LAPACK  3.4.1
LAPACK: Linear Algebra PACKage
cdrvsp.f
Go to the documentation of this file.
00001 *> \brief \b CDRVSP
00002 *
00003 *  =========== DOCUMENTATION ===========
00004 *
00005 * Online html documentation available at 
00006 *            http://www.netlib.org/lapack/explore-html/ 
00007 *
00008 *  Definition:
00009 *  ===========
00010 *
00011 *       SUBROUTINE CDRVSP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
00012 *                          A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
00013 *                          NOUT )
00014 * 
00015 *       .. Scalar Arguments ..
00016 *       LOGICAL            TSTERR
00017 *       INTEGER            NMAX, NN, NOUT, NRHS
00018 *       REAL               THRESH
00019 *       ..
00020 *       .. Array Arguments ..
00021 *       LOGICAL            DOTYPE( * )
00022 *       INTEGER            IWORK( * ), NVAL( * )
00023 *       REAL               RWORK( * )
00024 *       COMPLEX            A( * ), AFAC( * ), AINV( * ), B( * ),
00025 *      $                   WORK( * ), X( * ), XACT( * )
00026 *       ..
00027 *  
00028 *
00029 *> \par Purpose:
00030 *  =============
00031 *>
00032 *> \verbatim
00033 *>
00034 *> CDRVSP tests the driver routines CSPSV and -SVX.
00035 *> \endverbatim
00036 *
00037 *  Arguments:
00038 *  ==========
00039 *
00040 *> \param[in] DOTYPE
00041 *> \verbatim
00042 *>          DOTYPE is LOGICAL array, dimension (NTYPES)
00043 *>          The matrix types to be used for testing.  Matrices of type j
00044 *>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
00045 *>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
00046 *> \endverbatim
00047 *>
00048 *> \param[in] NN
00049 *> \verbatim
00050 *>          NN is INTEGER
00051 *>          The number of values of N contained in the vector NVAL.
00052 *> \endverbatim
00053 *>
00054 *> \param[in] NVAL
00055 *> \verbatim
00056 *>          NVAL is INTEGER array, dimension (NN)
00057 *>          The values of the matrix dimension N.
00058 *> \endverbatim
00059 *>
00060 *> \param[in] NRHS
00061 *> \verbatim
00062 *>          NRHS is INTEGER
00063 *>          The number of right hand side vectors to be generated for
00064 *>          each linear system.
00065 *> \endverbatim
00066 *>
00067 *> \param[in] THRESH
00068 *> \verbatim
00069 *>          THRESH is REAL
00070 *>          The threshold value for the test ratios.  A result is
00071 *>          included in the output file if RESULT >= THRESH.  To have
00072 *>          every test ratio printed, use THRESH = 0.
00073 *> \endverbatim
00074 *>
00075 *> \param[in] TSTERR
00076 *> \verbatim
00077 *>          TSTERR is LOGICAL
00078 *>          Flag that indicates whether error exits are to be tested.
00079 *> \endverbatim
00080 *>
00081 *> \param[in] NMAX
00082 *> \verbatim
00083 *>          NMAX is INTEGER
00084 *>          The maximum value permitted for N, used in dimensioning the
00085 *>          work arrays.
00086 *> \endverbatim
00087 *>
00088 *> \param[out] A
00089 *> \verbatim
00090 *>          A is COMPLEX array, dimension
00091 *>                      (NMAX*(NMAX+1)/2)
00092 *> \endverbatim
00093 *>
00094 *> \param[out] AFAC
00095 *> \verbatim
00096 *>          AFAC is COMPLEX array, dimension
00097 *>                      (NMAX*(NMAX+1)/2)
00098 *> \endverbatim
00099 *>
00100 *> \param[out] AINV
00101 *> \verbatim
00102 *>          AINV is COMPLEX array, dimension
00103 *>                      (NMAX*(NMAX+1)/2)
00104 *> \endverbatim
00105 *>
00106 *> \param[out] B
00107 *> \verbatim
00108 *>          B is COMPLEX array, dimension (NMAX*NRHS)
00109 *> \endverbatim
00110 *>
00111 *> \param[out] X
00112 *> \verbatim
00113 *>          X is COMPLEX array, dimension (NMAX*NRHS)
00114 *> \endverbatim
00115 *>
00116 *> \param[out] XACT
00117 *> \verbatim
00118 *>          XACT is COMPLEX array, dimension (NMAX*NRHS)
00119 *> \endverbatim
00120 *>
00121 *> \param[out] WORK
00122 *> \verbatim
00123 *>          WORK is COMPLEX array, dimension
00124 *>                      (NMAX*max(2,NRHS))
00125 *> \endverbatim
00126 *>
00127 *> \param[out] RWORK
00128 *> \verbatim
00129 *>          RWORK is REAL array, dimension (NMAX+2*NRHS)
00130 *> \endverbatim
00131 *>
00132 *> \param[out] IWORK
00133 *> \verbatim
00134 *>          IWORK is INTEGER array, dimension (NMAX)
00135 *> \endverbatim
00136 *>
00137 *> \param[in] NOUT
00138 *> \verbatim
00139 *>          NOUT is INTEGER
00140 *>          The unit number for output.
00141 *> \endverbatim
00142 *
00143 *  Authors:
00144 *  ========
00145 *
00146 *> \author Univ. of Tennessee 
00147 *> \author Univ. of California Berkeley 
00148 *> \author Univ. of Colorado Denver 
00149 *> \author NAG Ltd. 
00150 *
00151 *> \date November 2011
00152 *
00153 *> \ingroup complex_lin
00154 *
00155 *  =====================================================================
00156       SUBROUTINE CDRVSP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
00157      $                   A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
00158      $                   NOUT )
00159 *
00160 *  -- LAPACK test routine (version 3.4.0) --
00161 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00162 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00163 *     November 2011
00164 *
00165 *     .. Scalar Arguments ..
00166       LOGICAL            TSTERR
00167       INTEGER            NMAX, NN, NOUT, NRHS
00168       REAL               THRESH
00169 *     ..
00170 *     .. Array Arguments ..
00171       LOGICAL            DOTYPE( * )
00172       INTEGER            IWORK( * ), NVAL( * )
00173       REAL               RWORK( * )
00174       COMPLEX            A( * ), AFAC( * ), AINV( * ), B( * ),
00175      $                   WORK( * ), X( * ), XACT( * )
00176 *     ..
00177 *
00178 *  =====================================================================
00179 *
00180 *     .. Parameters ..
00181       REAL               ONE, ZERO
00182       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
00183       INTEGER            NTYPES, NTESTS
00184       PARAMETER          ( NTYPES = 11, NTESTS = 6 )
00185       INTEGER            NFACT
00186       PARAMETER          ( NFACT = 2 )
00187 *     ..
00188 *     .. Local Scalars ..
00189       LOGICAL            ZEROT
00190       CHARACTER          DIST, FACT, PACKIT, TYPE, UPLO, XTYPE
00191       CHARACTER*3        PATH
00192       INTEGER            I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
00193      $                   IZERO, J, K, K1, KL, KU, LDA, MODE, N, NB,
00194      $                   NBMIN, NERRS, NFAIL, NIMAT, NPP, NRUN, NT
00195       REAL               AINVNM, ANORM, CNDNUM, RCOND, RCONDC
00196 *     ..
00197 *     .. Local Arrays ..
00198       CHARACTER          FACTS( NFACT )
00199       INTEGER            ISEED( 4 ), ISEEDY( 4 )
00200       REAL               RESULT( NTESTS )
00201 *     ..
00202 *     .. External Functions ..
00203       REAL               CLANSP, SGET06
00204       EXTERNAL           CLANSP, SGET06
00205 *     ..
00206 *     .. External Subroutines ..
00207       EXTERNAL           ALADHD, ALAERH, ALASVM, CCOPY, CERRVX, CGET04,
00208      $                   CLACPY, CLARHS, CLASET, CLATB4, CLATMS, CLATSP,
00209      $                   CPPT05, CSPSV, CSPSVX, CSPT01, CSPT02, CSPTRF,
00210      $                   CSPTRI, XLAENV
00211 *     ..
00212 *     .. Scalars in Common ..
00213       LOGICAL            LERR, OK
00214       CHARACTER*32       SRNAMT
00215       INTEGER            INFOT, NUNIT
00216 *     ..
00217 *     .. Common blocks ..
00218       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
00219       COMMON             / SRNAMC / SRNAMT
00220 *     ..
00221 *     .. Intrinsic Functions ..
00222       INTRINSIC          CMPLX, MAX, MIN
00223 *     ..
00224 *     .. Data statements ..
00225       DATA               ISEEDY / 1988, 1989, 1990, 1991 /
00226       DATA               FACTS / 'F', 'N' /
00227 *     ..
00228 *     .. Executable Statements ..
00229 *
00230 *     Initialize constants and the random number seed.
00231 *
00232       PATH( 1: 1 ) = 'Complex precision'
00233       PATH( 2: 3 ) = 'SP'
00234       NRUN = 0
00235       NFAIL = 0
00236       NERRS = 0
00237       DO 10 I = 1, 4
00238          ISEED( I ) = ISEEDY( I )
00239    10 CONTINUE
00240 *
00241 *     Test the error exits
00242 *
00243       IF( TSTERR )
00244      $   CALL CERRVX( PATH, NOUT )
00245       INFOT = 0
00246 *
00247 *     Set the block size and minimum block size for testing.
00248 *
00249       NB = 1
00250       NBMIN = 2
00251       CALL XLAENV( 1, NB )
00252       CALL XLAENV( 2, NBMIN )
00253 *
00254 *     Do for each value of N in NVAL
00255 *
00256       DO 180 IN = 1, NN
00257          N = NVAL( IN )
00258          LDA = MAX( N, 1 )
00259          NPP = N*( N+1 ) / 2
00260          XTYPE = 'N'
00261          NIMAT = NTYPES
00262          IF( N.LE.0 )
00263      $      NIMAT = 1
00264 *
00265          DO 170 IMAT = 1, NIMAT
00266 *
00267 *           Do the tests only if DOTYPE( IMAT ) is true.
00268 *
00269             IF( .NOT.DOTYPE( IMAT ) )
00270      $         GO TO 170
00271 *
00272 *           Skip types 3, 4, 5, or 6 if the matrix size is too small.
00273 *
00274             ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
00275             IF( ZEROT .AND. N.LT.IMAT-2 )
00276      $         GO TO 170
00277 *
00278 *           Do first for UPLO = 'U', then for UPLO = 'L'
00279 *
00280             DO 160 IUPLO = 1, 2
00281                IF( IUPLO.EQ.1 ) THEN
00282                   UPLO = 'U'
00283                   PACKIT = 'C'
00284                ELSE
00285                   UPLO = 'L'
00286                   PACKIT = 'R'
00287                END IF
00288 *
00289                IF( IMAT.NE.NTYPES ) THEN
00290 *
00291 *                 Set up parameters with CLATB4 and generate a test
00292 *                 matrix with CLATMS.
00293 *
00294                   CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
00295      $                         MODE, CNDNUM, DIST )
00296 *
00297                   SRNAMT = 'CLATMS'
00298                   CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
00299      $                         CNDNUM, ANORM, KL, KU, PACKIT, A, LDA,
00300      $                         WORK, INFO )
00301 *
00302 *                 Check error code from CLATMS.
00303 *
00304                   IF( INFO.NE.0 ) THEN
00305                      CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N, N,
00306      $                            -1, -1, -1, IMAT, NFAIL, NERRS, NOUT )
00307                      GO TO 160
00308                   END IF
00309 *
00310 *                 For types 3-6, zero one or more rows and columns of
00311 *                 the matrix to test that INFO is returned correctly.
00312 *
00313                   IF( ZEROT ) THEN
00314                      IF( IMAT.EQ.3 ) THEN
00315                         IZERO = 1
00316                      ELSE IF( IMAT.EQ.4 ) THEN
00317                         IZERO = N
00318                      ELSE
00319                         IZERO = N / 2 + 1
00320                      END IF
00321 *
00322                      IF( IMAT.LT.6 ) THEN
00323 *
00324 *                       Set row and column IZERO to zero.
00325 *
00326                         IF( IUPLO.EQ.1 ) THEN
00327                            IOFF = ( IZERO-1 )*IZERO / 2
00328                            DO 20 I = 1, IZERO - 1
00329                               A( IOFF+I ) = ZERO
00330    20                      CONTINUE
00331                            IOFF = IOFF + IZERO
00332                            DO 30 I = IZERO, N
00333                               A( IOFF ) = ZERO
00334                               IOFF = IOFF + I
00335    30                      CONTINUE
00336                         ELSE
00337                            IOFF = IZERO
00338                            DO 40 I = 1, IZERO - 1
00339                               A( IOFF ) = ZERO
00340                               IOFF = IOFF + N - I
00341    40                      CONTINUE
00342                            IOFF = IOFF - IZERO
00343                            DO 50 I = IZERO, N
00344                               A( IOFF+I ) = ZERO
00345    50                      CONTINUE
00346                         END IF
00347                      ELSE
00348                         IF( IUPLO.EQ.1 ) THEN
00349 *
00350 *                          Set the first IZERO rows and columns to zero.
00351 *
00352                            IOFF = 0
00353                            DO 70 J = 1, N
00354                               I2 = MIN( J, IZERO )
00355                               DO 60 I = 1, I2
00356                                  A( IOFF+I ) = ZERO
00357    60                         CONTINUE
00358                               IOFF = IOFF + J
00359    70                      CONTINUE
00360                         ELSE
00361 *
00362 *                          Set the last IZERO rows and columns to zero.
00363 *
00364                            IOFF = 0
00365                            DO 90 J = 1, N
00366                               I1 = MAX( J, IZERO )
00367                               DO 80 I = I1, N
00368                                  A( IOFF+I ) = ZERO
00369    80                         CONTINUE
00370                               IOFF = IOFF + N - J
00371    90                      CONTINUE
00372                         END IF
00373                      END IF
00374                   ELSE
00375                      IZERO = 0
00376                   END IF
00377                ELSE
00378 *
00379 *                 Use a special block diagonal matrix to test alternate
00380 *                 code for the 2-by-2 blocks.
00381 *
00382                   CALL CLATSP( UPLO, N, A, ISEED )
00383                END IF
00384 *
00385                DO 150 IFACT = 1, NFACT
00386 *
00387 *                 Do first for FACT = 'F', then for other values.
00388 *
00389                   FACT = FACTS( IFACT )
00390 *
00391 *                 Compute the condition number for comparison with
00392 *                 the value returned by CSPSVX.
00393 *
00394                   IF( ZEROT ) THEN
00395                      IF( IFACT.EQ.1 )
00396      $                  GO TO 150
00397                      RCONDC = ZERO
00398 *
00399                   ELSE IF( IFACT.EQ.1 ) THEN
00400 *
00401 *                    Compute the 1-norm of A.
00402 *
00403                      ANORM = CLANSP( '1', UPLO, N, A, RWORK )
00404 *
00405 *                    Factor the matrix A.
00406 *
00407                      CALL CCOPY( NPP, A, 1, AFAC, 1 )
00408                      CALL CSPTRF( UPLO, N, AFAC, IWORK, INFO )
00409 *
00410 *                    Compute inv(A) and take its norm.
00411 *
00412                      CALL CCOPY( NPP, AFAC, 1, AINV, 1 )
00413                      CALL CSPTRI( UPLO, N, AINV, IWORK, WORK, INFO )
00414                      AINVNM = CLANSP( '1', UPLO, N, AINV, RWORK )
00415 *
00416 *                    Compute the 1-norm condition number of A.
00417 *
00418                      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
00419                         RCONDC = ONE
00420                      ELSE
00421                         RCONDC = ( ONE / ANORM ) / AINVNM
00422                      END IF
00423                   END IF
00424 *
00425 *                 Form an exact solution and set the right hand side.
00426 *
00427                   SRNAMT = 'CLARHS'
00428                   CALL CLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
00429      $                         NRHS, A, LDA, XACT, LDA, B, LDA, ISEED,
00430      $                         INFO )
00431                   XTYPE = 'C'
00432 *
00433 *                 --- Test CSPSV  ---
00434 *
00435                   IF( IFACT.EQ.2 ) THEN
00436                      CALL CCOPY( NPP, A, 1, AFAC, 1 )
00437                      CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
00438 *
00439 *                    Factor the matrix and solve the system using CSPSV.
00440 *
00441                      SRNAMT = 'CSPSV '
00442                      CALL CSPSV( UPLO, N, NRHS, AFAC, IWORK, X, LDA,
00443      $                           INFO )
00444 *
00445 *                    Adjust the expected value of INFO to account for
00446 *                    pivoting.
00447 *
00448                      K = IZERO
00449                      IF( K.GT.0 ) THEN
00450   100                   CONTINUE
00451                         IF( IWORK( K ).LT.0 ) THEN
00452                            IF( IWORK( K ).NE.-K ) THEN
00453                               K = -IWORK( K )
00454                               GO TO 100
00455                            END IF
00456                         ELSE IF( IWORK( K ).NE.K ) THEN
00457                            K = IWORK( K )
00458                            GO TO 100
00459                         END IF
00460                      END IF
00461 *
00462 *                    Check error code from CSPSV .
00463 *
00464                      IF( INFO.NE.K ) THEN
00465                         CALL ALAERH( PATH, 'CSPSV ', INFO, K, UPLO, N,
00466      $                               N, -1, -1, NRHS, IMAT, NFAIL,
00467      $                               NERRS, NOUT )
00468                         GO TO 120
00469                      ELSE IF( INFO.NE.0 ) THEN
00470                         GO TO 120
00471                      END IF
00472 *
00473 *                    Reconstruct matrix from factors and compute
00474 *                    residual.
00475 *
00476                      CALL CSPT01( UPLO, N, A, AFAC, IWORK, AINV, LDA,
00477      $                            RWORK, RESULT( 1 ) )
00478 *
00479 *                    Compute residual of the computed solution.
00480 *
00481                      CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00482                      CALL CSPT02( UPLO, N, NRHS, A, X, LDA, WORK, LDA,
00483      $                            RWORK, RESULT( 2 ) )
00484 *
00485 *                    Check solution from generated exact solution.
00486 *
00487                      CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00488      $                            RESULT( 3 ) )
00489                      NT = 3
00490 *
00491 *                    Print information about the tests that did not pass
00492 *                    the threshold.
00493 *
00494                      DO 110 K = 1, NT
00495                         IF( RESULT( K ).GE.THRESH ) THEN
00496                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00497      $                        CALL ALADHD( NOUT, PATH )
00498                            WRITE( NOUT, FMT = 9999 )'CSPSV ', UPLO, N,
00499      $                        IMAT, K, RESULT( K )
00500                            NFAIL = NFAIL + 1
00501                         END IF
00502   110                CONTINUE
00503                      NRUN = NRUN + NT
00504   120                CONTINUE
00505                   END IF
00506 *
00507 *                 --- Test CSPSVX ---
00508 *
00509                   IF( IFACT.EQ.2 .AND. NPP.GT.0 )
00510      $               CALL CLASET( 'Full', NPP, 1, CMPLX( ZERO ),
00511      $                            CMPLX( ZERO ), AFAC, NPP )
00512                   CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ),
00513      $                         CMPLX( ZERO ), X, LDA )
00514 *
00515 *                 Solve the system and compute the condition number and
00516 *                 error bounds using CSPSVX.
00517 *
00518                   SRNAMT = 'CSPSVX'
00519                   CALL CSPSVX( FACT, UPLO, N, NRHS, A, AFAC, IWORK, B,
00520      $                         LDA, X, LDA, RCOND, RWORK,
00521      $                         RWORK( NRHS+1 ), WORK, RWORK( 2*NRHS+1 ),
00522      $                         INFO )
00523 *
00524 *                 Adjust the expected value of INFO to account for
00525 *                 pivoting.
00526 *
00527                   K = IZERO
00528                   IF( K.GT.0 ) THEN
00529   130                CONTINUE
00530                      IF( IWORK( K ).LT.0 ) THEN
00531                         IF( IWORK( K ).NE.-K ) THEN
00532                            K = -IWORK( K )
00533                            GO TO 130
00534                         END IF
00535                      ELSE IF( IWORK( K ).NE.K ) THEN
00536                         K = IWORK( K )
00537                         GO TO 130
00538                      END IF
00539                   END IF
00540 *
00541 *                 Check the error code from CSPSVX.
00542 *
00543                   IF( INFO.NE.K ) THEN
00544                      CALL ALAERH( PATH, 'CSPSVX', INFO, K, FACT // UPLO,
00545      $                            N, N, -1, -1, NRHS, IMAT, NFAIL,
00546      $                            NERRS, NOUT )
00547                      GO TO 150
00548                   END IF
00549 *
00550                   IF( INFO.EQ.0 ) THEN
00551                      IF( IFACT.GE.2 ) THEN
00552 *
00553 *                       Reconstruct matrix from factors and compute
00554 *                       residual.
00555 *
00556                         CALL CSPT01( UPLO, N, A, AFAC, IWORK, AINV, LDA,
00557      $                               RWORK( 2*NRHS+1 ), RESULT( 1 ) )
00558                         K1 = 1
00559                      ELSE
00560                         K1 = 2
00561                      END IF
00562 *
00563 *                    Compute residual of the computed solution.
00564 *
00565                      CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00566                      CALL CSPT02( UPLO, N, NRHS, A, X, LDA, WORK, LDA,
00567      $                            RWORK( 2*NRHS+1 ), RESULT( 2 ) )
00568 *
00569 *                    Check solution from generated exact solution.
00570 *
00571                      CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00572      $                            RESULT( 3 ) )
00573 *
00574 *                    Check the error bounds from iterative refinement.
00575 *
00576                      CALL CPPT05( UPLO, N, NRHS, A, B, LDA, X, LDA,
00577      $                            XACT, LDA, RWORK, RWORK( NRHS+1 ),
00578      $                            RESULT( 4 ) )
00579                   ELSE
00580                      K1 = 6
00581                   END IF
00582 *
00583 *                 Compare RCOND from CSPSVX with the computed value
00584 *                 in RCONDC.
00585 *
00586                   RESULT( 6 ) = SGET06( RCOND, RCONDC )
00587 *
00588 *                 Print information about the tests that did not pass
00589 *                 the threshold.
00590 *
00591                   DO 140 K = K1, 6
00592                      IF( RESULT( K ).GE.THRESH ) THEN
00593                         IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00594      $                     CALL ALADHD( NOUT, PATH )
00595                         WRITE( NOUT, FMT = 9998 )'CSPSVX', FACT, UPLO,
00596      $                     N, IMAT, K, RESULT( K )
00597                         NFAIL = NFAIL + 1
00598                      END IF
00599   140             CONTINUE
00600                   NRUN = NRUN + 7 - K1
00601 *
00602   150          CONTINUE
00603 *
00604   160       CONTINUE
00605   170    CONTINUE
00606   180 CONTINUE
00607 *
00608 *     Print a summary of the results.
00609 *
00610       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
00611 *
00612  9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2,
00613      $      ', test ', I2, ', ratio =', G12.5 )
00614  9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5,
00615      $      ', type ', I2, ', test ', I2, ', ratio =', G12.5 )
00616       RETURN
00617 *
00618 *     End of CDRVSP
00619 *
00620       END
 All Files Functions