LAPACK  3.4.1
LAPACK: Linear Algebra PACKage
zdrvhex.f
Go to the documentation of this file.
00001 *> \brief \b ZDRVHEX
00002 *
00003 *  =========== DOCUMENTATION ===========
00004 *
00005 * Online html documentation available at 
00006 *            http://www.netlib.org/lapack/explore-html/ 
00007 *
00008 *  Definition:
00009 *  ===========
00010 *
00011 *       SUBROUTINE ZDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
00012 *                          A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
00013 *                          NOUT )
00014 * 
00015 *       .. Scalar Arguments ..
00016 *       LOGICAL            TSTERR
00017 *       INTEGER            NMAX, NN, NOUT, NRHS
00018 *       DOUBLE PRECISION   THRESH
00019 *       ..
00020 *       .. Array Arguments ..
00021 *       LOGICAL            DOTYPE( * )
00022 *       INTEGER            IWORK( * ), NVAL( * )
00023 *       DOUBLE PRECISION   RWORK( * )
00024 *       COMPLEX*16         A( * ), AFAC( * ), AINV( * ), B( * ),
00025 *      $                   WORK( * ), X( * ), XACT( * )
00026 *       ..
00027 *  
00028 *
00029 *> \par Purpose:
00030 *  =============
00031 *>
00032 *> \verbatim
00033 *>
00034 *> ZDRVHE tests the driver routines ZHESV, -SVX, and -SVXX.
00035 *>
00036 *> Note that this file is used only when the XBLAS are available,
00037 *> otherwise zdrvhe.f defines this subroutine.
00038 *> \endverbatim
00039 *
00040 *  Arguments:
00041 *  ==========
00042 *
00043 *> \param[in] DOTYPE
00044 *> \verbatim
00045 *>          DOTYPE is LOGICAL array, dimension (NTYPES)
00046 *>          The matrix types to be used for testing.  Matrices of type j
00047 *>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
00048 *>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
00049 *> \endverbatim
00050 *>
00051 *> \param[in] NN
00052 *> \verbatim
00053 *>          NN is INTEGER
00054 *>          The number of values of N contained in the vector NVAL.
00055 *> \endverbatim
00056 *>
00057 *> \param[in] NVAL
00058 *> \verbatim
00059 *>          NVAL is INTEGER array, dimension (NN)
00060 *>          The values of the matrix dimension N.
00061 *> \endverbatim
00062 *>
00063 *> \param[in] NRHS
00064 *> \verbatim
00065 *>          NRHS is INTEGER
00066 *>          The number of right hand side vectors to be generated for
00067 *>          each linear system.
00068 *> \endverbatim
00069 *>
00070 *> \param[in] THRESH
00071 *> \verbatim
00072 *>          THRESH is DOUBLE PRECISION
00073 *>          The threshold value for the test ratios.  A result is
00074 *>          included in the output file if RESULT >= THRESH.  To have
00075 *>          every test ratio printed, use THRESH = 0.
00076 *> \endverbatim
00077 *>
00078 *> \param[in] TSTERR
00079 *> \verbatim
00080 *>          TSTERR is LOGICAL
00081 *>          Flag that indicates whether error exits are to be tested.
00082 *> \endverbatim
00083 *>
00084 *> \param[in] NMAX
00085 *> \verbatim
00086 *>          NMAX is INTEGER
00087 *>          The maximum value permitted for N, used in dimensioning the
00088 *>          work arrays.
00089 *> \endverbatim
00090 *>
00091 *> \param[out] A
00092 *> \verbatim
00093 *>          A is COMPLEX*16 array, dimension (NMAX*NMAX)
00094 *> \endverbatim
00095 *>
00096 *> \param[out] AFAC
00097 *> \verbatim
00098 *>          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
00099 *> \endverbatim
00100 *>
00101 *> \param[out] AINV
00102 *> \verbatim
00103 *>          AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
00104 *> \endverbatim
00105 *>
00106 *> \param[out] B
00107 *> \verbatim
00108 *>          B is COMPLEX*16 array, dimension (NMAX*NRHS)
00109 *> \endverbatim
00110 *>
00111 *> \param[out] X
00112 *> \verbatim
00113 *>          X is COMPLEX*16 array, dimension (NMAX*NRHS)
00114 *> \endverbatim
00115 *>
00116 *> \param[out] XACT
00117 *> \verbatim
00118 *>          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
00119 *> \endverbatim
00120 *>
00121 *> \param[out] WORK
00122 *> \verbatim
00123 *>          WORK is COMPLEX*16 array, dimension
00124 *>                      (NMAX*max(2,NRHS))
00125 *> \endverbatim
00126 *>
00127 *> \param[out] RWORK
00128 *> \verbatim
00129 *>          RWORK is DOUBLE PRECISION array, dimension (2*NMAX+2*NRHS)
00130 *> \endverbatim
00131 *>
00132 *> \param[out] IWORK
00133 *> \verbatim
00134 *>          IWORK is INTEGER array, dimension (NMAX)
00135 *> \endverbatim
00136 *>
00137 *> \param[in] NOUT
00138 *> \verbatim
00139 *>          NOUT is INTEGER
00140 *>          The unit number for output.
00141 *> \endverbatim
00142 *
00143 *  Authors:
00144 *  ========
00145 *
00146 *> \author Univ. of Tennessee 
00147 *> \author Univ. of California Berkeley 
00148 *> \author Univ. of Colorado Denver 
00149 *> \author NAG Ltd. 
00150 *
00151 *> \date April 2012
00152 *
00153 *> \ingroup complex16_lin
00154 *
00155 *  =====================================================================
00156       SUBROUTINE ZDRVHE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
00157      $                   A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
00158      $                   NOUT )
00159 *
00160 *  -- LAPACK test routine (version 3.4.1) --
00161 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00162 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00163 *     April 2012
00164 *
00165 *     .. Scalar Arguments ..
00166       LOGICAL            TSTERR
00167       INTEGER            NMAX, NN, NOUT, NRHS
00168       DOUBLE PRECISION   THRESH
00169 *     ..
00170 *     .. Array Arguments ..
00171       LOGICAL            DOTYPE( * )
00172       INTEGER            IWORK( * ), NVAL( * )
00173       DOUBLE PRECISION   RWORK( * )
00174       COMPLEX*16         A( * ), AFAC( * ), AINV( * ), B( * ),
00175      $                   WORK( * ), X( * ), XACT( * )
00176 *     ..
00177 *
00178 *  =====================================================================
00179 *
00180 *     .. Parameters ..
00181       DOUBLE PRECISION   ONE, ZERO
00182       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
00183       INTEGER            NTYPES, NTESTS
00184       PARAMETER          ( NTYPES = 10, NTESTS = 6 )
00185       INTEGER            NFACT
00186       PARAMETER          ( NFACT = 2 )
00187 *     ..
00188 *     .. Local Scalars ..
00189       LOGICAL            ZEROT
00190       CHARACTER          DIST, EQUED, FACT, TYPE, UPLO, XTYPE
00191       CHARACTER*3        PATH
00192       INTEGER            I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
00193      $                   IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N,
00194      $                   NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT,
00195      $                   N_ERR_BNDS
00196       DOUBLE PRECISION   AINVNM, ANORM, CNDNUM, RCOND, RCONDC,
00197      $                   RPVGRW_SVXX
00198 *     ..
00199 *     .. Local Arrays ..
00200       CHARACTER          FACTS( NFACT ), UPLOS( 2 )
00201       INTEGER            ISEED( 4 ), ISEEDY( 4 )
00202       DOUBLE PRECISION   RESULT( NTESTS ), BERR( NRHS ),
00203      $                   ERRBNDS_N( NRHS, 3 ), ERRBNDS_C( NRHS, 3 )
00204 *     ..
00205 *     .. External Functions ..
00206       DOUBLE PRECISION   DGET06, ZLANHE
00207       EXTERNAL           DGET06, ZLANHE
00208 *     ..
00209 *     .. External Subroutines ..
00210       EXTERNAL           ALADHD, ALAERH, ALASVM, XLAENV, ZERRVX, ZGET04,
00211      $                   ZHESV, ZHESVX, ZHET01, ZHETRF, ZHETRI2, ZLACPY,
00212      $                   ZLAIPD, ZLARHS, ZLASET, ZLATB4, ZLATMS, ZPOT02,
00213      $                   ZPOT05, ZHESVXX
00214 *     ..
00215 *     .. Scalars in Common ..
00216       LOGICAL            LERR, OK
00217       CHARACTER*32       SRNAMT
00218       INTEGER            INFOT, NUNIT
00219 *     ..
00220 *     .. Common blocks ..
00221       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
00222       COMMON             / SRNAMC / SRNAMT
00223 *     ..
00224 *     .. Intrinsic Functions ..
00225       INTRINSIC          DCMPLX, MAX, MIN
00226 *     ..
00227 *     .. Data statements ..
00228       DATA               ISEEDY / 1988, 1989, 1990, 1991 /
00229       DATA               UPLOS / 'U', 'L' / , FACTS / 'F', 'N' /
00230 *     ..
00231 *     .. Executable Statements ..
00232 *
00233 *     Initialize constants and the random number seed.
00234 *
00235       PATH( 1: 1 ) = 'Z'
00236       PATH( 2: 3 ) = 'HE'
00237       NRUN = 0
00238       NFAIL = 0
00239       NERRS = 0
00240       DO 10 I = 1, 4
00241          ISEED( I ) = ISEEDY( I )
00242    10 CONTINUE
00243       LWORK = MAX( 2*NMAX, NMAX*NRHS )
00244 *
00245 *     Test the error exits
00246 *
00247       IF( TSTERR )
00248      $   CALL ZERRVX( PATH, NOUT )
00249       INFOT = 0
00250 *
00251 *     Set the block size and minimum block size for testing.
00252 *
00253       NB = 1
00254       NBMIN = 2
00255       CALL XLAENV( 1, NB )
00256       CALL XLAENV( 2, NBMIN )
00257 *
00258 *     Do for each value of N in NVAL
00259 *
00260       DO 180 IN = 1, NN
00261          N = NVAL( IN )
00262          LDA = MAX( N, 1 )
00263          XTYPE = 'N'
00264          NIMAT = NTYPES
00265          IF( N.LE.0 )
00266      $      NIMAT = 1
00267 *
00268          DO 170 IMAT = 1, NIMAT
00269 *
00270 *           Do the tests only if DOTYPE( IMAT ) is true.
00271 *
00272             IF( .NOT.DOTYPE( IMAT ) )
00273      $         GO TO 170
00274 *
00275 *           Skip types 3, 4, 5, or 6 if the matrix size is too small.
00276 *
00277             ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
00278             IF( ZEROT .AND. N.LT.IMAT-2 )
00279      $         GO TO 170
00280 *
00281 *           Do first for UPLO = 'U', then for UPLO = 'L'
00282 *
00283             DO 160 IUPLO = 1, 2
00284                UPLO = UPLOS( IUPLO )
00285 *
00286 *              Set up parameters with ZLATB4 and generate a test matrix
00287 *              with ZLATMS.
00288 *
00289                CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
00290      $                      CNDNUM, DIST )
00291 *
00292                SRNAMT = 'ZLATMS'
00293                CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
00294      $                      CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
00295      $                      INFO )
00296 *
00297 *              Check error code from ZLATMS.
00298 *
00299                IF( INFO.NE.0 ) THEN
00300                   CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N, N, -1,
00301      $                         -1, -1, IMAT, NFAIL, NERRS, NOUT )
00302                   GO TO 160
00303                END IF
00304 *
00305 *              For types 3-6, zero one or more rows and columns of the
00306 *              matrix to test that INFO is returned correctly.
00307 *
00308                IF( ZEROT ) THEN
00309                   IF( IMAT.EQ.3 ) THEN
00310                      IZERO = 1
00311                   ELSE IF( IMAT.EQ.4 ) THEN
00312                      IZERO = N
00313                   ELSE
00314                      IZERO = N / 2 + 1
00315                   END IF
00316 *
00317                   IF( IMAT.LT.6 ) THEN
00318 *
00319 *                    Set row and column IZERO to zero.
00320 *
00321                      IF( IUPLO.EQ.1 ) THEN
00322                         IOFF = ( IZERO-1 )*LDA
00323                         DO 20 I = 1, IZERO - 1
00324                            A( IOFF+I ) = ZERO
00325    20                   CONTINUE
00326                         IOFF = IOFF + IZERO
00327                         DO 30 I = IZERO, N
00328                            A( IOFF ) = ZERO
00329                            IOFF = IOFF + LDA
00330    30                   CONTINUE
00331                      ELSE
00332                         IOFF = IZERO
00333                         DO 40 I = 1, IZERO - 1
00334                            A( IOFF ) = ZERO
00335                            IOFF = IOFF + LDA
00336    40                   CONTINUE
00337                         IOFF = IOFF - IZERO
00338                         DO 50 I = IZERO, N
00339                            A( IOFF+I ) = ZERO
00340    50                   CONTINUE
00341                      END IF
00342                   ELSE
00343                      IOFF = 0
00344                      IF( IUPLO.EQ.1 ) THEN
00345 *
00346 *                       Set the first IZERO rows and columns to zero.
00347 *
00348                         DO 70 J = 1, N
00349                            I2 = MIN( J, IZERO )
00350                            DO 60 I = 1, I2
00351                               A( IOFF+I ) = ZERO
00352    60                      CONTINUE
00353                            IOFF = IOFF + LDA
00354    70                   CONTINUE
00355                      ELSE
00356 *
00357 *                       Set the last IZERO rows and columns to zero.
00358 *
00359                         DO 90 J = 1, N
00360                            I1 = MAX( J, IZERO )
00361                            DO 80 I = I1, N
00362                               A( IOFF+I ) = ZERO
00363    80                      CONTINUE
00364                            IOFF = IOFF + LDA
00365    90                   CONTINUE
00366                      END IF
00367                   END IF
00368                ELSE
00369                   IZERO = 0
00370                END IF
00371 *
00372 *              Set the imaginary part of the diagonals.
00373 *
00374                CALL ZLAIPD( N, A, LDA+1, 0 )
00375 *
00376                DO 150 IFACT = 1, NFACT
00377 *
00378 *                 Do first for FACT = 'F', then for other values.
00379 *
00380                   FACT = FACTS( IFACT )
00381 *
00382 *                 Compute the condition number for comparison with
00383 *                 the value returned by ZHESVX.
00384 *
00385                   IF( ZEROT ) THEN
00386                      IF( IFACT.EQ.1 )
00387      $                  GO TO 150
00388                      RCONDC = ZERO
00389 *
00390                   ELSE IF( IFACT.EQ.1 ) THEN
00391 *
00392 *                    Compute the 1-norm of A.
00393 *
00394                      ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
00395 *
00396 *                    Factor the matrix A.
00397 *
00398                      CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
00399                      CALL ZHETRF( UPLO, N, AFAC, LDA, IWORK, WORK,
00400      $                            LWORK, INFO )
00401 *
00402 *                    Compute inv(A) and take its norm.
00403 *
00404                      CALL ZLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
00405                      LWORK = (N+NB+1)*(NB+3)
00406                      CALL ZHETRI2( UPLO, N, AINV, LDA, IWORK, WORK,
00407      $                            LWORK, INFO )
00408                      AINVNM = ZLANHE( '1', UPLO, N, AINV, LDA, RWORK )
00409 *
00410 *                    Compute the 1-norm condition number of A.
00411 *
00412                      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
00413                         RCONDC = ONE
00414                      ELSE
00415                         RCONDC = ( ONE / ANORM ) / AINVNM
00416                      END IF
00417                   END IF
00418 *
00419 *                 Form an exact solution and set the right hand side.
00420 *
00421                   SRNAMT = 'ZLARHS'
00422                   CALL ZLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
00423      $                         NRHS, A, LDA, XACT, LDA, B, LDA, ISEED,
00424      $                         INFO )
00425                   XTYPE = 'C'
00426 *
00427 *                 --- Test ZHESV  ---
00428 *
00429                   IF( IFACT.EQ.2 ) THEN
00430                      CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
00431                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
00432 *
00433 *                    Factor the matrix and solve the system using ZHESV.
00434 *
00435                      SRNAMT = 'ZHESV '
00436                      CALL ZHESV( UPLO, N, NRHS, AFAC, LDA, IWORK, X,
00437      $                           LDA, WORK, LWORK, INFO )
00438 *
00439 *                    Adjust the expected value of INFO to account for
00440 *                    pivoting.
00441 *
00442                      K = IZERO
00443                      IF( K.GT.0 ) THEN
00444   100                   CONTINUE
00445                         IF( IWORK( K ).LT.0 ) THEN
00446                            IF( IWORK( K ).NE.-K ) THEN
00447                               K = -IWORK( K )
00448                               GO TO 100
00449                            END IF
00450                         ELSE IF( IWORK( K ).NE.K ) THEN
00451                            K = IWORK( K )
00452                            GO TO 100
00453                         END IF
00454                      END IF
00455 *
00456 *                    Check error code from ZHESV .
00457 *
00458                      IF( INFO.NE.K ) THEN
00459                         CALL ALAERH( PATH, 'ZHESV ', INFO, K, UPLO, N,
00460      $                               N, -1, -1, NRHS, IMAT, NFAIL,
00461      $                               NERRS, NOUT )
00462                         GO TO 120
00463                      ELSE IF( INFO.NE.0 ) THEN
00464                         GO TO 120
00465                      END IF
00466 *
00467 *                    Reconstruct matrix from factors and compute
00468 *                    residual.
00469 *
00470                      CALL ZHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
00471      $                            AINV, LDA, RWORK, RESULT( 1 ) )
00472 *
00473 *                    Compute residual of the computed solution.
00474 *
00475                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00476                      CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
00477      $                            LDA, RWORK, RESULT( 2 ) )
00478 *
00479 *                    Check solution from generated exact solution.
00480 *
00481                      CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00482      $                            RESULT( 3 ) )
00483                      NT = 3
00484 *
00485 *                    Print information about the tests that did not pass
00486 *                    the threshold.
00487 *
00488                      DO 110 K = 1, NT
00489                         IF( RESULT( K ).GE.THRESH ) THEN
00490                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00491      $                        CALL ALADHD( NOUT, PATH )
00492                            WRITE( NOUT, FMT = 9999 )'ZHESV ', UPLO, N,
00493      $                        IMAT, K, RESULT( K )
00494                            NFAIL = NFAIL + 1
00495                         END IF
00496   110                CONTINUE
00497                      NRUN = NRUN + NT
00498   120                CONTINUE
00499                   END IF
00500 *
00501 *                 --- Test ZHESVX ---
00502 *
00503                   IF( IFACT.EQ.2 )
00504      $               CALL ZLASET( UPLO, N, N, DCMPLX( ZERO ),
00505      $                            DCMPLX( ZERO ), AFAC, LDA )
00506                   CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
00507      $                         DCMPLX( ZERO ), X, LDA )
00508 *
00509 *                 Solve the system and compute the condition number and
00510 *                 error bounds using ZHESVX.
00511 *
00512                   SRNAMT = 'ZHESVX'
00513                   CALL ZHESVX( FACT, UPLO, N, NRHS, A, LDA, AFAC, LDA,
00514      $                         IWORK, B, LDA, X, LDA, RCOND, RWORK,
00515      $                         RWORK( NRHS+1 ), WORK, LWORK,
00516      $                         RWORK( 2*NRHS+1 ), INFO )
00517 *
00518 *                 Adjust the expected value of INFO to account for
00519 *                 pivoting.
00520 *
00521                   K = IZERO
00522                   IF( K.GT.0 ) THEN
00523   130                CONTINUE
00524                      IF( IWORK( K ).LT.0 ) THEN
00525                         IF( IWORK( K ).NE.-K ) THEN
00526                            K = -IWORK( K )
00527                            GO TO 130
00528                         END IF
00529                      ELSE IF( IWORK( K ).NE.K ) THEN
00530                         K = IWORK( K )
00531                         GO TO 130
00532                      END IF
00533                   END IF
00534 *
00535 *                 Check the error code from ZHESVX.
00536 *
00537                   IF( INFO.NE.K ) THEN
00538                      CALL ALAERH( PATH, 'ZHESVX', INFO, K, FACT // UPLO,
00539      $                            N, N, -1, -1, NRHS, IMAT, NFAIL,
00540      $                            NERRS, NOUT )
00541                      GO TO 150
00542                   END IF
00543 *
00544                   IF( INFO.EQ.0 ) THEN
00545                      IF( IFACT.GE.2 ) THEN
00546 *
00547 *                       Reconstruct matrix from factors and compute
00548 *                       residual.
00549 *
00550                         CALL ZHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
00551      $                               AINV, LDA, RWORK( 2*NRHS+1 ),
00552      $                               RESULT( 1 ) )
00553                         K1 = 1
00554                      ELSE
00555                         K1 = 2
00556                      END IF
00557 *
00558 *                    Compute residual of the computed solution.
00559 *
00560                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00561                      CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
00562      $                            LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) )
00563 *
00564 *                    Check solution from generated exact solution.
00565 *
00566                      CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00567      $                            RESULT( 3 ) )
00568 *
00569 *                    Check the error bounds from iterative refinement.
00570 *
00571                      CALL ZPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA,
00572      $                            XACT, LDA, RWORK, RWORK( NRHS+1 ),
00573      $                            RESULT( 4 ) )
00574                   ELSE
00575                      K1 = 6
00576                   END IF
00577 *
00578 *                 Compare RCOND from ZHESVX with the computed value
00579 *                 in RCONDC.
00580 *
00581                   RESULT( 6 ) = DGET06( RCOND, RCONDC )
00582 *
00583 *                 Print information about the tests that did not pass
00584 *                 the threshold.
00585 *
00586                   DO 140 K = K1, 6
00587                      IF( RESULT( K ).GE.THRESH ) THEN
00588                         IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00589      $                     CALL ALADHD( NOUT, PATH )
00590                         WRITE( NOUT, FMT = 9998 )'ZHESVX', FACT, UPLO,
00591      $                     N, IMAT, K, RESULT( K )
00592                         NFAIL = NFAIL + 1
00593                      END IF
00594   140             CONTINUE
00595                   NRUN = NRUN + 7 - K1
00596 *
00597 *                 --- Test ZHESVXX ---
00598 *
00599 *                 Restore the matrices A and B.
00600 *
00601                   IF( IFACT.EQ.2 )
00602      $               CALL ZLASET( UPLO, N, N, CMPLX( ZERO ),
00603      $                 CMPLX( ZERO ), AFAC, LDA )
00604                   CALL ZLASET( 'Full', N, NRHS, CMPLX( ZERO ),
00605      $                 CMPLX( ZERO ), X, LDA )
00606 *
00607 *                 Solve the system and compute the condition number
00608 *                 and error bounds using ZHESVXX.
00609 *
00610                   SRNAMT = 'ZHESVXX'
00611                   N_ERR_BNDS = 3
00612                   EQUED = 'N'
00613                   CALL ZHESVXX( FACT, UPLO, N, NRHS, A, LDA, AFAC,
00614      $                 LDA, IWORK, EQUED, WORK( N+1 ), B, LDA, X,
00615      $                 LDA, RCOND, RPVGRW_SVXX, BERR, N_ERR_BNDS,
00616      $                 ERRBNDS_N, ERRBNDS_C, 0, ZERO, WORK,
00617      $                 RWORK, INFO )
00618 *
00619 *                 Adjust the expected value of INFO to account for
00620 *                 pivoting.
00621 *
00622                   K = IZERO
00623                   IF( K.GT.0 ) THEN
00624  135                 CONTINUE
00625                      IF( IWORK( K ).LT.0 ) THEN
00626                         IF( IWORK( K ).NE.-K ) THEN
00627                            K = -IWORK( K )
00628                            GO TO 135
00629                         END IF
00630                      ELSE IF( IWORK( K ).NE.K ) THEN
00631                         K = IWORK( K )
00632                         GO TO 135
00633                      END IF
00634                   END IF
00635 *
00636 *                 Check the error code from ZHESVXX.
00637 *
00638                   IF( INFO.NE.K .AND. INFO.LE.N) THEN
00639                      CALL ALAERH( PATH, 'ZHESVXX', INFO, K,
00640      $                    FACT // UPLO, N, N, -1, -1, NRHS, IMAT, NFAIL,
00641      $                    NERRS, NOUT )
00642                      GO TO 150
00643                   END IF
00644 *
00645                   IF( INFO.EQ.0 ) THEN
00646                      IF( IFACT.GE.2 ) THEN
00647 *
00648 *                 Reconstruct matrix from factors and compute
00649 *                 residual.
00650 *
00651                         CALL ZHET01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
00652      $                       AINV, LDA, RWORK(2*NRHS+1),
00653      $                       RESULT( 1 ) )
00654                         K1 = 1
00655                      ELSE
00656                         K1 = 2
00657                      END IF
00658 *
00659 *                 Compute residual of the computed solution.
00660 *
00661                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00662                      CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
00663      $                    LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) )
00664                      RESULT( 2 ) = 0.0
00665 *
00666 *                 Check solution from generated exact solution.
00667 *
00668                      CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00669      $                    RESULT( 3 ) )
00670 *
00671 *                 Check the error bounds from iterative refinement.
00672 *
00673                      CALL ZPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA,
00674      $                    XACT, LDA, RWORK, RWORK( NRHS+1 ),
00675      $                    RESULT( 4 ) )
00676                   ELSE
00677                      K1 = 6
00678                   END IF
00679 *
00680 *                 Compare RCOND from ZHESVXX with the computed value
00681 *                 in RCONDC.
00682 *
00683                   RESULT( 6 ) = DGET06( RCOND, RCONDC )
00684 *
00685 *                 Print information about the tests that did not pass
00686 *                 the threshold.
00687 *
00688                   DO 85 K = K1, 6
00689                      IF( RESULT( K ).GE.THRESH ) THEN
00690                         IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00691      $                       CALL ALADHD( NOUT, PATH )
00692                         WRITE( NOUT, FMT = 9998 )'ZHESVXX',
00693      $                       FACT, UPLO, N, IMAT, K,
00694      $                       RESULT( K )
00695                         NFAIL = NFAIL + 1
00696                      END IF
00697  85               CONTINUE
00698                   NRUN = NRUN + 7 - K1
00699 *
00700   150          CONTINUE
00701 *
00702   160       CONTINUE
00703   170    CONTINUE
00704   180 CONTINUE
00705 *
00706 *     Print a summary of the results.
00707 *
00708       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
00709 *
00710 
00711 *     Test Error Bounds from ZHESVXX
00712 
00713       CALL ZEBCHVXX(THRESH, PATH)
00714 
00715  9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2,
00716      $      ', test ', I2, ', ratio =', G12.5 )
00717  9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5,
00718      $      ', type ', I2, ', test ', I2, ', ratio =', G12.5 )
00719       RETURN
00720 *
00721 *     End of ZDRVHE
00722 *
00723       END
 All Files Functions