![]() |
LAPACK
3.4.1
LAPACK: Linear Algebra PACKage
|
00001 *> \brief \b ZUNGR2 00002 * 00003 * =========== DOCUMENTATION =========== 00004 * 00005 * Online html documentation available at 00006 * http://www.netlib.org/lapack/explore-html/ 00007 * 00008 *> \htmlonly 00009 *> Download ZUNGR2 + dependencies 00010 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zungr2.f"> 00011 *> [TGZ]</a> 00012 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zungr2.f"> 00013 *> [ZIP]</a> 00014 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zungr2.f"> 00015 *> [TXT]</a> 00016 *> \endhtmlonly 00017 * 00018 * Definition: 00019 * =========== 00020 * 00021 * SUBROUTINE ZUNGR2( M, N, K, A, LDA, TAU, WORK, INFO ) 00022 * 00023 * .. Scalar Arguments .. 00024 * INTEGER INFO, K, LDA, M, N 00025 * .. 00026 * .. Array Arguments .. 00027 * COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) 00028 * .. 00029 * 00030 * 00031 *> \par Purpose: 00032 * ============= 00033 *> 00034 *> \verbatim 00035 *> 00036 *> ZUNGR2 generates an m by n complex matrix Q with orthonormal rows, 00037 *> which is defined as the last m rows of a product of k elementary 00038 *> reflectors of order n 00039 *> 00040 *> Q = H(1)**H H(2)**H . . . H(k)**H 00041 *> 00042 *> as returned by ZGERQF. 00043 *> \endverbatim 00044 * 00045 * Arguments: 00046 * ========== 00047 * 00048 *> \param[in] M 00049 *> \verbatim 00050 *> M is INTEGER 00051 *> The number of rows of the matrix Q. M >= 0. 00052 *> \endverbatim 00053 *> 00054 *> \param[in] N 00055 *> \verbatim 00056 *> N is INTEGER 00057 *> The number of columns of the matrix Q. N >= M. 00058 *> \endverbatim 00059 *> 00060 *> \param[in] K 00061 *> \verbatim 00062 *> K is INTEGER 00063 *> The number of elementary reflectors whose product defines the 00064 *> matrix Q. M >= K >= 0. 00065 *> \endverbatim 00066 *> 00067 *> \param[in,out] A 00068 *> \verbatim 00069 *> A is COMPLEX*16 array, dimension (LDA,N) 00070 *> On entry, the (m-k+i)-th row must contain the vector which 00071 *> defines the elementary reflector H(i), for i = 1,2,...,k, as 00072 *> returned by ZGERQF in the last k rows of its array argument 00073 *> A. 00074 *> On exit, the m-by-n matrix Q. 00075 *> \endverbatim 00076 *> 00077 *> \param[in] LDA 00078 *> \verbatim 00079 *> LDA is INTEGER 00080 *> The first dimension of the array A. LDA >= max(1,M). 00081 *> \endverbatim 00082 *> 00083 *> \param[in] TAU 00084 *> \verbatim 00085 *> TAU is COMPLEX*16 array, dimension (K) 00086 *> TAU(i) must contain the scalar factor of the elementary 00087 *> reflector H(i), as returned by ZGERQF. 00088 *> \endverbatim 00089 *> 00090 *> \param[out] WORK 00091 *> \verbatim 00092 *> WORK is COMPLEX*16 array, dimension (M) 00093 *> \endverbatim 00094 *> 00095 *> \param[out] INFO 00096 *> \verbatim 00097 *> INFO is INTEGER 00098 *> = 0: successful exit 00099 *> < 0: if INFO = -i, the i-th argument has an illegal value 00100 *> \endverbatim 00101 * 00102 * Authors: 00103 * ======== 00104 * 00105 *> \author Univ. of Tennessee 00106 *> \author Univ. of California Berkeley 00107 *> \author Univ. of Colorado Denver 00108 *> \author NAG Ltd. 00109 * 00110 *> \date November 2011 00111 * 00112 *> \ingroup complex16OTHERcomputational 00113 * 00114 * ===================================================================== 00115 SUBROUTINE ZUNGR2( M, N, K, A, LDA, TAU, WORK, INFO ) 00116 * 00117 * -- LAPACK computational routine (version 3.4.0) -- 00118 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00119 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00120 * November 2011 00121 * 00122 * .. Scalar Arguments .. 00123 INTEGER INFO, K, LDA, M, N 00124 * .. 00125 * .. Array Arguments .. 00126 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) 00127 * .. 00128 * 00129 * ===================================================================== 00130 * 00131 * .. Parameters .. 00132 COMPLEX*16 ONE, ZERO 00133 PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ), 00134 $ ZERO = ( 0.0D+0, 0.0D+0 ) ) 00135 * .. 00136 * .. Local Scalars .. 00137 INTEGER I, II, J, L 00138 * .. 00139 * .. External Subroutines .. 00140 EXTERNAL XERBLA, ZLACGV, ZLARF, ZSCAL 00141 * .. 00142 * .. Intrinsic Functions .. 00143 INTRINSIC DCONJG, MAX 00144 * .. 00145 * .. Executable Statements .. 00146 * 00147 * Test the input arguments 00148 * 00149 INFO = 0 00150 IF( M.LT.0 ) THEN 00151 INFO = -1 00152 ELSE IF( N.LT.M ) THEN 00153 INFO = -2 00154 ELSE IF( K.LT.0 .OR. K.GT.M ) THEN 00155 INFO = -3 00156 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN 00157 INFO = -5 00158 END IF 00159 IF( INFO.NE.0 ) THEN 00160 CALL XERBLA( 'ZUNGR2', -INFO ) 00161 RETURN 00162 END IF 00163 * 00164 * Quick return if possible 00165 * 00166 IF( M.LE.0 ) 00167 $ RETURN 00168 * 00169 IF( K.LT.M ) THEN 00170 * 00171 * Initialise rows 1:m-k to rows of the unit matrix 00172 * 00173 DO 20 J = 1, N 00174 DO 10 L = 1, M - K 00175 A( L, J ) = ZERO 00176 10 CONTINUE 00177 IF( J.GT.N-M .AND. J.LE.N-K ) 00178 $ A( M-N+J, J ) = ONE 00179 20 CONTINUE 00180 END IF 00181 * 00182 DO 40 I = 1, K 00183 II = M - K + I 00184 * 00185 * Apply H(i)**H to A(1:m-k+i,1:n-k+i) from the right 00186 * 00187 CALL ZLACGV( N-M+II-1, A( II, 1 ), LDA ) 00188 A( II, N-M+II ) = ONE 00189 CALL ZLARF( 'Right', II-1, N-M+II, A( II, 1 ), LDA, 00190 $ DCONJG( TAU( I ) ), A, LDA, WORK ) 00191 CALL ZSCAL( N-M+II-1, -TAU( I ), A( II, 1 ), LDA ) 00192 CALL ZLACGV( N-M+II-1, A( II, 1 ), LDA ) 00193 A( II, N-M+II ) = ONE - DCONJG( TAU( I ) ) 00194 * 00195 * Set A(m-k+i,n-k+i+1:n) to zero 00196 * 00197 DO 30 L = N - M + II + 1, N 00198 A( II, L ) = ZERO 00199 30 CONTINUE 00200 40 CONTINUE 00201 RETURN 00202 * 00203 * End of ZUNGR2 00204 * 00205 END