![]() |
LAPACK
3.4.1
LAPACK: Linear Algebra PACKage
|
00001 *> \brief \b CUNGTR 00002 * 00003 * =========== DOCUMENTATION =========== 00004 * 00005 * Online html documentation available at 00006 * http://www.netlib.org/lapack/explore-html/ 00007 * 00008 *> \htmlonly 00009 *> Download CUNGTR + dependencies 00010 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cungtr.f"> 00011 *> [TGZ]</a> 00012 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cungtr.f"> 00013 *> [ZIP]</a> 00014 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cungtr.f"> 00015 *> [TXT]</a> 00016 *> \endhtmlonly 00017 * 00018 * Definition: 00019 * =========== 00020 * 00021 * SUBROUTINE CUNGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO ) 00022 * 00023 * .. Scalar Arguments .. 00024 * CHARACTER UPLO 00025 * INTEGER INFO, LDA, LWORK, N 00026 * .. 00027 * .. Array Arguments .. 00028 * COMPLEX A( LDA, * ), TAU( * ), WORK( * ) 00029 * .. 00030 * 00031 * 00032 *> \par Purpose: 00033 * ============= 00034 *> 00035 *> \verbatim 00036 *> 00037 *> CUNGTR generates a complex unitary matrix Q which is defined as the 00038 *> product of n-1 elementary reflectors of order N, as returned by 00039 *> CHETRD: 00040 *> 00041 *> if UPLO = 'U', Q = H(n-1) . . . H(2) H(1), 00042 *> 00043 *> if UPLO = 'L', Q = H(1) H(2) . . . H(n-1). 00044 *> \endverbatim 00045 * 00046 * Arguments: 00047 * ========== 00048 * 00049 *> \param[in] UPLO 00050 *> \verbatim 00051 *> UPLO is CHARACTER*1 00052 *> = 'U': Upper triangle of A contains elementary reflectors 00053 *> from CHETRD; 00054 *> = 'L': Lower triangle of A contains elementary reflectors 00055 *> from CHETRD. 00056 *> \endverbatim 00057 *> 00058 *> \param[in] N 00059 *> \verbatim 00060 *> N is INTEGER 00061 *> The order of the matrix Q. N >= 0. 00062 *> \endverbatim 00063 *> 00064 *> \param[in,out] A 00065 *> \verbatim 00066 *> A is COMPLEX array, dimension (LDA,N) 00067 *> On entry, the vectors which define the elementary reflectors, 00068 *> as returned by CHETRD. 00069 *> On exit, the N-by-N unitary matrix Q. 00070 *> \endverbatim 00071 *> 00072 *> \param[in] LDA 00073 *> \verbatim 00074 *> LDA is INTEGER 00075 *> The leading dimension of the array A. LDA >= N. 00076 *> \endverbatim 00077 *> 00078 *> \param[in] TAU 00079 *> \verbatim 00080 *> TAU is COMPLEX array, dimension (N-1) 00081 *> TAU(i) must contain the scalar factor of the elementary 00082 *> reflector H(i), as returned by CHETRD. 00083 *> \endverbatim 00084 *> 00085 *> \param[out] WORK 00086 *> \verbatim 00087 *> WORK is COMPLEX array, dimension (MAX(1,LWORK)) 00088 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. 00089 *> \endverbatim 00090 *> 00091 *> \param[in] LWORK 00092 *> \verbatim 00093 *> LWORK is INTEGER 00094 *> The dimension of the array WORK. LWORK >= N-1. 00095 *> For optimum performance LWORK >= (N-1)*NB, where NB is 00096 *> the optimal blocksize. 00097 *> 00098 *> If LWORK = -1, then a workspace query is assumed; the routine 00099 *> only calculates the optimal size of the WORK array, returns 00100 *> this value as the first entry of the WORK array, and no error 00101 *> message related to LWORK is issued by XERBLA. 00102 *> \endverbatim 00103 *> 00104 *> \param[out] INFO 00105 *> \verbatim 00106 *> INFO is INTEGER 00107 *> = 0: successful exit 00108 *> < 0: if INFO = -i, the i-th argument had an illegal value 00109 *> \endverbatim 00110 * 00111 * Authors: 00112 * ======== 00113 * 00114 *> \author Univ. of Tennessee 00115 *> \author Univ. of California Berkeley 00116 *> \author Univ. of Colorado Denver 00117 *> \author NAG Ltd. 00118 * 00119 *> \date November 2011 00120 * 00121 *> \ingroup complexOTHERcomputational 00122 * 00123 * ===================================================================== 00124 SUBROUTINE CUNGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO ) 00125 * 00126 * -- LAPACK computational routine (version 3.4.0) -- 00127 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00128 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00129 * November 2011 00130 * 00131 * .. Scalar Arguments .. 00132 CHARACTER UPLO 00133 INTEGER INFO, LDA, LWORK, N 00134 * .. 00135 * .. Array Arguments .. 00136 COMPLEX A( LDA, * ), TAU( * ), WORK( * ) 00137 * .. 00138 * 00139 * ===================================================================== 00140 * 00141 * .. Parameters .. 00142 COMPLEX ZERO, ONE 00143 PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ), 00144 $ ONE = ( 1.0E+0, 0.0E+0 ) ) 00145 * .. 00146 * .. Local Scalars .. 00147 LOGICAL LQUERY, UPPER 00148 INTEGER I, IINFO, J, LWKOPT, NB 00149 * .. 00150 * .. External Functions .. 00151 LOGICAL LSAME 00152 INTEGER ILAENV 00153 EXTERNAL ILAENV, LSAME 00154 * .. 00155 * .. External Subroutines .. 00156 EXTERNAL CUNGQL, CUNGQR, XERBLA 00157 * .. 00158 * .. Intrinsic Functions .. 00159 INTRINSIC MAX 00160 * .. 00161 * .. Executable Statements .. 00162 * 00163 * Test the input arguments 00164 * 00165 INFO = 0 00166 LQUERY = ( LWORK.EQ.-1 ) 00167 UPPER = LSAME( UPLO, 'U' ) 00168 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN 00169 INFO = -1 00170 ELSE IF( N.LT.0 ) THEN 00171 INFO = -2 00172 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 00173 INFO = -4 00174 ELSE IF( LWORK.LT.MAX( 1, N-1 ) .AND. .NOT.LQUERY ) THEN 00175 INFO = -7 00176 END IF 00177 * 00178 IF( INFO.EQ.0 ) THEN 00179 IF ( UPPER ) THEN 00180 NB = ILAENV( 1, 'CUNGQL', ' ', N-1, N-1, N-1, -1 ) 00181 ELSE 00182 NB = ILAENV( 1, 'CUNGQR', ' ', N-1, N-1, N-1, -1 ) 00183 END IF 00184 LWKOPT = MAX( 1, N-1 )*NB 00185 WORK( 1 ) = LWKOPT 00186 END IF 00187 * 00188 IF( INFO.NE.0 ) THEN 00189 CALL XERBLA( 'CUNGTR', -INFO ) 00190 RETURN 00191 ELSE IF( LQUERY ) THEN 00192 RETURN 00193 END IF 00194 * 00195 * Quick return if possible 00196 * 00197 IF( N.EQ.0 ) THEN 00198 WORK( 1 ) = 1 00199 RETURN 00200 END IF 00201 * 00202 IF( UPPER ) THEN 00203 * 00204 * Q was determined by a call to CHETRD with UPLO = 'U' 00205 * 00206 * Shift the vectors which define the elementary reflectors one 00207 * column to the left, and set the last row and column of Q to 00208 * those of the unit matrix 00209 * 00210 DO 20 J = 1, N - 1 00211 DO 10 I = 1, J - 1 00212 A( I, J ) = A( I, J+1 ) 00213 10 CONTINUE 00214 A( N, J ) = ZERO 00215 20 CONTINUE 00216 DO 30 I = 1, N - 1 00217 A( I, N ) = ZERO 00218 30 CONTINUE 00219 A( N, N ) = ONE 00220 * 00221 * Generate Q(1:n-1,1:n-1) 00222 * 00223 CALL CUNGQL( N-1, N-1, N-1, A, LDA, TAU, WORK, LWORK, IINFO ) 00224 * 00225 ELSE 00226 * 00227 * Q was determined by a call to CHETRD with UPLO = 'L'. 00228 * 00229 * Shift the vectors which define the elementary reflectors one 00230 * column to the right, and set the first row and column of Q to 00231 * those of the unit matrix 00232 * 00233 DO 50 J = N, 2, -1 00234 A( 1, J ) = ZERO 00235 DO 40 I = J + 1, N 00236 A( I, J ) = A( I, J-1 ) 00237 40 CONTINUE 00238 50 CONTINUE 00239 A( 1, 1 ) = ONE 00240 DO 60 I = 2, N 00241 A( I, 1 ) = ZERO 00242 60 CONTINUE 00243 IF( N.GT.1 ) THEN 00244 * 00245 * Generate Q(2:n,2:n) 00246 * 00247 CALL CUNGQR( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK, 00248 $ LWORK, IINFO ) 00249 END IF 00250 END IF 00251 WORK( 1 ) = LWKOPT 00252 RETURN 00253 * 00254 * End of CUNGTR 00255 * 00256 END