LAPACK  3.4.1
LAPACK: Linear Algebra PACKage
zerrsy.f
Go to the documentation of this file.
00001 *> \brief \b ZERRSY
00002 *
00003 *  =========== DOCUMENTATION ===========
00004 *
00005 * Online html documentation available at 
00006 *            http://www.netlib.org/lapack/explore-html/ 
00007 *
00008 *  Definition:
00009 *  ===========
00010 *
00011 *       SUBROUTINE ZERRSY( PATH, NUNIT )
00012 * 
00013 *       .. Scalar Arguments ..
00014 *       CHARACTER*3        PATH
00015 *       INTEGER            NUNIT
00016 *       ..
00017 *  
00018 *
00019 *> \par Purpose:
00020 *  =============
00021 *>
00022 *> \verbatim
00023 *>
00024 *> ZERRSY tests the error exits for the COMPLEX*16 routines
00025 *> for symmetric indefinite matrices.
00026 *> \endverbatim
00027 *
00028 *  Arguments:
00029 *  ==========
00030 *
00031 *> \param[in] PATH
00032 *> \verbatim
00033 *>          PATH is CHARACTER*3
00034 *>          The LAPACK path name for the routines to be tested.
00035 *> \endverbatim
00036 *>
00037 *> \param[in] NUNIT
00038 *> \verbatim
00039 *>          NUNIT is INTEGER
00040 *>          The unit number for output.
00041 *> \endverbatim
00042 *
00043 *  Authors:
00044 *  ========
00045 *
00046 *> \author Univ. of Tennessee 
00047 *> \author Univ. of California Berkeley 
00048 *> \author Univ. of Colorado Denver 
00049 *> \author NAG Ltd. 
00050 *
00051 *> \date April 2012
00052 *
00053 *> \ingroup complex16_lin
00054 *
00055 *  =====================================================================
00056       SUBROUTINE ZERRSY( PATH, NUNIT )
00057 *
00058 *  -- LAPACK test routine (version 3.4.1) --
00059 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00060 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00061 *     April 2012
00062 *
00063 *     .. Scalar Arguments ..
00064       CHARACTER*3        PATH
00065       INTEGER            NUNIT
00066 *     ..
00067 *
00068 *  =====================================================================
00069 *
00070 *     .. Parameters ..
00071       INTEGER            NMAX
00072       PARAMETER          ( NMAX = 4 )
00073 *     ..
00074 *     .. Local Scalars ..
00075       CHARACTER*2        C2
00076       INTEGER            I, INFO, J
00077       DOUBLE PRECISION   ANRM, RCOND
00078 *     ..
00079 *     .. Local Arrays ..
00080       INTEGER            IP( NMAX )
00081       DOUBLE PRECISION   R( NMAX ), R1( NMAX ), R2( NMAX )
00082       COMPLEX*16         A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
00083      $                   W( 2*NMAX ), X( NMAX )
00084 *     ..
00085 *     .. External Functions ..
00086       LOGICAL            LSAMEN
00087       EXTERNAL           LSAMEN
00088 *     ..
00089 *     .. External Subroutines ..
00090       EXTERNAL           ALAESM, CHKXER, ZSPCON, ZSPRFS, ZSPTRF, ZSPTRI,
00091      $                   ZSPTRS, ZSYCON, ZSYRFS, ZSYTF2, ZSYTRF, ZSYTRI,
00092      $                   ZSYTRI2, ZSYTRS
00093 *     ..
00094 *     .. Scalars in Common ..
00095       LOGICAL            LERR, OK
00096       CHARACTER*32       SRNAMT
00097       INTEGER            INFOT, NOUT
00098 *     ..
00099 *     .. Common blocks ..
00100       COMMON             / INFOC / INFOT, NOUT, OK, LERR
00101       COMMON             / SRNAMC / SRNAMT
00102 *     ..
00103 *     .. Intrinsic Functions ..
00104       INTRINSIC          DBLE, DCMPLX
00105 *     ..
00106 *     .. Executable Statements ..
00107 *
00108       NOUT = NUNIT
00109       WRITE( NOUT, FMT = * )
00110       C2 = PATH( 2: 3 )
00111 *
00112 *     Set the variables to innocuous values.
00113 *
00114       DO 20 J = 1, NMAX
00115          DO 10 I = 1, NMAX
00116             A( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ),
00117      $                  -1.D0 / DBLE( I+J ) )
00118             AF( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ),
00119      $                   -1.D0 / DBLE( I+J ) )
00120    10    CONTINUE
00121          B( J ) = 0.D0
00122          R1( J ) = 0.D0
00123          R2( J ) = 0.D0
00124          W( J ) = 0.D0
00125          X( J ) = 0.D0
00126          IP( J ) = J
00127    20 CONTINUE
00128       ANRM = 1.0D0
00129       OK = .TRUE.
00130 *
00131       IF( LSAMEN( 2, C2, 'SY' ) ) THEN
00132 *
00133 *        Test error exits of the routines that use factorization
00134 *        of a symmetric indefinite matrix with patrial
00135 *        (Bunch-Kaufman) pivoting.
00136 *
00137 *        ZSYTRF
00138 *
00139          SRNAMT = 'ZSYTRF'
00140          INFOT = 1
00141          CALL ZSYTRF( '/', 0, A, 1, IP, W, 1, INFO )
00142          CALL CHKXER( 'ZSYTRF', INFOT, NOUT, LERR, OK )
00143          INFOT = 2
00144          CALL ZSYTRF( 'U', -1, A, 1, IP, W, 1, INFO )
00145          CALL CHKXER( 'ZSYTRF', INFOT, NOUT, LERR, OK )
00146          INFOT = 4
00147          CALL ZSYTRF( 'U', 2, A, 1, IP, W, 4, INFO )
00148          CALL CHKXER( 'ZSYTRF', INFOT, NOUT, LERR, OK )
00149 *
00150 *        ZSYTF2
00151 *
00152          SRNAMT = 'ZSYTF2'
00153          INFOT = 1
00154          CALL ZSYTF2( '/', 0, A, 1, IP, INFO )
00155          CALL CHKXER( 'ZSYTF2', INFOT, NOUT, LERR, OK )
00156          INFOT = 2
00157          CALL ZSYTF2( 'U', -1, A, 1, IP, INFO )
00158          CALL CHKXER( 'ZSYTF2', INFOT, NOUT, LERR, OK )
00159          INFOT = 4
00160          CALL ZSYTF2( 'U', 2, A, 1, IP, INFO )
00161          CALL CHKXER( 'ZSYTF2', INFOT, NOUT, LERR, OK )
00162 *
00163 *        ZSYTRI
00164 *
00165          SRNAMT = 'ZSYTRI'
00166          INFOT = 1
00167          CALL ZSYTRI( '/', 0, A, 1, IP, W, INFO )
00168          CALL CHKXER( 'ZSYTRI', INFOT, NOUT, LERR, OK )
00169          INFOT = 2
00170          CALL ZSYTRI( 'U', -1, A, 1, IP, W, INFO )
00171          CALL CHKXER( 'ZSYTRI', INFOT, NOUT, LERR, OK )
00172          INFOT = 4
00173          CALL ZSYTRI( 'U', 2, A, 1, IP, W, INFO )
00174          CALL CHKXER( 'ZSYTRI', INFOT, NOUT, LERR, OK )
00175 *
00176 *        ZSYTRI2
00177 *
00178          SRNAMT = 'ZSYTRI2'
00179          INFOT = 1
00180          CALL ZSYTRI2( '/', 0, A, 1, IP, W, 1, INFO )
00181          CALL CHKXER( 'ZSYTRI2', INFOT, NOUT, LERR, OK )
00182          INFOT = 2
00183          CALL ZSYTRI2( 'U', -1, A, 1, IP, W, 1, INFO )
00184          CALL CHKXER( 'ZSYTRI2', INFOT, NOUT, LERR, OK )
00185          INFOT = 4
00186          CALL ZSYTRI2( 'U', 2, A, 1, IP, W, 1, INFO )
00187          CALL CHKXER( 'ZSYTRI2', INFOT, NOUT, LERR, OK )
00188 *
00189 *        ZSYTRS
00190 *
00191          SRNAMT = 'ZSYTRS'
00192          INFOT = 1
00193          CALL ZSYTRS( '/', 0, 0, A, 1, IP, B, 1, INFO )
00194          CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK )
00195          INFOT = 2
00196          CALL ZSYTRS( 'U', -1, 0, A, 1, IP, B, 1, INFO )
00197          CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK )
00198          INFOT = 3
00199          CALL ZSYTRS( 'U', 0, -1, A, 1, IP, B, 1, INFO )
00200          CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK )
00201          INFOT = 5
00202          CALL ZSYTRS( 'U', 2, 1, A, 1, IP, B, 2, INFO )
00203          CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK )
00204          INFOT = 8
00205          CALL ZSYTRS( 'U', 2, 1, A, 2, IP, B, 1, INFO )
00206          CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK )
00207 *
00208 *        ZSYRFS
00209 *
00210          SRNAMT = 'ZSYRFS'
00211          INFOT = 1
00212          CALL ZSYRFS( '/', 0, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, W,
00213      $                R, INFO )
00214          CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
00215          INFOT = 2
00216          CALL ZSYRFS( 'U', -1, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2,
00217      $                W, R, INFO )
00218          CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
00219          INFOT = 3
00220          CALL ZSYRFS( 'U', 0, -1, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2,
00221      $                W, R, INFO )
00222          CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
00223          INFOT = 5
00224          CALL ZSYRFS( 'U', 2, 1, A, 1, AF, 2, IP, B, 2, X, 2, R1, R2, W,
00225      $                R, INFO )
00226          CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
00227          INFOT = 7
00228          CALL ZSYRFS( 'U', 2, 1, A, 2, AF, 1, IP, B, 2, X, 2, R1, R2, W,
00229      $                R, INFO )
00230          CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
00231          INFOT = 10
00232          CALL ZSYRFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 1, X, 2, R1, R2, W,
00233      $                R, INFO )
00234          CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
00235          INFOT = 12
00236          CALL ZSYRFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 2, X, 1, R1, R2, W,
00237      $                R, INFO )
00238          CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
00239 *
00240 *        ZSYCON
00241 *
00242          SRNAMT = 'ZSYCON'
00243          INFOT = 1
00244          CALL ZSYCON( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO )
00245          CALL CHKXER( 'ZSYCON', INFOT, NOUT, LERR, OK )
00246          INFOT = 2
00247          CALL ZSYCON( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO )
00248          CALL CHKXER( 'ZSYCON', INFOT, NOUT, LERR, OK )
00249          INFOT = 4
00250          CALL ZSYCON( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO )
00251          CALL CHKXER( 'ZSYCON', INFOT, NOUT, LERR, OK )
00252          INFOT = 6
00253          CALL ZSYCON( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO )
00254          CALL CHKXER( 'ZSYCON', INFOT, NOUT, LERR, OK )
00255 *
00256       ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
00257 *
00258 *        Test error exits of the routines that use factorization
00259 *        of a symmetric indefinite packed matrix with patrial
00260 *        (Bunch-Kaufman) pivoting.
00261 *
00262 *        ZSPTRF
00263 *
00264          SRNAMT = 'ZSPTRF'
00265          INFOT = 1
00266          CALL ZSPTRF( '/', 0, A, IP, INFO )
00267          CALL CHKXER( 'ZSPTRF', INFOT, NOUT, LERR, OK )
00268          INFOT = 2
00269          CALL ZSPTRF( 'U', -1, A, IP, INFO )
00270          CALL CHKXER( 'ZSPTRF', INFOT, NOUT, LERR, OK )
00271 *
00272 *        ZSPTRI
00273 *
00274          SRNAMT = 'ZSPTRI'
00275          INFOT = 1
00276          CALL ZSPTRI( '/', 0, A, IP, W, INFO )
00277          CALL CHKXER( 'ZSPTRI', INFOT, NOUT, LERR, OK )
00278          INFOT = 2
00279          CALL ZSPTRI( 'U', -1, A, IP, W, INFO )
00280          CALL CHKXER( 'ZSPTRI', INFOT, NOUT, LERR, OK )
00281 *
00282 *        ZSPTRS
00283 *
00284          SRNAMT = 'ZSPTRS'
00285          INFOT = 1
00286          CALL ZSPTRS( '/', 0, 0, A, IP, B, 1, INFO )
00287          CALL CHKXER( 'ZSPTRS', INFOT, NOUT, LERR, OK )
00288          INFOT = 2
00289          CALL ZSPTRS( 'U', -1, 0, A, IP, B, 1, INFO )
00290          CALL CHKXER( 'ZSPTRS', INFOT, NOUT, LERR, OK )
00291          INFOT = 3
00292          CALL ZSPTRS( 'U', 0, -1, A, IP, B, 1, INFO )
00293          CALL CHKXER( 'ZSPTRS', INFOT, NOUT, LERR, OK )
00294          INFOT = 7
00295          CALL ZSPTRS( 'U', 2, 1, A, IP, B, 1, INFO )
00296          CALL CHKXER( 'ZSPTRS', INFOT, NOUT, LERR, OK )
00297 *
00298 *        ZSPRFS
00299 *
00300          SRNAMT = 'ZSPRFS'
00301          INFOT = 1
00302          CALL ZSPRFS( '/', 0, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
00303      $                INFO )
00304          CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK )
00305          INFOT = 2
00306          CALL ZSPRFS( 'U', -1, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
00307      $                INFO )
00308          CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK )
00309          INFOT = 3
00310          CALL ZSPRFS( 'U', 0, -1, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
00311      $                INFO )
00312          CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK )
00313          INFOT = 8
00314          CALL ZSPRFS( 'U', 2, 1, A, AF, IP, B, 1, X, 2, R1, R2, W, R,
00315      $                INFO )
00316          CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK )
00317          INFOT = 10
00318          CALL ZSPRFS( 'U', 2, 1, A, AF, IP, B, 2, X, 1, R1, R2, W, R,
00319      $                INFO )
00320          CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK )
00321 *
00322 *        ZSPCON
00323 *
00324          SRNAMT = 'ZSPCON'
00325          INFOT = 1
00326          CALL ZSPCON( '/', 0, A, IP, ANRM, RCOND, W, INFO )
00327          CALL CHKXER( 'ZSPCON', INFOT, NOUT, LERR, OK )
00328          INFOT = 2
00329          CALL ZSPCON( 'U', -1, A, IP, ANRM, RCOND, W, INFO )
00330          CALL CHKXER( 'ZSPCON', INFOT, NOUT, LERR, OK )
00331          INFOT = 5
00332          CALL ZSPCON( 'U', 1, A, IP, -ANRM, RCOND, W, INFO )
00333          CALL CHKXER( 'ZSPCON', INFOT, NOUT, LERR, OK )
00334       END IF
00335 *
00336 *     Print a summary line.
00337 *
00338       CALL ALAESM( PATH, OK, NOUT )
00339 *
00340       RETURN
00341 *
00342 *     End of ZERRSY
00343 *
00344       END
 All Files Functions