LAPACK  3.4.1
LAPACK: Linear Algebra PACKage
ddrvpp.f
Go to the documentation of this file.
00001 *> \brief \b DDRVPP
00002 *
00003 *  =========== DOCUMENTATION ===========
00004 *
00005 * Online html documentation available at 
00006 *            http://www.netlib.org/lapack/explore-html/ 
00007 *
00008 *  Definition:
00009 *  ===========
00010 *
00011 *       SUBROUTINE DDRVPP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
00012 *                          A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
00013 *                          RWORK, IWORK, NOUT )
00014 * 
00015 *       .. Scalar Arguments ..
00016 *       LOGICAL            TSTERR
00017 *       INTEGER            NMAX, NN, NOUT, NRHS
00018 *       DOUBLE PRECISION   THRESH
00019 *       ..
00020 *       .. Array Arguments ..
00021 *       LOGICAL            DOTYPE( * )
00022 *       INTEGER            IWORK( * ), NVAL( * )
00023 *       DOUBLE PRECISION   A( * ), AFAC( * ), ASAV( * ), B( * ),
00024 *      $                   BSAV( * ), RWORK( * ), S( * ), WORK( * ),
00025 *      $                   X( * ), XACT( * )
00026 *       ..
00027 *  
00028 *
00029 *> \par Purpose:
00030 *  =============
00031 *>
00032 *> \verbatim
00033 *>
00034 *> DDRVPP tests the driver routines DPPSV and -SVX.
00035 *> \endverbatim
00036 *
00037 *  Arguments:
00038 *  ==========
00039 *
00040 *> \param[in] DOTYPE
00041 *> \verbatim
00042 *>          DOTYPE is LOGICAL array, dimension (NTYPES)
00043 *>          The matrix types to be used for testing.  Matrices of type j
00044 *>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
00045 *>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
00046 *> \endverbatim
00047 *>
00048 *> \param[in] NN
00049 *> \verbatim
00050 *>          NN is INTEGER
00051 *>          The number of values of N contained in the vector NVAL.
00052 *> \endverbatim
00053 *>
00054 *> \param[in] NVAL
00055 *> \verbatim
00056 *>          NVAL is INTEGER array, dimension (NN)
00057 *>          The values of the matrix dimension N.
00058 *> \endverbatim
00059 *>
00060 *> \param[in] NRHS
00061 *> \verbatim
00062 *>          NRHS is INTEGER
00063 *>          The number of right hand side vectors to be generated for
00064 *>          each linear system.
00065 *> \endverbatim
00066 *>
00067 *> \param[in] THRESH
00068 *> \verbatim
00069 *>          THRESH is DOUBLE PRECISION
00070 *>          The threshold value for the test ratios.  A result is
00071 *>          included in the output file if RESULT >= THRESH.  To have
00072 *>          every test ratio printed, use THRESH = 0.
00073 *> \endverbatim
00074 *>
00075 *> \param[in] TSTERR
00076 *> \verbatim
00077 *>          TSTERR is LOGICAL
00078 *>          Flag that indicates whether error exits are to be tested.
00079 *> \endverbatim
00080 *>
00081 *> \param[in] NMAX
00082 *> \verbatim
00083 *>          NMAX is INTEGER
00084 *>          The maximum value permitted for N, used in dimensioning the
00085 *>          work arrays.
00086 *> \endverbatim
00087 *>
00088 *> \param[out] A
00089 *> \verbatim
00090 *>          A is DOUBLE PRECISION array, dimension
00091 *>                      (NMAX*(NMAX+1)/2)
00092 *> \endverbatim
00093 *>
00094 *> \param[out] AFAC
00095 *> \verbatim
00096 *>          AFAC is DOUBLE PRECISION array, dimension
00097 *>                      (NMAX*(NMAX+1)/2)
00098 *> \endverbatim
00099 *>
00100 *> \param[out] ASAV
00101 *> \verbatim
00102 *>          ASAV is DOUBLE PRECISION array, dimension
00103 *>                      (NMAX*(NMAX+1)/2)
00104 *> \endverbatim
00105 *>
00106 *> \param[out] B
00107 *> \verbatim
00108 *>          B is DOUBLE PRECISION array, dimension (NMAX*NRHS)
00109 *> \endverbatim
00110 *>
00111 *> \param[out] BSAV
00112 *> \verbatim
00113 *>          BSAV is DOUBLE PRECISION array, dimension (NMAX*NRHS)
00114 *> \endverbatim
00115 *>
00116 *> \param[out] X
00117 *> \verbatim
00118 *>          X is DOUBLE PRECISION array, dimension (NMAX*NRHS)
00119 *> \endverbatim
00120 *>
00121 *> \param[out] XACT
00122 *> \verbatim
00123 *>          XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)
00124 *> \endverbatim
00125 *>
00126 *> \param[out] S
00127 *> \verbatim
00128 *>          S is DOUBLE PRECISION array, dimension (NMAX)
00129 *> \endverbatim
00130 *>
00131 *> \param[out] WORK
00132 *> \verbatim
00133 *>          WORK is DOUBLE PRECISION array, dimension
00134 *>                      (NMAX*max(3,NRHS))
00135 *> \endverbatim
00136 *>
00137 *> \param[out] RWORK
00138 *> \verbatim
00139 *>          RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
00140 *> \endverbatim
00141 *>
00142 *> \param[out] IWORK
00143 *> \verbatim
00144 *>          IWORK is INTEGER array, dimension (NMAX)
00145 *> \endverbatim
00146 *>
00147 *> \param[in] NOUT
00148 *> \verbatim
00149 *>          NOUT is INTEGER
00150 *>          The unit number for output.
00151 *> \endverbatim
00152 *
00153 *  Authors:
00154 *  ========
00155 *
00156 *> \author Univ. of Tennessee 
00157 *> \author Univ. of California Berkeley 
00158 *> \author Univ. of Colorado Denver 
00159 *> \author NAG Ltd. 
00160 *
00161 *> \date November 2011
00162 *
00163 *> \ingroup double_lin
00164 *
00165 *  =====================================================================
00166       SUBROUTINE DDRVPP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
00167      $                   A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
00168      $                   RWORK, IWORK, NOUT )
00169 *
00170 *  -- LAPACK test routine (version 3.4.0) --
00171 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00172 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00173 *     November 2011
00174 *
00175 *     .. Scalar Arguments ..
00176       LOGICAL            TSTERR
00177       INTEGER            NMAX, NN, NOUT, NRHS
00178       DOUBLE PRECISION   THRESH
00179 *     ..
00180 *     .. Array Arguments ..
00181       LOGICAL            DOTYPE( * )
00182       INTEGER            IWORK( * ), NVAL( * )
00183       DOUBLE PRECISION   A( * ), AFAC( * ), ASAV( * ), B( * ),
00184      $                   BSAV( * ), RWORK( * ), S( * ), WORK( * ),
00185      $                   X( * ), XACT( * )
00186 *     ..
00187 *
00188 *  =====================================================================
00189 *
00190 *     .. Parameters ..
00191       DOUBLE PRECISION   ONE, ZERO
00192       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
00193       INTEGER            NTYPES
00194       PARAMETER          ( NTYPES = 9 )
00195       INTEGER            NTESTS
00196       PARAMETER          ( NTESTS = 6 )
00197 *     ..
00198 *     .. Local Scalars ..
00199       LOGICAL            EQUIL, NOFACT, PREFAC, ZEROT
00200       CHARACTER          DIST, EQUED, FACT, PACKIT, TYPE, UPLO, XTYPE
00201       CHARACTER*3        PATH
00202       INTEGER            I, IEQUED, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
00203      $                   IZERO, K, K1, KL, KU, LDA, MODE, N, NERRS,
00204      $                   NFACT, NFAIL, NIMAT, NPP, NRUN, NT
00205       DOUBLE PRECISION   AINVNM, AMAX, ANORM, CNDNUM, RCOND, RCONDC,
00206      $                   ROLDC, SCOND
00207 *     ..
00208 *     .. Local Arrays ..
00209       CHARACTER          EQUEDS( 2 ), FACTS( 3 ), PACKS( 2 ), UPLOS( 2 )
00210       INTEGER            ISEED( 4 ), ISEEDY( 4 )
00211       DOUBLE PRECISION   RESULT( NTESTS )
00212 *     ..
00213 *     .. External Functions ..
00214       LOGICAL            LSAME
00215       DOUBLE PRECISION   DGET06, DLANSP
00216       EXTERNAL           LSAME, DGET06, DLANSP
00217 *     ..
00218 *     .. External Subroutines ..
00219       EXTERNAL           ALADHD, ALAERH, ALASVM, DCOPY, DERRVX, DGET04,
00220      $                   DLACPY, DLAQSP, DLARHS, DLASET, DLATB4, DLATMS,
00221      $                   DPPEQU, DPPSV, DPPSVX, DPPT01, DPPT02, DPPT05,
00222      $                   DPPTRF, DPPTRI
00223 *     ..
00224 *     .. Scalars in Common ..
00225       LOGICAL            LERR, OK
00226       CHARACTER*32       SRNAMT
00227       INTEGER            INFOT, NUNIT
00228 *     ..
00229 *     .. Common blocks ..
00230       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
00231       COMMON             / SRNAMC / SRNAMT
00232 *     ..
00233 *     .. Intrinsic Functions ..
00234       INTRINSIC          MAX
00235 *     ..
00236 *     .. Data statements ..
00237       DATA               ISEEDY / 1988, 1989, 1990, 1991 /
00238       DATA               UPLOS / 'U', 'L' / , FACTS / 'F', 'N', 'E' / ,
00239      $                   PACKS / 'C', 'R' / , EQUEDS / 'N', 'Y' /
00240 *     ..
00241 *     .. Executable Statements ..
00242 *
00243 *     Initialize constants and the random number seed.
00244 *
00245       PATH( 1: 1 ) = 'Double precision'
00246       PATH( 2: 3 ) = 'PP'
00247       NRUN = 0
00248       NFAIL = 0
00249       NERRS = 0
00250       DO 10 I = 1, 4
00251          ISEED( I ) = ISEEDY( I )
00252    10 CONTINUE
00253 *
00254 *     Test the error exits
00255 *
00256       IF( TSTERR )
00257      $   CALL DERRVX( PATH, NOUT )
00258       INFOT = 0
00259 *
00260 *     Do for each value of N in NVAL
00261 *
00262       DO 140 IN = 1, NN
00263          N = NVAL( IN )
00264          LDA = MAX( N, 1 )
00265          NPP = N*( N+1 ) / 2
00266          XTYPE = 'N'
00267          NIMAT = NTYPES
00268          IF( N.LE.0 )
00269      $      NIMAT = 1
00270 *
00271          DO 130 IMAT = 1, NIMAT
00272 *
00273 *           Do the tests only if DOTYPE( IMAT ) is true.
00274 *
00275             IF( .NOT.DOTYPE( IMAT ) )
00276      $         GO TO 130
00277 *
00278 *           Skip types 3, 4, or 5 if the matrix size is too small.
00279 *
00280             ZEROT = IMAT.GE.3 .AND. IMAT.LE.5
00281             IF( ZEROT .AND. N.LT.IMAT-2 )
00282      $         GO TO 130
00283 *
00284 *           Do first for UPLO = 'U', then for UPLO = 'L'
00285 *
00286             DO 120 IUPLO = 1, 2
00287                UPLO = UPLOS( IUPLO )
00288                PACKIT = PACKS( IUPLO )
00289 *
00290 *              Set up parameters with DLATB4 and generate a test matrix
00291 *              with DLATMS.
00292 *
00293                CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
00294      $                      CNDNUM, DIST )
00295                RCONDC = ONE / CNDNUM
00296 *
00297                SRNAMT = 'DLATMS'
00298                CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
00299      $                      CNDNUM, ANORM, KL, KU, PACKIT, A, LDA, WORK,
00300      $                      INFO )
00301 *
00302 *              Check error code from DLATMS.
00303 *
00304                IF( INFO.NE.0 ) THEN
00305                   CALL ALAERH( PATH, 'DLATMS', INFO, 0, UPLO, N, N, -1,
00306      $                         -1, -1, IMAT, NFAIL, NERRS, NOUT )
00307                   GO TO 120
00308                END IF
00309 *
00310 *              For types 3-5, zero one row and column of the matrix to
00311 *              test that INFO is returned correctly.
00312 *
00313                IF( ZEROT ) THEN
00314                   IF( IMAT.EQ.3 ) THEN
00315                      IZERO = 1
00316                   ELSE IF( IMAT.EQ.4 ) THEN
00317                      IZERO = N
00318                   ELSE
00319                      IZERO = N / 2 + 1
00320                   END IF
00321 *
00322 *                 Set row and column IZERO of A to 0.
00323 *
00324                   IF( IUPLO.EQ.1 ) THEN
00325                      IOFF = ( IZERO-1 )*IZERO / 2
00326                      DO 20 I = 1, IZERO - 1
00327                         A( IOFF+I ) = ZERO
00328    20                CONTINUE
00329                      IOFF = IOFF + IZERO
00330                      DO 30 I = IZERO, N
00331                         A( IOFF ) = ZERO
00332                         IOFF = IOFF + I
00333    30                CONTINUE
00334                   ELSE
00335                      IOFF = IZERO
00336                      DO 40 I = 1, IZERO - 1
00337                         A( IOFF ) = ZERO
00338                         IOFF = IOFF + N - I
00339    40                CONTINUE
00340                      IOFF = IOFF - IZERO
00341                      DO 50 I = IZERO, N
00342                         A( IOFF+I ) = ZERO
00343    50                CONTINUE
00344                   END IF
00345                ELSE
00346                   IZERO = 0
00347                END IF
00348 *
00349 *              Save a copy of the matrix A in ASAV.
00350 *
00351                CALL DCOPY( NPP, A, 1, ASAV, 1 )
00352 *
00353                DO 110 IEQUED = 1, 2
00354                   EQUED = EQUEDS( IEQUED )
00355                   IF( IEQUED.EQ.1 ) THEN
00356                      NFACT = 3
00357                   ELSE
00358                      NFACT = 1
00359                   END IF
00360 *
00361                   DO 100 IFACT = 1, NFACT
00362                      FACT = FACTS( IFACT )
00363                      PREFAC = LSAME( FACT, 'F' )
00364                      NOFACT = LSAME( FACT, 'N' )
00365                      EQUIL = LSAME( FACT, 'E' )
00366 *
00367                      IF( ZEROT ) THEN
00368                         IF( PREFAC )
00369      $                     GO TO 100
00370                         RCONDC = ZERO
00371 *
00372                      ELSE IF( .NOT.LSAME( FACT, 'N' ) ) THEN
00373 *
00374 *                       Compute the condition number for comparison with
00375 *                       the value returned by DPPSVX (FACT = 'N' reuses
00376 *                       the condition number from the previous iteration
00377 *                       with FACT = 'F').
00378 *
00379                         CALL DCOPY( NPP, ASAV, 1, AFAC, 1 )
00380                         IF( EQUIL .OR. IEQUED.GT.1 ) THEN
00381 *
00382 *                          Compute row and column scale factors to
00383 *                          equilibrate the matrix A.
00384 *
00385                            CALL DPPEQU( UPLO, N, AFAC, S, SCOND, AMAX,
00386      $                                  INFO )
00387                            IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
00388                               IF( IEQUED.GT.1 )
00389      $                           SCOND = ZERO
00390 *
00391 *                             Equilibrate the matrix.
00392 *
00393                               CALL DLAQSP( UPLO, N, AFAC, S, SCOND,
00394      $                                     AMAX, EQUED )
00395                            END IF
00396                         END IF
00397 *
00398 *                       Save the condition number of the
00399 *                       non-equilibrated system for use in DGET04.
00400 *
00401                         IF( EQUIL )
00402      $                     ROLDC = RCONDC
00403 *
00404 *                       Compute the 1-norm of A.
00405 *
00406                         ANORM = DLANSP( '1', UPLO, N, AFAC, RWORK )
00407 *
00408 *                       Factor the matrix A.
00409 *
00410                         CALL DPPTRF( UPLO, N, AFAC, INFO )
00411 *
00412 *                       Form the inverse of A.
00413 *
00414                         CALL DCOPY( NPP, AFAC, 1, A, 1 )
00415                         CALL DPPTRI( UPLO, N, A, INFO )
00416 *
00417 *                       Compute the 1-norm condition number of A.
00418 *
00419                         AINVNM = DLANSP( '1', UPLO, N, A, RWORK )
00420                         IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
00421                            RCONDC = ONE
00422                         ELSE
00423                            RCONDC = ( ONE / ANORM ) / AINVNM
00424                         END IF
00425                      END IF
00426 *
00427 *                    Restore the matrix A.
00428 *
00429                      CALL DCOPY( NPP, ASAV, 1, A, 1 )
00430 *
00431 *                    Form an exact solution and set the right hand side.
00432 *
00433                      SRNAMT = 'DLARHS'
00434                      CALL DLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
00435      $                            NRHS, A, LDA, XACT, LDA, B, LDA,
00436      $                            ISEED, INFO )
00437                      XTYPE = 'C'
00438                      CALL DLACPY( 'Full', N, NRHS, B, LDA, BSAV, LDA )
00439 *
00440                      IF( NOFACT ) THEN
00441 *
00442 *                       --- Test DPPSV  ---
00443 *
00444 *                       Compute the L*L' or U'*U factorization of the
00445 *                       matrix and solve the system.
00446 *
00447                         CALL DCOPY( NPP, A, 1, AFAC, 1 )
00448                         CALL DLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
00449 *
00450                         SRNAMT = 'DPPSV '
00451                         CALL DPPSV( UPLO, N, NRHS, AFAC, X, LDA, INFO )
00452 *
00453 *                       Check error code from DPPSV .
00454 *
00455                         IF( INFO.NE.IZERO ) THEN
00456                            CALL ALAERH( PATH, 'DPPSV ', INFO, IZERO,
00457      $                                  UPLO, N, N, -1, -1, NRHS, IMAT,
00458      $                                  NFAIL, NERRS, NOUT )
00459                            GO TO 70
00460                         ELSE IF( INFO.NE.0 ) THEN
00461                            GO TO 70
00462                         END IF
00463 *
00464 *                       Reconstruct matrix from factors and compute
00465 *                       residual.
00466 *
00467                         CALL DPPT01( UPLO, N, A, AFAC, RWORK,
00468      $                               RESULT( 1 ) )
00469 *
00470 *                       Compute residual of the computed solution.
00471 *
00472                         CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK,
00473      $                               LDA )
00474                         CALL DPPT02( UPLO, N, NRHS, A, X, LDA, WORK,
00475      $                               LDA, RWORK, RESULT( 2 ) )
00476 *
00477 *                       Check solution from generated exact solution.
00478 *
00479                         CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00480      $                               RESULT( 3 ) )
00481                         NT = 3
00482 *
00483 *                       Print information about the tests that did not
00484 *                       pass the threshold.
00485 *
00486                         DO 60 K = 1, NT
00487                            IF( RESULT( K ).GE.THRESH ) THEN
00488                               IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00489      $                           CALL ALADHD( NOUT, PATH )
00490                               WRITE( NOUT, FMT = 9999 )'DPPSV ', UPLO,
00491      $                           N, IMAT, K, RESULT( K )
00492                               NFAIL = NFAIL + 1
00493                            END IF
00494    60                   CONTINUE
00495                         NRUN = NRUN + NT
00496    70                   CONTINUE
00497                      END IF
00498 *
00499 *                    --- Test DPPSVX ---
00500 *
00501                      IF( .NOT.PREFAC .AND. NPP.GT.0 )
00502      $                  CALL DLASET( 'Full', NPP, 1, ZERO, ZERO, AFAC,
00503      $                               NPP )
00504                      CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDA )
00505                      IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
00506 *
00507 *                       Equilibrate the matrix if FACT='F' and
00508 *                       EQUED='Y'.
00509 *
00510                         CALL DLAQSP( UPLO, N, A, S, SCOND, AMAX, EQUED )
00511                      END IF
00512 *
00513 *                    Solve the system and compute the condition number
00514 *                    and error bounds using DPPSVX.
00515 *
00516                      SRNAMT = 'DPPSVX'
00517                      CALL DPPSVX( FACT, UPLO, N, NRHS, A, AFAC, EQUED,
00518      $                            S, B, LDA, X, LDA, RCOND, RWORK,
00519      $                            RWORK( NRHS+1 ), WORK, IWORK, INFO )
00520 *
00521 *                    Check the error code from DPPSVX.
00522 *
00523                      IF( INFO.NE.IZERO ) THEN
00524                         CALL ALAERH( PATH, 'DPPSVX', INFO, IZERO,
00525      $                               FACT // UPLO, N, N, -1, -1, NRHS,
00526      $                               IMAT, NFAIL, NERRS, NOUT )
00527                         GO TO 90
00528                      END IF
00529 *
00530                      IF( INFO.EQ.0 ) THEN
00531                         IF( .NOT.PREFAC ) THEN
00532 *
00533 *                          Reconstruct matrix from factors and compute
00534 *                          residual.
00535 *
00536                            CALL DPPT01( UPLO, N, A, AFAC,
00537      $                                  RWORK( 2*NRHS+1 ), RESULT( 1 ) )
00538                            K1 = 1
00539                         ELSE
00540                            K1 = 2
00541                         END IF
00542 *
00543 *                       Compute residual of the computed solution.
00544 *
00545                         CALL DLACPY( 'Full', N, NRHS, BSAV, LDA, WORK,
00546      $                               LDA )
00547                         CALL DPPT02( UPLO, N, NRHS, ASAV, X, LDA, WORK,
00548      $                               LDA, RWORK( 2*NRHS+1 ),
00549      $                               RESULT( 2 ) )
00550 *
00551 *                       Check solution from generated exact solution.
00552 *
00553                         IF( NOFACT .OR. ( PREFAC .AND. LSAME( EQUED,
00554      $                      'N' ) ) ) THEN
00555                            CALL DGET04( N, NRHS, X, LDA, XACT, LDA,
00556      $                                  RCONDC, RESULT( 3 ) )
00557                         ELSE
00558                            CALL DGET04( N, NRHS, X, LDA, XACT, LDA,
00559      $                                  ROLDC, RESULT( 3 ) )
00560                         END IF
00561 *
00562 *                       Check the error bounds from iterative
00563 *                       refinement.
00564 *
00565                         CALL DPPT05( UPLO, N, NRHS, ASAV, B, LDA, X,
00566      $                               LDA, XACT, LDA, RWORK,
00567      $                               RWORK( NRHS+1 ), RESULT( 4 ) )
00568                      ELSE
00569                         K1 = 6
00570                      END IF
00571 *
00572 *                    Compare RCOND from DPPSVX with the computed value
00573 *                    in RCONDC.
00574 *
00575                      RESULT( 6 ) = DGET06( RCOND, RCONDC )
00576 *
00577 *                    Print information about the tests that did not pass
00578 *                    the threshold.
00579 *
00580                      DO 80 K = K1, 6
00581                         IF( RESULT( K ).GE.THRESH ) THEN
00582                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00583      $                        CALL ALADHD( NOUT, PATH )
00584                            IF( PREFAC ) THEN
00585                               WRITE( NOUT, FMT = 9997 )'DPPSVX', FACT,
00586      $                           UPLO, N, EQUED, IMAT, K, RESULT( K )
00587                            ELSE
00588                               WRITE( NOUT, FMT = 9998 )'DPPSVX', FACT,
00589      $                           UPLO, N, IMAT, K, RESULT( K )
00590                            END IF
00591                            NFAIL = NFAIL + 1
00592                         END IF
00593    80                CONTINUE
00594                      NRUN = NRUN + 7 - K1
00595    90                CONTINUE
00596   100             CONTINUE
00597   110          CONTINUE
00598   120       CONTINUE
00599   130    CONTINUE
00600   140 CONTINUE
00601 *
00602 *     Print a summary of the results.
00603 *
00604       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
00605 *
00606  9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I1,
00607      $      ', test(', I1, ')=', G12.5 )
00608  9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N=', I5,
00609      $      ', type ', I1, ', test(', I1, ')=', G12.5 )
00610  9997 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N=', I5,
00611      $      ', EQUED=''', A1, ''', type ', I1, ', test(', I1, ')=',
00612      $      G12.5 )
00613       RETURN
00614 *
00615 *     End of DDRVPP
00616 *
00617       END
 All Files Functions