LAPACK  3.4.1
LAPACK: Linear Algebra PACKage
dla_gerfsx_extended.f
Go to the documentation of this file.
00001 *> \brief \b DLA_GERFSX_EXTENDED
00002 *
00003 *  =========== DOCUMENTATION ===========
00004 *
00005 * Online html documentation available at 
00006 *            http://www.netlib.org/lapack/explore-html/ 
00007 *
00008 *> \htmlonly
00009 *> Download DLA_GERFSX_EXTENDED + dependencies 
00010 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gerfsx_extended.f"> 
00011 *> [TGZ]</a> 
00012 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gerfsx_extended.f"> 
00013 *> [ZIP]</a> 
00014 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gerfsx_extended.f"> 
00015 *> [TXT]</a>
00016 *> \endhtmlonly 
00017 *
00018 *  Definition:
00019 *  ===========
00020 *
00021 *       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
00022 *                                       LDA, AF, LDAF, IPIV, COLEQU, C, B,
00023 *                                       LDB, Y, LDY, BERR_OUT, N_NORMS,
00024 *                                       ERRS_N, ERRS_C, RES, AYB, DY,
00025 *                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
00026 *                                       DZ_UB, IGNORE_CWISE, INFO )
00027 * 
00028 *       .. Scalar Arguments ..
00029 *       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
00030 *      $                   TRANS_TYPE, N_NORMS, ITHRESH
00031 *       LOGICAL            COLEQU, IGNORE_CWISE
00032 *       DOUBLE PRECISION   RTHRESH, DZ_UB
00033 *       ..
00034 *       .. Array Arguments ..
00035 *       INTEGER            IPIV( * )
00036 *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
00037 *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
00038 *       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
00039 *      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
00040 *       ..
00041 *  
00042 *
00043 *> \par Purpose:
00044 *  =============
00045 *>
00046 *> \verbatim
00047 *>
00048 *> 
00049 *> DLA_GERFSX_EXTENDED improves the computed solution to a system of
00050 *> linear equations by performing extra-precise iterative refinement
00051 *> and provides error bounds and backward error estimates for the solution.
00052 *> This subroutine is called by DGERFSX to perform iterative refinement.
00053 *> In addition to normwise error bound, the code provides maximum
00054 *> componentwise error bound if possible. See comments for ERRS_N
00055 *> and ERRS_C for details of the error bounds. Note that this
00056 *> subroutine is only resonsible for setting the second fields of
00057 *> ERRS_N and ERRS_C.
00058 *> \endverbatim
00059 *
00060 *  Arguments:
00061 *  ==========
00062 *
00063 *> \param[in] PREC_TYPE
00064 *> \verbatim
00065 *>          PREC_TYPE is INTEGER
00066 *>     Specifies the intermediate precision to be used in refinement.
00067 *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
00068 *>     P    = 'S':  Single
00069 *>          = 'D':  Double
00070 *>          = 'I':  Indigenous
00071 *>          = 'X', 'E':  Extra
00072 *> \endverbatim
00073 *>
00074 *> \param[in] TRANS_TYPE
00075 *> \verbatim
00076 *>          TRANS_TYPE is INTEGER
00077 *>     Specifies the transposition operation on A.
00078 *>     The value is defined by ILATRANS(T) where T is a CHARACTER and
00079 *>     T    = 'N':  No transpose
00080 *>          = 'T':  Transpose
00081 *>          = 'C':  Conjugate transpose
00082 *> \endverbatim
00083 *>
00084 *> \param[in] N
00085 *> \verbatim
00086 *>          N is INTEGER
00087 *>     The number of linear equations, i.e., the order of the
00088 *>     matrix A.  N >= 0.
00089 *> \endverbatim
00090 *>
00091 *> \param[in] NRHS
00092 *> \verbatim
00093 *>          NRHS is INTEGER
00094 *>     The number of right-hand-sides, i.e., the number of columns of the
00095 *>     matrix B.
00096 *> \endverbatim
00097 *>
00098 *> \param[in] A
00099 *> \verbatim
00100 *>          A is DOUBLE PRECISION array, dimension (LDA,N)
00101 *>     On entry, the N-by-N matrix A.
00102 *> \endverbatim
00103 *>
00104 *> \param[in] LDA
00105 *> \verbatim
00106 *>          LDA is INTEGER
00107 *>     The leading dimension of the array A.  LDA >= max(1,N).
00108 *> \endverbatim
00109 *>
00110 *> \param[in] AF
00111 *> \verbatim
00112 *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
00113 *>     The factors L and U from the factorization
00114 *>     A = P*L*U as computed by DGETRF.
00115 *> \endverbatim
00116 *>
00117 *> \param[in] LDAF
00118 *> \verbatim
00119 *>          LDAF is INTEGER
00120 *>     The leading dimension of the array AF.  LDAF >= max(1,N).
00121 *> \endverbatim
00122 *>
00123 *> \param[in] IPIV
00124 *> \verbatim
00125 *>          IPIV is INTEGER array, dimension (N)
00126 *>     The pivot indices from the factorization A = P*L*U
00127 *>     as computed by DGETRF; row i of the matrix was interchanged
00128 *>     with row IPIV(i).
00129 *> \endverbatim
00130 *>
00131 *> \param[in] COLEQU
00132 *> \verbatim
00133 *>          COLEQU is LOGICAL
00134 *>     If .TRUE. then column equilibration was done to A before calling
00135 *>     this routine. This is needed to compute the solution and error
00136 *>     bounds correctly.
00137 *> \endverbatim
00138 *>
00139 *> \param[in] C
00140 *> \verbatim
00141 *>          C is DOUBLE PRECISION array, dimension (N)
00142 *>     The column scale factors for A. If COLEQU = .FALSE., C
00143 *>     is not accessed. If C is input, each element of C should be a power
00144 *>     of the radix to ensure a reliable solution and error estimates.
00145 *>     Scaling by powers of the radix does not cause rounding errors unless
00146 *>     the result underflows or overflows. Rounding errors during scaling
00147 *>     lead to refining with a matrix that is not equivalent to the
00148 *>     input matrix, producing error estimates that may not be
00149 *>     reliable.
00150 *> \endverbatim
00151 *>
00152 *> \param[in] B
00153 *> \verbatim
00154 *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
00155 *>     The right-hand-side matrix B.
00156 *> \endverbatim
00157 *>
00158 *> \param[in] LDB
00159 *> \verbatim
00160 *>          LDB is INTEGER
00161 *>     The leading dimension of the array B.  LDB >= max(1,N).
00162 *> \endverbatim
00163 *>
00164 *> \param[in,out] Y
00165 *> \verbatim
00166 *>          Y is DOUBLE PRECISION array, dimension
00167 *>                    (LDY,NRHS)
00168 *>     On entry, the solution matrix X, as computed by DGETRS.
00169 *>     On exit, the improved solution matrix Y.
00170 *> \endverbatim
00171 *>
00172 *> \param[in] LDY
00173 *> \verbatim
00174 *>          LDY is INTEGER
00175 *>     The leading dimension of the array Y.  LDY >= max(1,N).
00176 *> \endverbatim
00177 *>
00178 *> \param[out] BERR_OUT
00179 *> \verbatim
00180 *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
00181 *>     On exit, BERR_OUT(j) contains the componentwise relative backward
00182 *>     error for right-hand-side j from the formula
00183 *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
00184 *>     where abs(Z) is the componentwise absolute value of the matrix
00185 *>     or vector Z. This is computed by DLA_LIN_BERR.
00186 *> \endverbatim
00187 *>
00188 *> \param[in] N_NORMS
00189 *> \verbatim
00190 *>          N_NORMS is INTEGER
00191 *>     Determines which error bounds to return (see ERRS_N
00192 *>     and ERRS_C).
00193 *>     If N_NORMS >= 1 return normwise error bounds.
00194 *>     If N_NORMS >= 2 return componentwise error bounds.
00195 *> \endverbatim
00196 *>
00197 *> \param[in,out] ERRS_N
00198 *> \verbatim
00199 *>          ERRS_N is DOUBLE PRECISION array, dimension
00200 *>                    (NRHS, N_ERR_BNDS)
00201 *>     For each right-hand side, this array contains information about
00202 *>     various error bounds and condition numbers corresponding to the
00203 *>     normwise relative error, which is defined as follows:
00204 *>
00205 *>     Normwise relative error in the ith solution vector:
00206 *>             max_j (abs(XTRUE(j,i) - X(j,i)))
00207 *>            ------------------------------
00208 *>                  max_j abs(X(j,i))
00209 *>
00210 *>     The array is indexed by the type of error information as described
00211 *>     below. There currently are up to three pieces of information
00212 *>     returned.
00213 *>
00214 *>     The first index in ERRS_N(i,:) corresponds to the ith
00215 *>     right-hand side.
00216 *>
00217 *>     The second index in ERRS_N(:,err) contains the following
00218 *>     three fields:
00219 *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
00220 *>              reciprocal condition number is less than the threshold
00221 *>              sqrt(n) * slamch('Epsilon').
00222 *>
00223 *>     err = 2 "Guaranteed" error bound: The estimated forward error,
00224 *>              almost certainly within a factor of 10 of the true error
00225 *>              so long as the next entry is greater than the threshold
00226 *>              sqrt(n) * slamch('Epsilon'). This error bound should only
00227 *>              be trusted if the previous boolean is true.
00228 *>
00229 *>     err = 3  Reciprocal condition number: Estimated normwise
00230 *>              reciprocal condition number.  Compared with the threshold
00231 *>              sqrt(n) * slamch('Epsilon') to determine if the error
00232 *>              estimate is "guaranteed". These reciprocal condition
00233 *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
00234 *>              appropriately scaled matrix Z.
00235 *>              Let Z = S*A, where S scales each row by a power of the
00236 *>              radix so all absolute row sums of Z are approximately 1.
00237 *>
00238 *>     This subroutine is only responsible for setting the second field
00239 *>     above.
00240 *>     See Lapack Working Note 165 for further details and extra
00241 *>     cautions.
00242 *> \endverbatim
00243 *>
00244 *> \param[in,out] ERRS_C
00245 *> \verbatim
00246 *>          ERRS_C is DOUBLE PRECISION array, dimension
00247 *>                    (NRHS, N_ERR_BNDS)
00248 *>     For each right-hand side, this array contains information about
00249 *>     various error bounds and condition numbers corresponding to the
00250 *>     componentwise relative error, which is defined as follows:
00251 *>
00252 *>     Componentwise relative error in the ith solution vector:
00253 *>                    abs(XTRUE(j,i) - X(j,i))
00254 *>             max_j ----------------------
00255 *>                         abs(X(j,i))
00256 *>
00257 *>     The array is indexed by the right-hand side i (on which the
00258 *>     componentwise relative error depends), and the type of error
00259 *>     information as described below. There currently are up to three
00260 *>     pieces of information returned for each right-hand side. If
00261 *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
00262 *>     ERRS_C is not accessed.  If N_ERR_BNDS .LT. 3, then at most
00263 *>     the first (:,N_ERR_BNDS) entries are returned.
00264 *>
00265 *>     The first index in ERRS_C(i,:) corresponds to the ith
00266 *>     right-hand side.
00267 *>
00268 *>     The second index in ERRS_C(:,err) contains the following
00269 *>     three fields:
00270 *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
00271 *>              reciprocal condition number is less than the threshold
00272 *>              sqrt(n) * slamch('Epsilon').
00273 *>
00274 *>     err = 2 "Guaranteed" error bound: The estimated forward error,
00275 *>              almost certainly within a factor of 10 of the true error
00276 *>              so long as the next entry is greater than the threshold
00277 *>              sqrt(n) * slamch('Epsilon'). This error bound should only
00278 *>              be trusted if the previous boolean is true.
00279 *>
00280 *>     err = 3  Reciprocal condition number: Estimated componentwise
00281 *>              reciprocal condition number.  Compared with the threshold
00282 *>              sqrt(n) * slamch('Epsilon') to determine if the error
00283 *>              estimate is "guaranteed". These reciprocal condition
00284 *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
00285 *>              appropriately scaled matrix Z.
00286 *>              Let Z = S*(A*diag(x)), where x is the solution for the
00287 *>              current right-hand side and S scales each row of
00288 *>              A*diag(x) by a power of the radix so all absolute row
00289 *>              sums of Z are approximately 1.
00290 *>
00291 *>     This subroutine is only responsible for setting the second field
00292 *>     above.
00293 *>     See Lapack Working Note 165 for further details and extra
00294 *>     cautions.
00295 *> \endverbatim
00296 *>
00297 *> \param[in] RES
00298 *> \verbatim
00299 *>          RES is DOUBLE PRECISION array, dimension (N)
00300 *>     Workspace to hold the intermediate residual.
00301 *> \endverbatim
00302 *>
00303 *> \param[in] AYB
00304 *> \verbatim
00305 *>          AYB is DOUBLE PRECISION array, dimension (N)
00306 *>     Workspace. This can be the same workspace passed for Y_TAIL.
00307 *> \endverbatim
00308 *>
00309 *> \param[in] DY
00310 *> \verbatim
00311 *>          DY is DOUBLE PRECISION array, dimension (N)
00312 *>     Workspace to hold the intermediate solution.
00313 *> \endverbatim
00314 *>
00315 *> \param[in] Y_TAIL
00316 *> \verbatim
00317 *>          Y_TAIL is DOUBLE PRECISION array, dimension (N)
00318 *>     Workspace to hold the trailing bits of the intermediate solution.
00319 *> \endverbatim
00320 *>
00321 *> \param[in] RCOND
00322 *> \verbatim
00323 *>          RCOND is DOUBLE PRECISION
00324 *>     Reciprocal scaled condition number.  This is an estimate of the
00325 *>     reciprocal Skeel condition number of the matrix A after
00326 *>     equilibration (if done).  If this is less than the machine
00327 *>     precision (in particular, if it is zero), the matrix is singular
00328 *>     to working precision.  Note that the error may still be small even
00329 *>     if this number is very small and the matrix appears ill-
00330 *>     conditioned.
00331 *> \endverbatim
00332 *>
00333 *> \param[in] ITHRESH
00334 *> \verbatim
00335 *>          ITHRESH is INTEGER
00336 *>     The maximum number of residual computations allowed for
00337 *>     refinement. The default is 10. For 'aggressive' set to 100 to
00338 *>     permit convergence using approximate factorizations or
00339 *>     factorizations other than LU. If the factorization uses a
00340 *>     technique other than Gaussian elimination, the guarantees in
00341 *>     ERRS_N and ERRS_C may no longer be trustworthy.
00342 *> \endverbatim
00343 *>
00344 *> \param[in] RTHRESH
00345 *> \verbatim
00346 *>          RTHRESH is DOUBLE PRECISION
00347 *>     Determines when to stop refinement if the error estimate stops
00348 *>     decreasing. Refinement will stop when the next solution no longer
00349 *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
00350 *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
00351 *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
00352 *>     convergence on extremely ill-conditioned matrices. See LAWN 165
00353 *>     for more details.
00354 *> \endverbatim
00355 *>
00356 *> \param[in] DZ_UB
00357 *> \verbatim
00358 *>          DZ_UB is DOUBLE PRECISION
00359 *>     Determines when to start considering componentwise convergence.
00360 *>     Componentwise convergence is only considered after each component
00361 *>     of the solution Y is stable, which we definte as the relative
00362 *>     change in each component being less than DZ_UB. The default value
00363 *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
00364 *>     more details.
00365 *> \endverbatim
00366 *>
00367 *> \param[in] IGNORE_CWISE
00368 *> \verbatim
00369 *>          IGNORE_CWISE is LOGICAL
00370 *>     If .TRUE. then ignore componentwise convergence. Default value
00371 *>     is .FALSE..
00372 *> \endverbatim
00373 *>
00374 *> \param[out] INFO
00375 *> \verbatim
00376 *>          INFO is INTEGER
00377 *>       = 0:  Successful exit.
00378 *>       < 0:  if INFO = -i, the ith argument to DGETRS had an illegal
00379 *>             value
00380 *> \endverbatim
00381 *
00382 *  Authors:
00383 *  ========
00384 *
00385 *> \author Univ. of Tennessee 
00386 *> \author Univ. of California Berkeley 
00387 *> \author Univ. of Colorado Denver 
00388 *> \author NAG Ltd. 
00389 *
00390 *> \date November 2011
00391 *
00392 *> \ingroup doubleGEcomputational
00393 *
00394 *  =====================================================================
00395       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
00396      $                                LDA, AF, LDAF, IPIV, COLEQU, C, B,
00397      $                                LDB, Y, LDY, BERR_OUT, N_NORMS,
00398      $                                ERRS_N, ERRS_C, RES, AYB, DY,
00399      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
00400      $                                DZ_UB, IGNORE_CWISE, INFO )
00401 *
00402 *  -- LAPACK computational routine (version 3.4.0) --
00403 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00404 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00405 *     November 2011
00406 *
00407 *     .. Scalar Arguments ..
00408       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
00409      $                   TRANS_TYPE, N_NORMS, ITHRESH
00410       LOGICAL            COLEQU, IGNORE_CWISE
00411       DOUBLE PRECISION   RTHRESH, DZ_UB
00412 *     ..
00413 *     .. Array Arguments ..
00414       INTEGER            IPIV( * )
00415       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
00416      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
00417       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
00418      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
00419 *     ..
00420 *
00421 *  =====================================================================
00422 *
00423 *     .. Local Scalars ..
00424       CHARACTER          TRANS
00425       INTEGER            CNT, I, J, X_STATE, Z_STATE, Y_PREC_STATE
00426       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
00427      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
00428      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
00429      $                   EPS, HUGEVAL, INCR_THRESH
00430       LOGICAL            INCR_PREC
00431 *     ..
00432 *     .. Parameters ..
00433       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
00434      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
00435      $                   EXTRA_Y
00436       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
00437      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
00438       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
00439      $                   EXTRA_Y = 2 )
00440       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
00441       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
00442       INTEGER            CMP_ERR_I, PIV_GROWTH_I
00443       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
00444      $                   BERR_I = 3 )
00445       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
00446       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
00447      $                   PIV_GROWTH_I = 9 )
00448       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
00449      $                   LA_LINRX_CWISE_I
00450       PARAMETER          ( LA_LINRX_ITREF_I = 1,
00451      $                   LA_LINRX_ITHRESH_I = 2 )
00452       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
00453       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
00454      $                   LA_LINRX_RCOND_I
00455       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
00456       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
00457 *     ..
00458 *     .. External Subroutines ..
00459       EXTERNAL           DAXPY, DCOPY, DGETRS, DGEMV, BLAS_DGEMV_X,
00460      $                   BLAS_DGEMV2_X, DLA_GEAMV, DLA_WWADDW, DLAMCH,
00461      $                   CHLA_TRANSTYPE, DLA_LIN_BERR
00462       DOUBLE PRECISION   DLAMCH
00463       CHARACTER          CHLA_TRANSTYPE
00464 *     ..
00465 *     .. Intrinsic Functions ..
00466       INTRINSIC          ABS, MAX, MIN
00467 *     ..
00468 *     .. Executable Statements ..
00469 *
00470       IF ( INFO.NE.0 ) RETURN
00471       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
00472       EPS = DLAMCH( 'Epsilon' )
00473       HUGEVAL = DLAMCH( 'Overflow' )
00474 *     Force HUGEVAL to Inf
00475       HUGEVAL = HUGEVAL * HUGEVAL
00476 *     Using HUGEVAL may lead to spurious underflows.
00477       INCR_THRESH = DBLE( N ) * EPS
00478 *
00479       DO J = 1, NRHS
00480          Y_PREC_STATE = EXTRA_RESIDUAL
00481          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
00482             DO I = 1, N
00483                Y_TAIL( I ) = 0.0D+0
00484             END DO
00485          END IF
00486 
00487          DXRAT = 0.0D+0
00488          DXRATMAX = 0.0D+0
00489          DZRAT = 0.0D+0
00490          DZRATMAX = 0.0D+0
00491          FINAL_DX_X = HUGEVAL
00492          FINAL_DZ_Z = HUGEVAL
00493          PREVNORMDX = HUGEVAL
00494          PREV_DZ_Z = HUGEVAL
00495          DZ_Z = HUGEVAL
00496          DX_X = HUGEVAL
00497 
00498          X_STATE = WORKING_STATE
00499          Z_STATE = UNSTABLE_STATE
00500          INCR_PREC = .FALSE.
00501 
00502          DO CNT = 1, ITHRESH
00503 *
00504 *         Compute residual RES = B_s - op(A_s) * Y,
00505 *             op(A) = A, A**T, or A**H depending on TRANS (and type).
00506 *
00507             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
00508             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
00509                CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y( 1, J ), 1,
00510      $              1.0D+0, RES, 1 )
00511             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
00512                CALL BLAS_DGEMV_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
00513      $              Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
00514             ELSE
00515                CALL BLAS_DGEMV2_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
00516      $              Y( 1, J ), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE )
00517             END IF
00518 
00519 !        XXX: RES is no longer needed.
00520             CALL DCOPY( N, RES, 1, DY, 1 )
00521             CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, DY, N, INFO )
00522 *
00523 *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
00524 *
00525             NORMX = 0.0D+0
00526             NORMY = 0.0D+0
00527             NORMDX = 0.0D+0
00528             DZ_Z = 0.0D+0
00529             YMIN = HUGEVAL
00530 *
00531             DO I = 1, N
00532                YK = ABS( Y( I, J ) )
00533                DYK = ABS( DY( I ) )
00534 
00535                IF ( YK .NE. 0.0D+0 ) THEN
00536                   DZ_Z = MAX( DZ_Z, DYK / YK )
00537                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
00538                   DZ_Z = HUGEVAL
00539                END IF
00540 
00541                YMIN = MIN( YMIN, YK )
00542 
00543                NORMY = MAX( NORMY, YK )
00544 
00545                IF ( COLEQU ) THEN
00546                   NORMX = MAX( NORMX, YK * C( I ) )
00547                   NORMDX = MAX( NORMDX, DYK * C( I ) )
00548                ELSE
00549                   NORMX = NORMY
00550                   NORMDX = MAX( NORMDX, DYK )
00551                END IF
00552             END DO
00553 
00554             IF ( NORMX .NE. 0.0D+0 ) THEN
00555                DX_X = NORMDX / NORMX
00556             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
00557                DX_X = 0.0D+0
00558             ELSE
00559                DX_X = HUGEVAL
00560             END IF
00561 
00562             DXRAT = NORMDX / PREVNORMDX
00563             DZRAT = DZ_Z / PREV_DZ_Z
00564 *
00565 *         Check termination criteria
00566 *
00567             IF (.NOT.IGNORE_CWISE
00568      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
00569      $           .AND. Y_PREC_STATE .LT. EXTRA_Y)
00570      $           INCR_PREC = .TRUE.
00571 
00572             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
00573      $           X_STATE = WORKING_STATE
00574             IF ( X_STATE .EQ. WORKING_STATE ) THEN
00575                IF ( DX_X .LE. EPS ) THEN
00576                   X_STATE = CONV_STATE
00577                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
00578                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
00579                      INCR_PREC = .TRUE.
00580                   ELSE
00581                      X_STATE = NOPROG_STATE
00582                   END IF
00583                ELSE
00584                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
00585                END IF
00586                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
00587             END IF
00588 
00589             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
00590      $           Z_STATE = WORKING_STATE
00591             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
00592      $           Z_STATE = WORKING_STATE
00593             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
00594                IF ( DZ_Z .LE. EPS ) THEN
00595                   Z_STATE = CONV_STATE
00596                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
00597                   Z_STATE = UNSTABLE_STATE
00598                   DZRATMAX = 0.0D+0
00599                   FINAL_DZ_Z = HUGEVAL
00600                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
00601                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
00602                      INCR_PREC = .TRUE.
00603                   ELSE
00604                      Z_STATE = NOPROG_STATE
00605                   END IF
00606                ELSE
00607                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
00608                END IF
00609                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
00610             END IF
00611 *
00612 *           Exit if both normwise and componentwise stopped working,
00613 *           but if componentwise is unstable, let it go at least two
00614 *           iterations.
00615 *
00616             IF ( X_STATE.NE.WORKING_STATE ) THEN
00617                IF ( IGNORE_CWISE) GOTO 666
00618                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
00619      $              GOTO 666
00620                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
00621             END IF
00622 
00623             IF ( INCR_PREC ) THEN
00624                INCR_PREC = .FALSE.
00625                Y_PREC_STATE = Y_PREC_STATE + 1
00626                DO I = 1, N
00627                   Y_TAIL( I ) = 0.0D+0
00628                END DO
00629             END IF
00630 
00631             PREVNORMDX = NORMDX
00632             PREV_DZ_Z = DZ_Z
00633 *
00634 *           Update soluton.
00635 *
00636             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
00637                CALL DAXPY( N, 1.0D+0, DY, 1, Y( 1, J ), 1 )
00638             ELSE
00639                CALL DLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
00640             END IF
00641 
00642          END DO
00643 *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
00644  666     CONTINUE
00645 *
00646 *     Set final_* when cnt hits ithresh.
00647 *
00648          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
00649          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
00650 *
00651 *     Compute error bounds
00652 *
00653          IF (N_NORMS .GE. 1) THEN
00654             ERRS_N( J, LA_LINRX_ERR_I ) = FINAL_DX_X / (1 - DXRATMAX)
00655          END IF
00656          IF ( N_NORMS .GE. 2 ) THEN
00657             ERRS_C( J, LA_LINRX_ERR_I ) = FINAL_DZ_Z / (1 - DZRATMAX)
00658          END IF
00659 *
00660 *     Compute componentwise relative backward error from formula
00661 *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
00662 *     where abs(Z) is the componentwise absolute value of the matrix
00663 *     or vector Z.
00664 *
00665 *         Compute residual RES = B_s - op(A_s) * Y,
00666 *             op(A) = A, A**T, or A**H depending on TRANS (and type).
00667 *
00668          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
00669          CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0, 
00670      $     RES, 1 )
00671 
00672          DO I = 1, N
00673             AYB( I ) = ABS( B( I, J ) )
00674          END DO
00675 *
00676 *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
00677 *
00678          CALL DLA_GEAMV ( TRANS_TYPE, N, N, 1.0D+0,
00679      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
00680 
00681          CALL DLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
00682 *
00683 *     End of loop for each RHS.
00684 *
00685       END DO
00686 *
00687       RETURN
00688       END
 All Files Functions