LAPACK  3.4.1
LAPACK: Linear Algebra PACKage
zdrvsyx.f
Go to the documentation of this file.
00001 *> \brief \b ZDRVSYX
00002 *
00003 *  =========== DOCUMENTATION ===========
00004 *
00005 * Online html documentation available at 
00006 *            http://www.netlib.org/lapack/explore-html/ 
00007 *
00008 *  Definition:
00009 *  ===========
00010 *
00011 *       SUBROUTINE ZDRVSY( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
00012 *                          A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
00013 *                          NOUT )
00014 * 
00015 *       .. Scalar Arguments ..
00016 *       LOGICAL            TSTERR
00017 *       INTEGER            NMAX, NN, NOUT, NRHS
00018 *       DOUBLE PRECISION   THRESH
00019 *       ..
00020 *       .. Array Arguments ..
00021 *       LOGICAL            DOTYPE( * )
00022 *       INTEGER            IWORK( * ), NVAL( * )
00023 *       DOUBLE PRECISION   RWORK( * )
00024 *       COMPLEX*16         A( * ), AFAC( * ), AINV( * ), B( * ),
00025 *      $                   WORK( * ), X( * ), XACT( * )
00026 *       ..
00027 *  
00028 *
00029 *> \par Purpose:
00030 *  =============
00031 *>
00032 *> \verbatim
00033 *>
00034 *> ZDRVSY tests the driver routines ZSYSV, -SVX, and -SVXX.
00035 *>
00036 *> Note that this file is used only when the XBLAS are available,
00037 *> otherwise zdrvsy.f defines this subroutine.
00038 *> \endverbatim
00039 *
00040 *  Arguments:
00041 *  ==========
00042 *
00043 *> \param[in] DOTYPE
00044 *> \verbatim
00045 *>          DOTYPE is LOGICAL array, dimension (NTYPES)
00046 *>          The matrix types to be used for testing.  Matrices of type j
00047 *>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
00048 *>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
00049 *> \endverbatim
00050 *>
00051 *> \param[in] NN
00052 *> \verbatim
00053 *>          NN is INTEGER
00054 *>          The number of values of N contained in the vector NVAL.
00055 *> \endverbatim
00056 *>
00057 *> \param[in] NVAL
00058 *> \verbatim
00059 *>          NVAL is INTEGER array, dimension (NN)
00060 *>          The values of the matrix dimension N.
00061 *> \endverbatim
00062 *>
00063 *> \param[in] NRHS
00064 *> \verbatim
00065 *>          NRHS is INTEGER
00066 *>          The number of right hand side vectors to be generated for
00067 *>          each linear system.
00068 *> \endverbatim
00069 *>
00070 *> \param[in] THRESH
00071 *> \verbatim
00072 *>          THRESH is DOUBLE PRECISION
00073 *>          The threshold value for the test ratios.  A result is
00074 *>          included in the output file if RESULT >= THRESH.  To have
00075 *>          every test ratio printed, use THRESH = 0.
00076 *> \endverbatim
00077 *>
00078 *> \param[in] TSTERR
00079 *> \verbatim
00080 *>          TSTERR is LOGICAL
00081 *>          Flag that indicates whether error exits are to be tested.
00082 *> \endverbatim
00083 *>
00084 *> \param[in] NMAX
00085 *> \verbatim
00086 *>          NMAX is INTEGER
00087 *>          The maximum value permitted for N, used in dimensioning the
00088 *>          work arrays.
00089 *> \endverbatim
00090 *>
00091 *> \param[out] A
00092 *> \verbatim
00093 *>          A is COMPLEX*16 array, dimension (NMAX*NMAX)
00094 *> \endverbatim
00095 *>
00096 *> \param[out] AFAC
00097 *> \verbatim
00098 *>          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
00099 *> \endverbatim
00100 *>
00101 *> \param[out] AINV
00102 *> \verbatim
00103 *>          AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
00104 *> \endverbatim
00105 *>
00106 *> \param[out] B
00107 *> \verbatim
00108 *>          B is COMPLEX*16 array, dimension (NMAX*NRHS)
00109 *> \endverbatim
00110 *>
00111 *> \param[out] X
00112 *> \verbatim
00113 *>          X is COMPLEX*16 array, dimension (NMAX*NRHS)
00114 *> \endverbatim
00115 *>
00116 *> \param[out] XACT
00117 *> \verbatim
00118 *>          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
00119 *> \endverbatim
00120 *>
00121 *> \param[out] WORK
00122 *> \verbatim
00123 *>          WORK is COMPLEX*16 array, dimension
00124 *>                      (NMAX*max(2,NRHS))
00125 *> \endverbatim
00126 *>
00127 *> \param[out] RWORK
00128 *> \verbatim
00129 *>          RWORK is DOUBLE PRECISION array, dimension (2*NMAX+2*NRHS)
00130 *> \endverbatim
00131 *>
00132 *> \param[out] IWORK
00133 *> \verbatim
00134 *>          IWORK is INTEGER array, dimension (NMAX)
00135 *> \endverbatim
00136 *>
00137 *> \param[in] NOUT
00138 *> \verbatim
00139 *>          NOUT is INTEGER
00140 *>          The unit number for output.
00141 *> \endverbatim
00142 *
00143 *  Authors:
00144 *  ========
00145 *
00146 *> \author Univ. of Tennessee 
00147 *> \author Univ. of California Berkeley 
00148 *> \author Univ. of Colorado Denver 
00149 *> \author NAG Ltd. 
00150 *
00151 *> \date April 2012
00152 *
00153 *> \ingroup complex16_lin
00154 *
00155 *  =====================================================================
00156       SUBROUTINE ZDRVSY( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
00157      $                   A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
00158      $                   NOUT )
00159 *
00160 *  -- LAPACK test routine (version 3.4.1) --
00161 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00162 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00163 *     April 2012
00164 *
00165 *     .. Scalar Arguments ..
00166       LOGICAL            TSTERR
00167       INTEGER            NMAX, NN, NOUT, NRHS
00168       DOUBLE PRECISION   THRESH
00169 *     ..
00170 *     .. Array Arguments ..
00171       LOGICAL            DOTYPE( * )
00172       INTEGER            IWORK( * ), NVAL( * )
00173       DOUBLE PRECISION   RWORK( * )
00174       COMPLEX*16         A( * ), AFAC( * ), AINV( * ), B( * ),
00175      $                   WORK( * ), X( * ), XACT( * )
00176 *     ..
00177 *
00178 *  =====================================================================
00179 *
00180 *     .. Parameters ..
00181       DOUBLE PRECISION   ONE, ZERO
00182       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
00183       INTEGER            NTYPES, NTESTS
00184       PARAMETER          ( NTYPES = 11, NTESTS = 6 )
00185       INTEGER            NFACT
00186       PARAMETER          ( NFACT = 2 )
00187 *     ..
00188 *     .. Local Scalars ..
00189       LOGICAL            ZEROT
00190       CHARACTER          DIST, EQUED, FACT, TYPE, UPLO, XTYPE
00191       CHARACTER*3        PATH
00192       INTEGER            I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
00193      $                   IZERO, J, K, K1, KL, KU, LDA, LWORK, MODE, N,
00194      $                   NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT,
00195      $                   N_ERR_BNDS
00196       DOUBLE PRECISION   AINVNM, ANORM, CNDNUM, RCOND, RCONDC,
00197      $                   RPVGRW_SVXX
00198 *     ..
00199 *     .. Local Arrays ..
00200       CHARACTER          FACTS( NFACT ), UPLOS( 2 )
00201       INTEGER            ISEED( 4 ), ISEEDY( 4 )
00202       DOUBLE PRECISION   RESULT( NTESTS ), BERR( NRHS ),
00203      $                   ERRBNDS_N( NRHS, 3 ), ERRBNDS_C( NRHS, 3 )
00204 *     ..
00205 *     .. External Functions ..
00206       DOUBLE PRECISION   DGET06, ZLANSY
00207       EXTERNAL           DGET06, ZLANSY
00208 *     ..
00209 *     .. External Subroutines ..
00210       EXTERNAL           ALADHD, ALAERH, ALASVM, XLAENV, ZERRVX, ZGET04,
00211      $                   ZLACPY, ZLARHS, ZLASET, ZLATB4, ZLATMS, ZLATSY,
00212      $                   ZPOT05, ZSYSV, ZSYSVX, ZSYT01, ZSYT02, ZSYTRF,
00213      $                   ZSYTRI2, ZSYSVXX
00214 *     ..
00215 *     .. Scalars in Common ..
00216       LOGICAL            LERR, OK
00217       CHARACTER*32       SRNAMT
00218       INTEGER            INFOT, NUNIT
00219 *     ..
00220 *     .. Common blocks ..
00221       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
00222       COMMON             / SRNAMC / SRNAMT
00223 *     ..
00224 *     .. Intrinsic Functions ..
00225       INTRINSIC          DCMPLX, MAX, MIN
00226 *     ..
00227 *     .. Data statements ..
00228       DATA               ISEEDY / 1988, 1989, 1990, 1991 /
00229       DATA               UPLOS / 'U', 'L' / , FACTS / 'F', 'N' /
00230 *     ..
00231 *     .. Executable Statements ..
00232 *
00233 *     Initialize constants and the random number seed.
00234 *
00235       PATH( 1: 1 ) = 'Zomplex precision'
00236       PATH( 2: 3 ) = 'SY'
00237       NRUN = 0
00238       NFAIL = 0
00239       NERRS = 0
00240       DO 10 I = 1, 4
00241          ISEED( I ) = ISEEDY( I )
00242    10 CONTINUE
00243       LWORK = MAX( 2*NMAX, NMAX*NRHS )
00244 *
00245 *     Test the error exits
00246 *
00247       IF( TSTERR )
00248      $   CALL ZERRVX( PATH, NOUT )
00249       INFOT = 0
00250 *
00251 *     Set the block size and minimum block size for testing.
00252 *
00253       NB = 1
00254       NBMIN = 2
00255       CALL XLAENV( 1, NB )
00256       CALL XLAENV( 2, NBMIN )
00257 *
00258 *     Do for each value of N in NVAL
00259 *
00260       DO 180 IN = 1, NN
00261          N = NVAL( IN )
00262          LDA = MAX( N, 1 )
00263          XTYPE = 'N'
00264          NIMAT = NTYPES
00265          IF( N.LE.0 )
00266      $      NIMAT = 1
00267 *
00268          DO 170 IMAT = 1, NIMAT
00269 *
00270 *           Do the tests only if DOTYPE( IMAT ) is true.
00271 *
00272             IF( .NOT.DOTYPE( IMAT ) )
00273      $         GO TO 170
00274 *
00275 *           Skip types 3, 4, 5, or 6 if the matrix size is too small.
00276 *
00277             ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
00278             IF( ZEROT .AND. N.LT.IMAT-2 )
00279      $         GO TO 170
00280 *
00281 *           Do first for UPLO = 'U', then for UPLO = 'L'
00282 *
00283             DO 160 IUPLO = 1, 2
00284                UPLO = UPLOS( IUPLO )
00285 *
00286                IF( IMAT.NE.NTYPES ) THEN
00287 *
00288 *                 Set up parameters with ZLATB4 and generate a test
00289 *                 matrix with ZLATMS.
00290 *
00291                   CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
00292      $                         MODE, CNDNUM, DIST )
00293 *
00294                   SRNAMT = 'ZLATMS'
00295                   CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
00296      $                         CNDNUM, ANORM, KL, KU, UPLO, A, LDA,
00297      $                         WORK, INFO )
00298 *
00299 *                 Check error code from ZLATMS.
00300 *
00301                   IF( INFO.NE.0 ) THEN
00302                      CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N, N,
00303      $                            -1, -1, -1, IMAT, NFAIL, NERRS, NOUT )
00304                      GO TO 160
00305                   END IF
00306 *
00307 *                 For types 3-6, zero one or more rows and columns of
00308 *                 the matrix to test that INFO is returned correctly.
00309 *
00310                   IF( ZEROT ) THEN
00311                      IF( IMAT.EQ.3 ) THEN
00312                         IZERO = 1
00313                      ELSE IF( IMAT.EQ.4 ) THEN
00314                         IZERO = N
00315                      ELSE
00316                         IZERO = N / 2 + 1
00317                      END IF
00318 *
00319                      IF( IMAT.LT.6 ) THEN
00320 *
00321 *                       Set row and column IZERO to zero.
00322 *
00323                         IF( IUPLO.EQ.1 ) THEN
00324                            IOFF = ( IZERO-1 )*LDA
00325                            DO 20 I = 1, IZERO - 1
00326                               A( IOFF+I ) = ZERO
00327    20                      CONTINUE
00328                            IOFF = IOFF + IZERO
00329                            DO 30 I = IZERO, N
00330                               A( IOFF ) = ZERO
00331                               IOFF = IOFF + LDA
00332    30                      CONTINUE
00333                         ELSE
00334                            IOFF = IZERO
00335                            DO 40 I = 1, IZERO - 1
00336                               A( IOFF ) = ZERO
00337                               IOFF = IOFF + LDA
00338    40                      CONTINUE
00339                            IOFF = IOFF - IZERO
00340                            DO 50 I = IZERO, N
00341                               A( IOFF+I ) = ZERO
00342    50                      CONTINUE
00343                         END IF
00344                      ELSE
00345                         IF( IUPLO.EQ.1 ) THEN
00346 *
00347 *                          Set the first IZERO rows to zero.
00348 *
00349                            IOFF = 0
00350                            DO 70 J = 1, N
00351                               I2 = MIN( J, IZERO )
00352                               DO 60 I = 1, I2
00353                                  A( IOFF+I ) = ZERO
00354    60                         CONTINUE
00355                               IOFF = IOFF + LDA
00356    70                      CONTINUE
00357                         ELSE
00358 *
00359 *                          Set the last IZERO rows to zero.
00360 *
00361                            IOFF = 0
00362                            DO 90 J = 1, N
00363                               I1 = MAX( J, IZERO )
00364                               DO 80 I = I1, N
00365                                  A( IOFF+I ) = ZERO
00366    80                         CONTINUE
00367                               IOFF = IOFF + LDA
00368    90                      CONTINUE
00369                         END IF
00370                      END IF
00371                   ELSE
00372                      IZERO = 0
00373                   END IF
00374                ELSE
00375 *
00376 *                 IMAT = NTYPES:  Use a special block diagonal matrix to
00377 *                 test alternate code for the 2-by-2 blocks.
00378 *
00379                   CALL ZLATSY( UPLO, N, A, LDA, ISEED )
00380                END IF
00381 *
00382                DO 150 IFACT = 1, NFACT
00383 *
00384 *                 Do first for FACT = 'F', then for other values.
00385 *
00386                   FACT = FACTS( IFACT )
00387 *
00388 *                 Compute the condition number for comparison with
00389 *                 the value returned by ZSYSVX.
00390 *
00391                   IF( ZEROT ) THEN
00392                      IF( IFACT.EQ.1 )
00393      $                  GO TO 150
00394                      RCONDC = ZERO
00395 *
00396                   ELSE IF( IFACT.EQ.1 ) THEN
00397 *
00398 *                    Compute the 1-norm of A.
00399 *
00400                      ANORM = ZLANSY( '1', UPLO, N, A, LDA, RWORK )
00401 *
00402 *                    Factor the matrix A.
00403 *
00404                      CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
00405                      CALL ZSYTRF( UPLO, N, AFAC, LDA, IWORK, WORK,
00406      $                            LWORK, INFO )
00407 *
00408 *                    Compute inv(A) and take its norm.
00409 *
00410                      CALL ZLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
00411                      LWORK = (N+NB+1)*(NB+3)
00412                      CALL ZSYTRI2( UPLO, N, AINV, LDA, IWORK, WORK,
00413      $                            LWORK, INFO )
00414                      AINVNM = ZLANSY( '1', UPLO, N, AINV, LDA, RWORK )
00415 *
00416 *                    Compute the 1-norm condition number of A.
00417 *
00418                      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
00419                         RCONDC = ONE
00420                      ELSE
00421                         RCONDC = ( ONE / ANORM ) / AINVNM
00422                      END IF
00423                   END IF
00424 *
00425 *                 Form an exact solution and set the right hand side.
00426 *
00427                   SRNAMT = 'ZLARHS'
00428                   CALL ZLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
00429      $                         NRHS, A, LDA, XACT, LDA, B, LDA, ISEED,
00430      $                         INFO )
00431                   XTYPE = 'C'
00432 *
00433 *                 --- Test ZSYSV  ---
00434 *
00435                   IF( IFACT.EQ.2 ) THEN
00436                      CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
00437                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
00438 *
00439 *                    Factor the matrix and solve the system using ZSYSV.
00440 *
00441                      SRNAMT = 'ZSYSV '
00442                      CALL ZSYSV( UPLO, N, NRHS, AFAC, LDA, IWORK, X,
00443      $                           LDA, WORK, LWORK, INFO )
00444 *
00445 *                    Adjust the expected value of INFO to account for
00446 *                    pivoting.
00447 *
00448                      K = IZERO
00449                      IF( K.GT.0 ) THEN
00450   100                   CONTINUE
00451                         IF( IWORK( K ).LT.0 ) THEN
00452                            IF( IWORK( K ).NE.-K ) THEN
00453                               K = -IWORK( K )
00454                               GO TO 100
00455                            END IF
00456                         ELSE IF( IWORK( K ).NE.K ) THEN
00457                            K = IWORK( K )
00458                            GO TO 100
00459                         END IF
00460                      END IF
00461 *
00462 *                    Check error code from ZSYSV .
00463 *
00464                      IF( INFO.NE.K ) THEN
00465                         CALL ALAERH( PATH, 'ZSYSV ', INFO, K, UPLO, N,
00466      $                               N, -1, -1, NRHS, IMAT, NFAIL,
00467      $                               NERRS, NOUT )
00468                         GO TO 120
00469                      ELSE IF( INFO.NE.0 ) THEN
00470                         GO TO 120
00471                      END IF
00472 *
00473 *                    Reconstruct matrix from factors and compute
00474 *                    residual.
00475 *
00476                      CALL ZSYT01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
00477      $                            AINV, LDA, RWORK, RESULT( 1 ) )
00478 *
00479 *                    Compute residual of the computed solution.
00480 *
00481                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00482                      CALL ZSYT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
00483      $                            LDA, RWORK, RESULT( 2 ) )
00484 *
00485 *                    Check solution from generated exact solution.
00486 *
00487                      CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00488      $                            RESULT( 3 ) )
00489                      NT = 3
00490 *
00491 *                    Print information about the tests that did not pass
00492 *                    the threshold.
00493 *
00494                      DO 110 K = 1, NT
00495                         IF( RESULT( K ).GE.THRESH ) THEN
00496                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00497      $                        CALL ALADHD( NOUT, PATH )
00498                            WRITE( NOUT, FMT = 9999 )'ZSYSV ', UPLO, N,
00499      $                        IMAT, K, RESULT( K )
00500                            NFAIL = NFAIL + 1
00501                         END IF
00502   110                CONTINUE
00503                      NRUN = NRUN + NT
00504   120                CONTINUE
00505                   END IF
00506 *
00507 *                 --- Test ZSYSVX ---
00508 *
00509                   IF( IFACT.EQ.2 )
00510      $               CALL ZLASET( UPLO, N, N, DCMPLX( ZERO ),
00511      $                            DCMPLX( ZERO ), AFAC, LDA )
00512                   CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
00513      $                         DCMPLX( ZERO ), X, LDA )
00514 *
00515 *                 Solve the system and compute the condition number and
00516 *                 error bounds using ZSYSVX.
00517 *
00518                   SRNAMT = 'ZSYSVX'
00519                   CALL ZSYSVX( FACT, UPLO, N, NRHS, A, LDA, AFAC, LDA,
00520      $                         IWORK, B, LDA, X, LDA, RCOND, RWORK,
00521      $                         RWORK( NRHS+1 ), WORK, LWORK,
00522      $                         RWORK( 2*NRHS+1 ), INFO )
00523 *
00524 *                 Adjust the expected value of INFO to account for
00525 *                 pivoting.
00526 *
00527                   K = IZERO
00528                   IF( K.GT.0 ) THEN
00529   130                CONTINUE
00530                      IF( IWORK( K ).LT.0 ) THEN
00531                         IF( IWORK( K ).NE.-K ) THEN
00532                            K = -IWORK( K )
00533                            GO TO 130
00534                         END IF
00535                      ELSE IF( IWORK( K ).NE.K ) THEN
00536                         K = IWORK( K )
00537                         GO TO 130
00538                      END IF
00539                   END IF
00540 *
00541 *                 Check the error code from ZSYSVX.
00542 *
00543                   IF( INFO.NE.K ) THEN
00544                      CALL ALAERH( PATH, 'ZSYSVX', INFO, K, FACT // UPLO,
00545      $                            N, N, -1, -1, NRHS, IMAT, NFAIL,
00546      $                            NERRS, NOUT )
00547                      GO TO 150
00548                   END IF
00549 *
00550                   IF( INFO.EQ.0 ) THEN
00551                      IF( IFACT.GE.2 ) THEN
00552 *
00553 *                       Reconstruct matrix from factors and compute
00554 *                       residual.
00555 *
00556                         CALL ZSYT01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
00557      $                               AINV, LDA, RWORK( 2*NRHS+1 ),
00558      $                               RESULT( 1 ) )
00559                         K1 = 1
00560                      ELSE
00561                         K1 = 2
00562                      END IF
00563 *
00564 *                    Compute residual of the computed solution.
00565 *
00566                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00567                      CALL ZSYT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
00568      $                            LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) )
00569 *
00570 *                    Check solution from generated exact solution.
00571 *
00572                      CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00573      $                            RESULT( 3 ) )
00574 *
00575 *                    Check the error bounds from iterative refinement.
00576 *
00577                      CALL ZPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA,
00578      $                            XACT, LDA, RWORK, RWORK( NRHS+1 ),
00579      $                            RESULT( 4 ) )
00580                   ELSE
00581                      K1 = 6
00582                   END IF
00583 *
00584 *                 Compare RCOND from ZSYSVX with the computed value
00585 *                 in RCONDC.
00586 *
00587                   RESULT( 6 ) = DGET06( RCOND, RCONDC )
00588 *
00589 *                 Print information about the tests that did not pass
00590 *                 the threshold.
00591 *
00592                   DO 140 K = K1, 6
00593                      IF( RESULT( K ).GE.THRESH ) THEN
00594                         IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00595      $                     CALL ALADHD( NOUT, PATH )
00596                         WRITE( NOUT, FMT = 9998 )'ZSYSVX', FACT, UPLO,
00597      $                     N, IMAT, K, RESULT( K )
00598                         NFAIL = NFAIL + 1
00599                      END IF
00600   140             CONTINUE
00601                   NRUN = NRUN + 7 - K1
00602 *
00603 *                 --- Test ZSYSVXX ---
00604 *
00605 *                 Restore the matrices A and B.
00606 *
00607                   IF( IFACT.EQ.2 )
00608      $               CALL ZLASET( UPLO, N, N, CMPLX( ZERO ),
00609      $                 CMPLX( ZERO ), AFAC, LDA )
00610                   CALL ZLASET( 'Full', N, NRHS, CMPLX( ZERO ),
00611      $                 CMPLX( ZERO ), X, LDA )
00612 *
00613 *                 Solve the system and compute the condition number
00614 *                 and error bounds using ZSYSVXX.
00615 *
00616                   SRNAMT = 'ZSYSVXX'
00617                   N_ERR_BNDS = 3
00618                   EQUED = 'N'
00619                   CALL ZSYSVXX( FACT, UPLO, N, NRHS, A, LDA, AFAC,
00620      $                 LDA, IWORK, EQUED, WORK( N+1 ), B, LDA, X,
00621      $                 LDA, RCOND, RPVGRW_SVXX, BERR, N_ERR_BNDS,
00622      $                 ERRBNDS_N, ERRBNDS_C, 0, ZERO, WORK,
00623      $                 RWORK, INFO )
00624 *
00625 *                 Adjust the expected value of INFO to account for
00626 *                 pivoting.
00627 *
00628                   K = IZERO
00629                   IF( K.GT.0 ) THEN
00630  135                 CONTINUE
00631                      IF( IWORK( K ).LT.0 ) THEN
00632                         IF( IWORK( K ).NE.-K ) THEN
00633                            K = -IWORK( K )
00634                            GO TO 135
00635                         END IF
00636                      ELSE IF( IWORK( K ).NE.K ) THEN
00637                         K = IWORK( K )
00638                         GO TO 135
00639                      END IF
00640                   END IF
00641 *
00642 *                 Check the error code from ZSYSVXX.
00643 *
00644                   IF( INFO.NE.K .AND. INFO.LE.N ) THEN
00645                      CALL ALAERH( PATH, 'ZSYSVXX', INFO, K,
00646      $                    FACT // UPLO, N, N, -1, -1, NRHS, IMAT, NFAIL,
00647      $                    NERRS, NOUT )
00648                      GO TO 150
00649                   END IF
00650 *
00651                   IF( INFO.EQ.0 ) THEN
00652                      IF( IFACT.GE.2 ) THEN
00653 *
00654 *                 Reconstruct matrix from factors and compute
00655 *                 residual.
00656 *
00657                         CALL ZSYT01( UPLO, N, A, LDA, AFAC, LDA, IWORK,
00658      $                       AINV, LDA, RWORK(2*NRHS+1),
00659      $                       RESULT( 1 ) )
00660                         K1 = 1
00661                      ELSE
00662                         K1 = 2
00663                      END IF
00664 *
00665 *                 Compute residual of the computed solution.
00666 *
00667                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00668                      CALL ZSYT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
00669      $                    LDA, RWORK( 2*NRHS+1 ), RESULT( 2 ) )
00670                      RESULT( 2 ) = 0.0
00671 *
00672 *                 Check solution from generated exact solution.
00673 *
00674                      CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00675      $                    RESULT( 3 ) )
00676 *
00677 *                 Check the error bounds from iterative refinement.
00678 *
00679                      CALL ZPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA,
00680      $                    XACT, LDA, RWORK, RWORK( NRHS+1 ),
00681      $                    RESULT( 4 ) )
00682                   ELSE
00683                      K1 = 6
00684                   END IF
00685 *
00686 *                 Compare RCOND from ZSYSVXX with the computed value
00687 *                 in RCONDC.
00688 *
00689                   RESULT( 6 ) = DGET06( RCOND, RCONDC )
00690 *
00691 *                 Print information about the tests that did not pass
00692 *                 the threshold.
00693 *
00694                   DO 85 K = K1, 6
00695                      IF( RESULT( K ).GE.THRESH ) THEN
00696                         IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00697      $                       CALL ALADHD( NOUT, PATH )
00698                         WRITE( NOUT, FMT = 9998 )'ZSYSVXX',
00699      $                       FACT, UPLO, N, IMAT, K,
00700      $                       RESULT( K )
00701                         NFAIL = NFAIL + 1
00702                      END IF
00703  85               CONTINUE
00704                   NRUN = NRUN + 7 - K1
00705 *
00706   150          CONTINUE
00707 *
00708   160       CONTINUE
00709   170    CONTINUE
00710   180 CONTINUE
00711 *
00712 *     Print a summary of the results.
00713 *
00714       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
00715 *
00716 
00717 *     Test Error Bounds from ZSYSVXX
00718 
00719       CALL ZEBCHVXX(THRESH, PATH)
00720 
00721  9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2,
00722      $      ', test ', I2, ', ratio =', G12.5 )
00723  9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5,
00724      $      ', type ', I2, ', test ', I2, ', ratio =', G12.5 )
00725       RETURN
00726 *
00727 *     End of ZDRVSY
00728 *
00729       END
 All Files Functions