow ieee-754 floating-point standard in their
00049 *> handling of infinities and NaNs, and false otherwise. This variable
00050 *> is passed to DLASQ3.
00051 *> \endverbatim
00052 *
00053 *  Arguments:
00054 *  ==========
00055 *
00056 *> \param[in] N
00057 *> \verbatim
00058 *>          N is INTEGER
00059 *>        The number of rows and columns in the matrix. N >= 0.
00060 *> \endverbatim
00061 *>
00062 *> \param[in,out] Z
00063 *> \verbatim
00064 *>          Z is DOUBLE PRECISION array, dimension ( 4*N )
00065 *>        On entry Z holds the qd array. On exit, entries 1 to N hold
00066 *>        the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
00067 *>        trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
00068 *>        N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
00069 *>        holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
00070 *>        shifts that failed.
00071 *> \endverbatim
00072 *>
00073 *> \param[out] INFO
00074 *> \verbatim
00075 *>          INFO is INTEGER
00076 *>        = 0: successful exit
00077 *>        < 0: if the i-th argument is a scalar and had an illegal
00078 *>             value, then INFO = -i, if the i-th argument is an
00079 *>             array and the j-entry had an illegal value, then
00080 *>             INFO = -(i*100+j)
00081 *>        > 0: the algorithm failed
00082 *>              = 1, a split was marked by a positive value in E
00083 *>              = 2, current block of Z not diagonalized after 100*N
00084 *>                   iterations (in inner while loop).  On exit Z holds
00085 *>                   a qd array with the same eigenvalues as the given Z.
00086 *>              = 3, termination criterion of outer while loop not met 
00087 *>                   (program created more than N unreduced blocks)
00088 *> \endverbatim
00089 *
00090 *  Authors:
00091 *  ========
00092 *
00093 *> \author Univ. of Tennessee 
00094 *> \author Univ. of California Berkeley 
00095 *> \author Univ. of Colorado Denver 
00096 *> \author NAG Ltd. 
00097 *
00098 *> \date November 2011
00099 *
00100 *> \ingroup auxOTHERcomputational
00101 *
00102 *> \par Further Details:
00103 *  =====================
00104 *>
00105 *> \verbatim
00106 *>
00107 *>  Local Variables: I0:N0 defines a current unreduced segment of Z.
00108 *>  The shifts are accumulated in SIGMA. Iteration count is in ITER.
00109 *>  Ping-pong is controlled by PP (alternates between 0 and 1).
00110 *> \endverbatim
00111 *>
00112 *  =====================================================================
00113       SUBROUTINE DLASQ2( N, Z, INFO )
00114 *
00115 *  -- LAPACK computational routine (version 3.4.0) --
00116 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00117 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00118 *     November 2011
00119 *
00120 *     .. Scalar Arguments ..
00121       INTEGER            INFO, N
00122 *     ..
00123 *     .. Array Arguments ..
00124       DOUBLE PRECISION   Z( * )
00125 *     ..
00126 *
00127 *  =====================================================================
00128 *
00129 *     .. Parameters ..
00130       DOUBLE PRECISION   CBIAS
00131       PARAMETER          ( CBIAS = 1.50D0 )
00132       DOUBLE PRECISION   ZERO, HALF, ONE, TWO, FOUR, HUNDRD
00133       PARAMETER          ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0,
00134      $                     TWO = 2.0D0, FOUR = 4.0D0, HUNDRD = 100.0D0 )
00135 *     ..
00136 *     .. Local Scalars ..
00137       LOGICAL            IEEE
00138       INTEGER            I0, I1, I4, IINFO, IPN4, ITER, IWHILA, IWHILB,
00139      $                   K, KMIN, N0, N1, NBIG, NDIV, NFAIL, PP, SPLT, 
00140      $                   TTYPE
00141       DOUBLE PRECISION   D, DEE, DEEMIN, DESIG, DMIN, DMIN1, DMIN2, DN,
00142      $                   DN1, DN2, E, EMAX, EMIN, EPS, G, OLDEMN, QMAX,
00143      $                   QMIN, S, SAFMIN, SIGMA, T, TAU, TEMP, TOL,
00144      $                   TOL2, TRACE, ZMAX, TEMPE, TEMPQ
00145 *     ..
00146 *     .. External Subroutines ..
00147       EXTERNAL           DLASQ3, DLASRT, XERBLA
00148 *     ..
00149 *     .. External Functions ..
00150       INTEGER            ILAENV
00151       DOUBLE PRECISION   DLAMCH
00152       EXTERNAL           DLAMCH, ILAENV
00153 *     ..
00154 *     .. Intrinsic Functions ..
00155       INTRINSIC          ABS, DBLE, MAX, MIN, SQRT
00156 *     ..
00157 *     .. Executable Statements ..
00158 *      
00159 *     Test the input arguments.
00160 *     (in case DLASQ2 is not called by DLASQ1)
00161 *
00162       INFO = 0
00163       EPS = DLAMCH( 'Precision' )
00164       SAFMIN = DLAMCH( 'Safe minimum' )
00165       TOL = EPS*HUNDRD
00166       TOL2 = TOL**2
00167 *
00168       IF( N.LT.0 ) THEN
00169          INFO = -1
00170          CALL XERBLA( 'DLASQ2', 1 )
00171          RETURN
00172       ELSE IF( N.EQ.0 ) THEN
00173          RETURN
00174       ELSE IF( N.EQ.1 ) THEN
00175 *
00176 *        1-by-1 case.
00177 *
00178          IF( Z( 1 ).LT.ZERO ) THEN
00179             INFO = -201
00180             CALL XERBLA( 'DLASQ2', 2 )
00181          END IF
00182          RETURN
00183       ELSE IF( N.EQ.2 ) THEN
00184 *
00185 *        2-by-2 case.
00186 *
00187          IF( Z( 2 ).LT.ZERO .OR. Z( 3 ).LT.ZERO ) THEN
00188             INFO = -2
00189             CALL XERBLA( 'DLASQ2', 2 )
00190             RETURN
00191          ELSE IF( Z( 3 ).GT.Z( 1 ) ) THEN
00192             D = Z( 3 )
00193             Z( 3 ) = Z( 1 )
00194             Z( 1 ) = D
00195          END IF
00196          Z( 5 ) = Z( 1 ) + Z( 2 ) + Z( 3 )
00197          IF( Z( 2 ).GT.Z( 3 )*TOL2 ) THEN
00198             T = HALF*( ( Z( 1 )-Z( 3 ) )+Z( 2 ) ) 
00199             S = Z( 3 )*( Z( 2 ) / T )
00200             IF( S.LE.T ) THEN
00201                S = Z( 3 )*( Z( 2 ) / ( T*( ONE+SQRT( ONE+S / T ) ) ) )
00202             ELSE
00203                S = Z( 3 )*( Z( 2 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
00204             END IF
00205             T = Z( 1 ) + ( S+Z( 2 ) )
00206             Z( 3 ) = Z( 3 )*( Z( 1 ) / T )
00207             Z( 1 ) = T
00208          END IF
00209          Z( 2 ) = Z( 3 )
00210          Z( 6 ) = Z( 2 ) + Z( 1 )
00211          RETURN
00212       END IF
00213 *
00214 *     Check for negative data and compute sums of q's and e's.
00215 *
00216       Z( 2*N ) = ZERO
00217       EMIN = Z( 2 )
00218       QMAX = ZERO
00219       ZMAX = ZERO
00220       D = ZERO
00221       E = ZERO
00222 *
00223       DO 10 K = 1, 2*( N-1 ), 2
00224          IF( Z( K ).LT.ZERO ) THEN
00225             INFO = -( 200+K )
00226             CALL XERBLA( 'DLASQ2', 2 )
00227             RETURN
00228          ELSE IF( Z( K+1 ).LT.ZERO ) THEN
00229             INFO = -( 200+K+1 )
00230             CALL XERBLA( 'DLASQ2', 2 )
00231             RETURN
00232          END IF
00233          D = D + Z( K )
00234          E = E + Z( K+1 )
00235          QMAX = MAX( QMAX, Z( K ) )
00236          EMIN = MIN( EMIN, Z( K+1 ) )
00237          ZMAX = MAX( QMAX, ZMAX, Z( K+1 ) )
00238    10 CONTINUE
00239       IF( Z( 2*N-1 ).LT.ZERO ) THEN
00240          INFO = -( 200+2*N-1 )
00241          CALL XERBLA( 'DLASQ2', 2 )
00242          RETURN
00243       END IF
00244       D = D + Z( 2*N-1 )
00245       QMAX = MAX( QMAX, Z( 2*N-1 ) )
00246       ZMAX = MAX( QMAX, ZMAX )
00247 *
00248 *     Check for diagonality.
00249 *
00250       IF( E.EQ.ZERO ) THEN
00251          DO 20 K = 2, N
00252             Z( K ) = Z( 2*K-1 )
00253    20    CONTINUE
00254          CALL DLASRT( 'D', N, Z, IINFO )
00255          Z( 2*N-1 ) = D
00256          RETURN
00257       END IF
00258 *
00259       TRACE = D + E
00260 *
00261 *     Check for zero data.
00262 *
00263       IF( TRACE.EQ.ZERO ) THEN
00264          Z( 2*N-1 ) = ZERO
00265          RETURN
00266       END IF
00267 *         
00268 *     Check whether the machine is IEEE conformable.
00269 *         
00270       IEEE = ILAENV( 10, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND.
00271      $       ILAENV( 11, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1      
00272 *         
00273 *     Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...).
00274 *
00275       DO 30 K = 2*N, 2, -2
00276          Z( 2*K ) = ZERO 
00277          Z( 2*K-1 ) = Z( K ) 
00278          Z( 2*K-2 ) = ZERO 
00279          Z( 2*K-3 ) = Z( K-1 ) 
00280    30 CONTINUE
00281 *
00282       I0 = 1
00283       N0 = N
00284 *
00285 *     Reverse the qd-array, if warranted.
00286 *
00287       IF( CBIAS*Z( 4*I0-3 ).LT.Z( 4*N0-3 ) ) THEN
00288          IPN4 = 4*( I0+N0 )
00289          DO 40 I4 = 4*I0, 2*( I0+N0-1 ), 4
00290             TEMP = Z( I4-3 )
00291             Z( I4-3 ) = Z( IPN4-I4-3 )
00292             Z( IPN4-I4-3 ) = TEMP
00293             TEMP = Z( I4-1 )
00294             Z( I4-1 ) = Z( IPN4-I4-5 )
00295             Z( IPN4-I4-5 ) = TEMP
00296    40    CONTINUE
00297       END IF
00298 *
00299 *     Initial split checking via dqd and Li's test.
00300 *
00301       PP = 0
00302 *
00303       DO 80 K = 1, 2
00304 *
00305          D = Z( 4*N0+PP-3 )
00306          DO 50 I4 = 4*( N0-1 ) + PP, 4*I0 + PP, -4
00307             IF( Z( I4-1 ).LE.TOL2*D ) THEN
00308                Z( I4-1 ) = -ZERO
00309                D = Z( I4-3 )
00310             ELSE
00311                D = Z( I4-3 )*( D / ( D+Z( I4-1 ) ) )
00312             END IF
00313    50    CONTINUE
00314 *
00315 *        dqd maps Z to ZZ plus Li's test.
00316 *
00317          EMIN = Z( 4*I0+PP+1 )
00318          D = Z( 4*I0+PP-3 )
00319          DO 60 I4 = 4*I0 + PP, 4*( N0-1 ) + PP, 4
00320             Z( I4-2*PP-2 ) = D + Z( I4-1 )
00321             IF( Z( I4-1 ).LE.TOL2*D ) THEN
00322                Z( I4-1 ) = -ZERO
00323                Z( I4-2*PP-2 ) = D
00324                Z( I4-2*PP ) = ZERO
00325                D = Z( I4+1 )
00326             ELSE IF( SAFMIN*Z( I4+1 ).LT.Z( I4-2*PP-2 ) .AND.
00327      $               SAFMIN*Z( I4-2*PP-2 ).LT.Z( I4+1 ) ) THEN
00328                TEMP = Z( I4+1 ) / Z( I4-2*PP-2 )
00329                Z( I4-2*PP ) = Z( I4-1 )*TEMP
00330                D = D*TEMP
00331             ELSE
00332                Z( I4-2*PP ) = Z( I4+1 )*( Z( I4-1 ) / Z( I4-2*PP-2 ) )
00333                D = Z( I4+1 )*( D / Z( I4-2*PP-2 ) )
00334             END IF
00335             EMIN = MIN( EMIN, Z( I4-2*PP ) )
00336    60    CONTINUE 
00337          Z( 4*N0-PP-2 ) = D
00338 *
00339 *        Now find qmax.
00340 *
00341          QMAX = Z( 4*I0-PP-2 )
00342          DO 70 I4 = 4*I0 - PP + 2, 4*N0 - PP - 2, 4
00343             QMAX = MAX( QMAX, Z( I4 ) )
00344    70    CONTINUE
00345 *
00346 *        Prepare for the next iteration on K.
00347 *
00348          PP = 1 - PP
00349    80 CONTINUE
00350 *
00351 *     Initialise variables to pass to DLASQ3.
00352 *
00353       TTYPE = 0
00354       DMIN1 = ZERO
00355       DMIN2 = ZERO
00356       DN    = ZERO
00357       DN1   = ZERO
00358       DN2   = ZERO
00359       G     = ZERO
00360       TAU   = ZERO
00361 *
00362       ITER = 2
00363       NFAIL = 0
00364       NDIV = 2*( N0-I0 )
00365 *
00366       DO 160 IWHILA = 1, N + 1
00367          IF( N0.LT.1 ) 
00368      $      GO TO 170
00369 *
00370 *        While array unfinished do 
00371 *
00372 *        E(N0) holds the value of SIGMA when submatrix in I0:N0
00373 *        splits from the rest of the array, but is negated.
00374 *      
00375          DESIG = ZERO
00376          IF( N0.EQ.N ) THEN
00377             SIGMA = ZERO
00378          ELSE
00379             SIGMA = -Z( 4*N0-1 )
00380          END IF
00381          IF( SIGMA.LT.ZERO ) THEN
00382             INFO = 1
00383             RETURN
00384          END IF
00385 *
00386 *        Find last unreduced submatrix's top index I0, find QMAX and
00387 *        EMIN. Find Gershgorin-type bound if Q's much greater than E's.
00388 *
00389          EMAX = ZERO 
00390          IF( N0.GT.I0 ) THEN
00391             EMIN = ABS( Z( 4*N0-5 ) )
00392          ELSE
00393             EMIN = ZERO
00394          END IF
00395          QMIN = Z( 4*N0-3 )
00396          QMAX = QMIN
00397          DO 90 I4 = 4*N0, 8, -4
00398             IF( Z( I4-5 ).LE.ZERO )
00399      $         GO TO 100
00400             IF( QMIN.GE.FOUR*EMAX ) THEN
00401                QMIN = MIN( QMIN, Z( I4-3 ) )
00402                EMAX = MAX( EMAX, Z( I4-5 ) )
00403             END IF
00404             QMAX = MAX( QMAX, Z( I4-7 )+Z( I4-5 ) )
00405             EMIN = MIN( EMIN, Z( I4-5 ) )
00406    90    CONTINUE
00407          I4 = 4 
00408 *
00409   100    CONTINUE
00410          I0 = I4 / 4
00411          PP = 0
00412 *
00413          IF( N0-I0.GT.1 ) THEN
00414             DEE = Z( 4*I0-3 )
00415             DEEMIN = DEE
00416             KMIN = I0
00417             DO 110 I4 = 4*I0+1, 4*N0-3, 4
00418                DEE = Z( I4 )*( DEE /( DEE+Z( I4-2 ) ) )
00419                IF( DEE.LE.DEEMIN ) THEN
00420                   DEEMIN = DEE
00421                   KMIN = ( I4+3 )/4
00422                END IF
00423   110       CONTINUE
00424             IF( (KMIN-I0)*2.LT.N0-KMIN .AND. 
00425      $         DEEMIN.LE.HALF*Z(4*N0-3) ) THEN
00426                IPN4 = 4*( I0+N0 )
00427                PP = 2
00428                DO 120 I4 = 4*I0, 2*( I0+N0-1 ), 4
00429                   TEMP = Z( I4-3 )
00430                   Z( I4-3 ) = Z( IPN4-I4-3 )
00431                   Z( IPN4-I4-3 ) = TEMP
00432                   TEMP = Z( I4-2 )
00433                   Z( I4-2 ) = Z( IPN4-I4-2 )
00434                   Z( IPN4-I4-2 ) = TEMP
00435                   TEMP = Z( I4-1 )
00436                   Z( I4-1 ) = Z( IPN4-I4-5 )
00437                   Z( IPN4-I4-5 ) = TEMP
00438                   TEMP = Z( I4 )
00439                   Z( I4 ) = Z( IPN4-I4-4 )
00440                   Z( IPN4-I4-4 ) = TEMP
00441   120          CONTINUE
00442             END IF
00443          END IF
00444 *
00445 *        Put -(initial shift) into DMIN.
00446 *
00447          DMIN = -MAX( ZERO, QMIN-TWO*SQRT( QMIN )*SQRT( EMAX ) )
00448 *
00449 *        Now I0:N0 is unreduced. 
00450 *        PP = 0 for ping, PP = 1 for pong.
00451 *        PP = 2 indicates that flipping was applied to the Z array and
00452 *               and that the tests for deflation upon entry in DLASQ3 
00453 *               should not be performed.
00454 *
00455          NBIG = 100*( N0-I0+1 )
00456          DO 140 IWHILB = 1, NBIG
00457             IF( I0.GT.N0 ) 
00458      $         GO TO 150
00459 *
00460 *           While submatrix unfinished take a good dqds step.
00461 *
00462             CALL DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
00463      $                   ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
00464      $                   DN2, G, TAU )
00465 *
00466             PP = 1 - PP
00467 *
00468 *           When EMIN is very small check for splits.
00469 *
00470             IF( PP.EQ.0 .AND. N0-I0.GE.3 ) THEN
00471                IF( Z( 4*N0 ).LE.TOL2*QMAX .OR.
00472      $             Z( 4*N0-1 ).LE.TOL2*SIGMA ) THEN
00473                   SPLT = I0 - 1
00474                   QMAX = Z( 4*I0-3 )
00475                   EMIN = Z( 4*I0-1 )
00476                   OLDEMN = Z( 4*I0 )
00477                   DO 130 I4 = 4*I0, 4*( N0-3 ), 4
00478                      IF( Z( I4 ).LE.TOL2*Z( I4-3 ) .OR.
00479      $                   Z( I4-1 ).LE.TOL2*SIGMA ) THEN
00480                         Z( I4-1 ) = -SIGMA
00481                         SPLT = I4 / 4
00482                         QMAX = ZERO
00483                         EMIN = Z( I4+3 )
00484                         OLDEMN = Z( I4+4 )
00485                      ELSE
00486                         QMAX = MAX( QMAX, Z( I4+1 ) )
00487                         EMIN = MIN( EMIN, Z( I4-1 ) )
00488                         OLDEMN = MIN( OLDEMN, Z( I4 ) )
00489                      END IF
00490   130             CONTINUE
00491                   Z( 4*N0-1 ) = EMIN
00492                   Z( 4*N0 ) = OLDEMN
00493                   I0 = SPLT + 1
00494                END IF
00495             END IF
00496 *
00497   140    CONTINUE
00498 *
00499          INFO = 2
00500 *       
00501 *        Maximum number of iterations exceeded, restore the shift 
00502 *        SIGMA and place the new d's and e's in a qd array.
00503 *        This might need to be done for several blocks
00504 *
00505          I1 = I0
00506          N1 = N0
00507  145     CONTINUE
00508          TEMPQ = Z( 4*I0-3 )
00509          Z( 4*I0-3 ) = Z( 4*I0-3 ) + SIGMA
00510          DO K = I0+1, N0
00511             TEMPE = Z( 4*K-5 )
00512             Z( 4*K-5 ) = Z( 4*K-5 ) * (TEMPQ / Z( 4*K-7 ))
00513             TEMPQ = Z( 4*K-3 )
00514             Z( 4*K-3 ) = Z( 4*K-3 ) + SIGMA + TEMPE - Z( 4*K-5 )
00515          END DO
00516 *
00517 *        Prepare to do this on the previous block if there is one
00518 *
00519          IF( I1.GT.1 ) THEN
00520             N1 = I1-1
00521             DO WHILE( ( I1.GE.2 ) .AND. ( Z(4*I1-5).GE.ZERO ) )
00522                I1 = I1 - 1
00523             END DO
00524             SIGMA = -Z(4*N1-1)
00525             GO TO 145
00526          END IF
00527 
00528          DO K = 1, N
00529             Z( 2*K-1 ) = Z( 4*K-3 )
00530 *
00531 *        Only the block 1..N0 is unfinished.  The rest of the e's
00532 *        must be essentially zero, although sometimes other data
00533 *        has been stored in them.
00534 *
00535             IF( K.LT.N0 ) THEN
00536                Z( 2*K ) = Z( 4*K-1 )
00537             ELSE
00538                Z( 2*K ) = 0
00539             END IF
00540          END DO
00541          RETURN
00542 *
00543 *        end IWHILB
00544 *
00545   150    CONTINUE
00546 *
00547   160 CONTINUE
00548 *
00549       INFO = 3
00550       RETURN
00551 *
00552 *     end IWHILA   
00553 *
00554   170 CONTINUE
00555 *      
00556 *     Move q's to the front.
00557 *      
00558       DO 180 K = 2, N
00559          Z( K ) = Z( 4*K-3 )
00560   180 CONTINUE
00561 *      
00562 *     Sort and compute sum of eigenvalues.
00563 *
00564       CALL DLASRT( 'D', N, Z, IINFO )
00565 *
00566       E = ZERO
00567       DO 190 K = N, 1, -1
00568          E = E + Z( K )
00569   190 CONTINUE
00570 *
00571 *     Store trace, sum(eigenvalues) and information on performance.
00572 *
00573       Z( 2*N+1 ) = TRACE 
00574       Z( 2*N+2 ) = E
00575       Z( 2*N+3 ) = DBLE( ITER )
00576       Z( 2*N+4 ) = DBLE( NDIV ) / DBLE( N**2 )
00577       Z( 2*N+5 ) = HUNDRD*NFAIL / DBLE( ITER )
00578       RETURN
00579 *
00580 *     End of DLASQ2
00581 *
00582       END
 All Files Functions