LAPACK  3.4.1
LAPACK: Linear Algebra PACKage
cunmrq.f
Go to the documentation of this file.
00001 *> \brief \b CUNMRQ
00002 *
00003 *  =========== DOCUMENTATION ===========
00004 *
00005 * Online html documentation available at 
00006 *            http://www.netlib.org/lapack/explore-html/ 
00007 *
00008 *> \htmlonly
00009 *> Download CUNMRQ + dependencies 
00010 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunmrq.f"> 
00011 *> [TGZ]</a> 
00012 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunmrq.f"> 
00013 *> [ZIP]</a> 
00014 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunmrq.f"> 
00015 *> [TXT]</a>
00016 *> \endhtmlonly 
00017 *
00018 *  Definition:
00019 *  ===========
00020 *
00021 *       SUBROUTINE CUNMRQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
00022 *                          WORK, LWORK, INFO )
00023 * 
00024 *       .. Scalar Arguments ..
00025 *       CHARACTER          SIDE, TRANS
00026 *       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
00027 *       ..
00028 *       .. Array Arguments ..
00029 *       COMPLEX            A( LDA, * ), C( LDC, * ), TAU( * ),
00030 *      $                   WORK( * )
00031 *       ..
00032 *  
00033 *
00034 *> \par Purpose:
00035 *  =============
00036 *>
00037 *> \verbatim
00038 *>
00039 *> CUNMRQ overwrites the general complex M-by-N matrix C with
00040 *>
00041 *>                 SIDE = 'L'     SIDE = 'R'
00042 *> TRANS = 'N':      Q * C          C * Q
00043 *> TRANS = 'C':      Q**H * C       C * Q**H
00044 *>
00045 *> where Q is a complex unitary matrix defined as the product of k
00046 *> elementary reflectors
00047 *>
00048 *>       Q = H(1)**H H(2)**H . . . H(k)**H
00049 *>
00050 *> as returned by CGERQF. Q is of order M if SIDE = 'L' and of order N
00051 *> if SIDE = 'R'.
00052 *> \endverbatim
00053 *
00054 *  Arguments:
00055 *  ==========
00056 *
00057 *> \param[in] SIDE
00058 *> \verbatim
00059 *>          SIDE is CHARACTER*1
00060 *>          = 'L': apply Q or Q**H from the Left;
00061 *>          = 'R': apply Q or Q**H from the Right.
00062 *> \endverbatim
00063 *>
00064 *> \param[in] TRANS
00065 *> \verbatim
00066 *>          TRANS is CHARACTER*1
00067 *>          = 'N':  No transpose, apply Q;
00068 *>          = 'C':  Transpose, apply Q**H.
00069 *> \endverbatim
00070 *>
00071 *> \param[in] M
00072 *> \verbatim
00073 *>          M is INTEGER
00074 *>          The number of rows of the matrix C. M >= 0.
00075 *> \endverbatim
00076 *>
00077 *> \param[in] N
00078 *> \verbatim
00079 *>          N is INTEGER
00080 *>          The number of columns of the matrix C. N >= 0.
00081 *> \endverbatim
00082 *>
00083 *> \param[in] K
00084 *> \verbatim
00085 *>          K is INTEGER
00086 *>          The number of elementary reflectors whose product defines
00087 *>          the matrix Q.
00088 *>          If SIDE = 'L', M >= K >= 0;
00089 *>          if SIDE = 'R', N >= K >= 0.
00090 *> \endverbatim
00091 *>
00092 *> \param[in] A
00093 *> \verbatim
00094 *>          A is COMPLEX array, dimension
00095 *>                               (LDA,M) if SIDE = 'L',
00096 *>                               (LDA,N) if SIDE = 'R'
00097 *>          The i-th row must contain the vector which defines the
00098 *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
00099 *>          CGERQF in the last k rows of its array argument A.
00100 *> \endverbatim
00101 *>
00102 *> \param[in] LDA
00103 *> \verbatim
00104 *>          LDA is INTEGER
00105 *>          The leading dimension of the array A. LDA >= max(1,K).
00106 *> \endverbatim
00107 *>
00108 *> \param[in] TAU
00109 *> \verbatim
00110 *>          TAU is COMPLEX array, dimension (K)
00111 *>          TAU(i) must contain the scalar factor of the elementary
00112 *>          reflector H(i), as returned by CGERQF.
00113 *> \endverbatim
00114 *>
00115 *> \param[in,out] C
00116 *> \verbatim
00117 *>          C is COMPLEX array, dimension (LDC,N)
00118 *>          On entry, the M-by-N matrix C.
00119 *>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
00120 *> \endverbatim
00121 *>
00122 *> \param[in] LDC
00123 *> \verbatim
00124 *>          LDC is INTEGER
00125 *>          The leading dimension of the array C. LDC >= max(1,M).
00126 *> \endverbatim
00127 *>
00128 *> \param[out] WORK
00129 *> \verbatim
00130 *>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
00131 *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
00132 *> \endverbatim
00133 *>
00134 *> \param[in] LWORK
00135 *> \verbatim
00136 *>          LWORK is INTEGER
00137 *>          The dimension of the array WORK.
00138 *>          If SIDE = 'L', LWORK >= max(1,N);
00139 *>          if SIDE = 'R', LWORK >= max(1,M).
00140 *>          For optimum performance LWORK >= N*NB if SIDE = 'L', and
00141 *>          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
00142 *>          blocksize.
00143 *>
00144 *>          If LWORK = -1, then a workspace query is assumed; the routine
00145 *>          only calculates the optimal size of the WORK array, returns
00146 *>          this value as the first entry of the WORK array, and no error
00147 *>          message related to LWORK is issued by XERBLA.
00148 *> \endverbatim
00149 *>
00150 *> \param[out] INFO
00151 *> \verbatim
00152 *>          INFO is INTEGER
00153 *>          = 0:  successful exit
00154 *>          < 0:  if INFO = -i, the i-th argument had an illegal value
00155 *> \endverbatim
00156 *
00157 *  Authors:
00158 *  ========
00159 *
00160 *> \author Univ. of Tennessee 
00161 *> \author Univ. of California Berkeley 
00162 *> \author Univ. of Colorado Denver 
00163 *> \author NAG Ltd. 
00164 *
00165 *> \date November 2011
00166 *
00167 *> \ingroup complexOTHERcomputational
00168 *
00169 *  =====================================================================
00170       SUBROUTINE CUNMRQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
00171      $                   WORK, LWORK, INFO )
00172 *
00173 *  -- LAPACK computational routine (version 3.4.0) --
00174 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00175 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00176 *     November 2011
00177 *
00178 *     .. Scalar Arguments ..
00179       CHARACTER          SIDE, TRANS
00180       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
00181 *     ..
00182 *     .. Array Arguments ..
00183       COMPLEX            A( LDA, * ), C( LDC, * ), TAU( * ),
00184      $                   WORK( * )
00185 *     ..
00186 *
00187 *  =====================================================================
00188 *
00189 *     .. Parameters ..
00190       INTEGER            NBMAX, LDT
00191       PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
00192 *     ..
00193 *     .. Local Scalars ..
00194       LOGICAL            LEFT, LQUERY, NOTRAN
00195       CHARACTER          TRANST
00196       INTEGER            I, I1, I2, I3, IB, IINFO, IWS, LDWORK, LWKOPT,
00197      $                   MI, NB, NBMIN, NI, NQ, NW
00198 *     ..
00199 *     .. Local Arrays ..
00200       COMPLEX            T( LDT, NBMAX )
00201 *     ..
00202 *     .. External Functions ..
00203       LOGICAL            LSAME
00204       INTEGER            ILAENV
00205       EXTERNAL           LSAME, ILAENV
00206 *     ..
00207 *     .. External Subroutines ..
00208       EXTERNAL           CLARFB, CLARFT, CUNMR2, XERBLA
00209 *     ..
00210 *     .. Intrinsic Functions ..
00211       INTRINSIC          MAX, MIN
00212 *     ..
00213 *     .. Executable Statements ..
00214 *
00215 *     Test the input arguments
00216 *
00217       INFO = 0
00218       LEFT = LSAME( SIDE, 'L' )
00219       NOTRAN = LSAME( TRANS, 'N' )
00220       LQUERY = ( LWORK.EQ.-1 )
00221 *
00222 *     NQ is the order of Q and NW is the minimum dimension of WORK
00223 *
00224       IF( LEFT ) THEN
00225          NQ = M
00226          NW = MAX( 1, N )
00227       ELSE
00228          NQ = N
00229          NW = MAX( 1, M )
00230       END IF
00231       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
00232          INFO = -1
00233       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
00234          INFO = -2
00235       ELSE IF( M.LT.0 ) THEN
00236          INFO = -3
00237       ELSE IF( N.LT.0 ) THEN
00238          INFO = -4
00239       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
00240          INFO = -5
00241       ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
00242          INFO = -7
00243       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
00244          INFO = -10
00245       END IF
00246 *
00247       IF( INFO.EQ.0 ) THEN
00248          IF( M.EQ.0 .OR. N.EQ.0 ) THEN
00249             LWKOPT = 1
00250          ELSE
00251 *
00252 *           Determine the block size.  NB may be at most NBMAX, where
00253 *           NBMAX is used to define the local array T.
00254 *
00255             NB = MIN( NBMAX, ILAENV( 1, 'CUNMRQ', SIDE // TRANS, M, N,
00256      $                               K, -1 ) )
00257             LWKOPT = NW*NB
00258          END IF
00259          WORK( 1 ) = LWKOPT
00260 *
00261          IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
00262             INFO = -12
00263          END IF
00264       END IF
00265 *
00266       IF( INFO.NE.0 ) THEN
00267          CALL XERBLA( 'CUNMRQ', -INFO )
00268          RETURN
00269       ELSE IF( LQUERY ) THEN
00270          RETURN
00271       END IF
00272 *
00273 *     Quick return if possible
00274 *
00275       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
00276          RETURN
00277       END IF
00278 *
00279       NBMIN = 2
00280       LDWORK = NW
00281       IF( NB.GT.1 .AND. NB.LT.K ) THEN
00282          IWS = NW*NB
00283          IF( LWORK.LT.IWS ) THEN
00284             NB = LWORK / LDWORK
00285             NBMIN = MAX( 2, ILAENV( 2, 'CUNMRQ', SIDE // TRANS, M, N, K,
00286      $              -1 ) )
00287          END IF
00288       ELSE
00289          IWS = NW
00290       END IF
00291 *
00292       IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
00293 *
00294 *        Use unblocked code
00295 *
00296          CALL CUNMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
00297      $                IINFO )
00298       ELSE
00299 *
00300 *        Use blocked code
00301 *
00302          IF( ( LEFT .AND. .NOT.NOTRAN ) .OR.
00303      $       ( .NOT.LEFT .AND. NOTRAN ) ) THEN
00304             I1 = 1
00305             I2 = K
00306             I3 = NB
00307          ELSE
00308             I1 = ( ( K-1 ) / NB )*NB + 1
00309             I2 = 1
00310             I3 = -NB
00311          END IF
00312 *
00313          IF( LEFT ) THEN
00314             NI = N
00315          ELSE
00316             MI = M
00317          END IF
00318 *
00319          IF( NOTRAN ) THEN
00320             TRANST = 'C'
00321          ELSE
00322             TRANST = 'N'
00323          END IF
00324 *
00325          DO 10 I = I1, I2, I3
00326             IB = MIN( NB, K-I+1 )
00327 *
00328 *           Form the triangular factor of the block reflector
00329 *           H = H(i+ib-1) . . . H(i+1) H(i)
00330 *
00331             CALL CLARFT( 'Backward', 'Rowwise', NQ-K+I+IB-1, IB,
00332      $                   A( I, 1 ), LDA, TAU( I ), T, LDT )
00333             IF( LEFT ) THEN
00334 *
00335 *              H or H**H is applied to C(1:m-k+i+ib-1,1:n)
00336 *
00337                MI = M - K + I + IB - 1
00338             ELSE
00339 *
00340 *              H or H**H is applied to C(1:m,1:n-k+i+ib-1)
00341 *
00342                NI = N - K + I + IB - 1
00343             END IF
00344 *
00345 *           Apply H or H**H
00346 *
00347             CALL CLARFB( SIDE, TRANST, 'Backward', 'Rowwise', MI, NI,
00348      $                   IB, A( I, 1 ), LDA, T, LDT, C, LDC, WORK,
00349      $                   LDWORK )
00350    10    CONTINUE
00351       END IF
00352       WORK( 1 ) = LWKOPT
00353       RETURN
00354 *
00355 *     End of CUNMRQ
00356 *
00357       END
 All Files Functions