LAPACK  3.4.1
LAPACK: Linear Algebra PACKage
zchksy.f
Go to the documentation of this file.
00001 *> \brief \b ZCHKSY
00002 *
00003 *  =========== DOCUMENTATION ===========
00004 *
00005 * Online html documentation available at 
00006 *            http://www.netlib.org/lapack/explore-html/ 
00007 *
00008 *  Definition:
00009 *  ===========
00010 *
00011 *       SUBROUTINE ZCHKSY( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
00012 *                          THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
00013 *                          XACT, WORK, RWORK, IWORK, NOUT )
00014 * 
00015 *       .. Scalar Arguments ..
00016 *       LOGICAL            TSTERR
00017 *       INTEGER            NMAX, NN, NNB, NNS, NOUT
00018 *       DOUBLE PRECISION   THRESH
00019 *       ..
00020 *       .. Array Arguments ..
00021 *       LOGICAL            DOTYPE( * )
00022 *       INTEGER            IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
00023 *       DOUBLE PRECISION   RWORK( * )
00024 *       COMPLEX*16         A( * ), AFAC( * ), AINV( * ), B( * ),
00025 *      $                   WORK( * ), X( * ), XACT( * )
00026 *       ..
00027 *  
00028 *
00029 *> \par Purpose:
00030 *  =============
00031 *>
00032 *> \verbatim
00033 *>
00034 *> ZCHKSY tests ZSYTRF, -TRI2, -TRS, -TRS2,  -RFS, and -CON.
00035 *> \endverbatim
00036 *
00037 *  Arguments:
00038 *  ==========
00039 *
00040 *> \param[in] DOTYPE
00041 *> \verbatim
00042 *>          DOTYPE is LOGICAL array, dimension (NTYPES)
00043 *>          The matrix types to be used for testing.  Matrices of type j
00044 *>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
00045 *>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
00046 *> \endverbatim
00047 *>
00048 *> \param[in] NN
00049 *> \verbatim
00050 *>          NN is INTEGER
00051 *>          The number of values of N contained in the vector NVAL.
00052 *> \endverbatim
00053 *>
00054 *> \param[in] NVAL
00055 *> \verbatim
00056 *>          NVAL is INTEGER array, dimension (NN)
00057 *>          The values of the matrix dimension N.
00058 *> \endverbatim
00059 *>
00060 *> \param[in] NNB
00061 *> \verbatim
00062 *>          NNB is INTEGER
00063 *>          The number of values of NB contained in the vector NBVAL.
00064 *> \endverbatim
00065 *>
00066 *> \param[in] NBVAL
00067 *> \verbatim
00068 *>          NBVAL is INTEGER array, dimension (NBVAL)
00069 *>          The values of the blocksize NB.
00070 *> \endverbatim
00071 *>
00072 *> \param[in] NNS
00073 *> \verbatim
00074 *>          NNS is INTEGER
00075 *>          The number of values of NRHS contained in the vector NSVAL.
00076 *> \endverbatim
00077 *>
00078 *> \param[in] NSVAL
00079 *> \verbatim
00080 *>          NSVAL is INTEGER array, dimension (NNS)
00081 *>          The values of the number of right hand sides NRHS.
00082 *> \endverbatim
00083 *>
00084 *> \param[in] THRESH
00085 *> \verbatim
00086 *>          THRESH is DOUBLE PRECISION
00087 *>          The threshold value for the test ratios.  A result is
00088 *>          included in the output file if RESULT >= THRESH.  To have
00089 *>          every test ratio printed, use THRESH = 0.
00090 *> \endverbatim
00091 *>
00092 *> \param[in] TSTERR
00093 *> \verbatim
00094 *>          TSTERR is LOGICAL
00095 *>          Flag that indicates whether error exits are to be tested.
00096 *> \endverbatim
00097 *>
00098 *> \param[in] NMAX
00099 *> \verbatim
00100 *>          NMAX is INTEGER
00101 *>          The maximum value permitted for N, used in dimensioning the
00102 *>          work arrays.
00103 *> \endverbatim
00104 *>
00105 *> \param[out] A
00106 *> \verbatim
00107 *>          A is COMPLEX*16 array, dimension (NMAX*NMAX)
00108 *> \endverbatim
00109 *>
00110 *> \param[out] AFAC
00111 *> \verbatim
00112 *>          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
00113 *> \endverbatim
00114 *>
00115 *> \param[out] AINV
00116 *> \verbatim
00117 *>          AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
00118 *> \endverbatim
00119 *>
00120 *> \param[out] B
00121 *> \verbatim
00122 *>          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
00123 *>          where NSMAX is the largest entry in NSVAL.
00124 *> \endverbatim
00125 *>
00126 *> \param[out] X
00127 *> \verbatim
00128 *>          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
00129 *> \endverbatim
00130 *>
00131 *> \param[out] XACT
00132 *> \verbatim
00133 *>          XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
00134 *> \endverbatim
00135 *>
00136 *> \param[out] WORK
00137 *> \verbatim
00138 *>          WORK is COMPLEX*16 array, dimension
00139 *>                      (NMAX*max(2,NSMAX))
00140 *> \endverbatim
00141 *>
00142 *> \param[out] RWORK
00143 *> \verbatim
00144 *>          RWORK is DOUBLE PRECISION array,
00145 *>                                 dimension (NMAX+2*NSMAX)
00146 *> \endverbatim
00147 *>
00148 *> \param[out] IWORK
00149 *> \verbatim
00150 *>          IWORK is INTEGER array, dimension (NMAX)
00151 *> \endverbatim
00152 *>
00153 *> \param[in] NOUT
00154 *> \verbatim
00155 *>          NOUT is INTEGER
00156 *>          The unit number for output.
00157 *> \endverbatim
00158 *
00159 *  Authors:
00160 *  ========
00161 *
00162 *> \author Univ. of Tennessee 
00163 *> \author Univ. of California Berkeley 
00164 *> \author Univ. of Colorado Denver 
00165 *> \author NAG Ltd. 
00166 *
00167 *> \date April 2012
00168 *
00169 *> \ingroup complex16_lin
00170 *
00171 *  =====================================================================
00172       SUBROUTINE ZCHKSY( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
00173      $                   THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
00174      $                   XACT, WORK, RWORK, IWORK, NOUT )
00175 *
00176 *  -- LAPACK test routine (version 3.4.1) --
00177 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00178 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00179 *     April 2012
00180 *
00181 *     .. Scalar Arguments ..
00182       LOGICAL            TSTERR
00183       INTEGER            NMAX, NN, NNB, NNS, NOUT
00184       DOUBLE PRECISION   THRESH
00185 *     ..
00186 *     .. Array Arguments ..
00187       LOGICAL            DOTYPE( * )
00188       INTEGER            IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
00189       DOUBLE PRECISION   RWORK( * )
00190       COMPLEX*16         A( * ), AFAC( * ), AINV( * ), B( * ),
00191      $                   WORK( * ), X( * ), XACT( * )
00192 *     ..
00193 *
00194 *  =====================================================================
00195 *
00196 *     .. Parameters ..
00197       DOUBLE PRECISION   ZERO
00198       PARAMETER          ( ZERO = 0.0D+0 )
00199       COMPLEX*16         CZERO
00200       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 )  )
00201       INTEGER            NTYPES
00202       PARAMETER          ( NTYPES = 11 )
00203       INTEGER            NTESTS
00204       PARAMETER          ( NTESTS = 9 )
00205 *     ..
00206 *     .. Local Scalars ..
00207       LOGICAL            TRFCON, ZEROT
00208       CHARACTER          DIST, TYPE, UPLO, XTYPE
00209       CHARACTER*3        PATH
00210       INTEGER            I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
00211      $                   IUPLO, IZERO, J, K, KL, KU, LDA, LWORK, MODE,
00212      $                   N, NB, NERRS, NFAIL, NIMAT, NRHS, NRUN, NT
00213       DOUBLE PRECISION   ANORM, CNDNUM, RCOND, RCONDC
00214 *     ..
00215 *     .. Local Arrays ..
00216       CHARACTER          UPLOS( 2 )
00217       INTEGER            ISEED( 4 ), ISEEDY( 4 )
00218       DOUBLE PRECISION   RESULT( NTESTS )
00219 *     ..
00220 *     .. External Functions ..
00221       DOUBLE PRECISION   DGET06, ZLANSY
00222       EXTERNAL           DGET06, ZLANSY
00223 *     ..
00224 *     .. External Subroutines ..
00225       EXTERNAL           ALAERH, ALAHD, ALASUM, XLAENV, ZERRSY, ZGET04,
00226      $                   ZLACPY, ZLARHS, ZLATB4, ZLATMS, ZLATSY, ZPOT05,
00227      $                   ZSYCON, ZSYRFS, ZSYT01, ZSYT02, ZSYT03, ZSYTRF,
00228      $                   ZSYTRI2, ZSYTRS, ZSYTRS2
00229 *     ..
00230 *     .. Intrinsic Functions ..
00231       INTRINSIC          MAX, MIN
00232 *     ..
00233 *     .. Scalars in Common ..
00234       LOGICAL            LERR, OK
00235       CHARACTER*32       SRNAMT
00236       INTEGER            INFOT, NUNIT
00237 *     ..
00238 *     .. Common blocks ..
00239       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
00240       COMMON             / SRNAMC / SRNAMT
00241 *     ..
00242 *     .. Data statements ..
00243       DATA               ISEEDY / 1988, 1989, 1990, 1991 /
00244       DATA               UPLOS / 'U', 'L' /
00245 *     ..
00246 *     .. Executable Statements ..
00247 *
00248 *     Initialize constants and the random number seed.
00249 *
00250       PATH( 1: 1 ) = 'Zomplex precision'
00251       PATH( 2: 3 ) = 'SY'
00252       NRUN = 0
00253       NFAIL = 0
00254       NERRS = 0
00255       DO 10 I = 1, 4
00256          ISEED( I ) = ISEEDY( I )
00257    10 CONTINUE
00258 *
00259 *     Test the error exits
00260 *
00261       IF( TSTERR )
00262      $   CALL ZERRSY( PATH, NOUT )
00263       INFOT = 0
00264 *
00265 *     Set the minimum block size for which the block routine should
00266 *     be used, which will be later returned by ILAENV
00267 *
00268       CALL XLAENV( 2, 2 )
00269 *
00270 *     Do for each value of N in NVAL
00271 *
00272       DO 180 IN = 1, NN
00273          N = NVAL( IN )
00274          LDA = MAX( N, 1 )
00275          XTYPE = 'N'
00276          NIMAT = NTYPES
00277          IF( N.LE.0 )
00278      $      NIMAT = 1
00279 *
00280          IZERO = 0
00281 *
00282 *        Do for each value of matrix type IMAT
00283 *
00284          DO 170 IMAT = 1, NIMAT
00285 *
00286 *           Do the tests only if DOTYPE( IMAT ) is true.
00287 *
00288             IF( .NOT.DOTYPE( IMAT ) )
00289      $         GO TO 170
00290 *
00291 *           Skip types 3, 4, 5, or 6 if the matrix size is too small.
00292 *
00293             ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
00294             IF( ZEROT .AND. N.LT.IMAT-2 )
00295      $         GO TO 170
00296 *
00297 *           Do first for UPLO = 'U', then for UPLO = 'L'
00298 *
00299             DO 160 IUPLO = 1, 2
00300                UPLO = UPLOS( IUPLO )
00301 *
00302                IF( IMAT.NE.NTYPES ) THEN
00303 *
00304 *                 Set up parameters with ZLATB4 and generate a test
00305 *                 matrix with ZLATMS.
00306 *
00307                   CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
00308      $                         MODE, CNDNUM, DIST )
00309 *
00310 *                 Generate a matrix with ZLATMS.
00311 *
00312                   SRNAMT = 'ZLATMS'
00313                   CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
00314      $                         CNDNUM, ANORM, KL, KU, 'N', A, LDA, WORK,
00315      $                         INFO )
00316 *
00317 *                 Check error code from ZLATMS and handle error.
00318 *
00319                   IF( INFO.NE.0 ) THEN
00320                      CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N, N,
00321      $                            -1, -1, -1, IMAT, NFAIL, NERRS, NOUT )
00322                      GO TO 160
00323                   END IF
00324 *
00325 *                 For matrix types 3-6, zero one or more rows and
00326 *                 columns of the matrix to test that INFO is returned
00327 *                 correctly.
00328 *
00329                   IF( ZEROT ) THEN
00330                      IF( IMAT.EQ.3 ) THEN
00331                         IZERO = 1
00332                      ELSE IF( IMAT.EQ.4 ) THEN
00333                         IZERO = N
00334                      ELSE
00335                         IZERO = N / 2 + 1
00336                      END IF
00337 *
00338                      IF( IMAT.LT.6 ) THEN
00339 *
00340 *                       Set row and column IZERO to zero.
00341 *
00342                         IF( IUPLO.EQ.1 ) THEN
00343                            IOFF = ( IZERO-1 )*LDA
00344                            DO 20 I = 1, IZERO - 1
00345                               A( IOFF+I ) = CZERO
00346    20                      CONTINUE
00347                            IOFF = IOFF + IZERO
00348                            DO 30 I = IZERO, N
00349                               A( IOFF ) = CZERO
00350                               IOFF = IOFF + LDA
00351    30                      CONTINUE
00352                         ELSE
00353                            IOFF = IZERO
00354                            DO 40 I = 1, IZERO - 1
00355                               A( IOFF ) = CZERO
00356                               IOFF = IOFF + LDA
00357    40                      CONTINUE
00358                            IOFF = IOFF - IZERO
00359                            DO 50 I = IZERO, N
00360                               A( IOFF+I ) = CZERO
00361    50                      CONTINUE
00362                         END IF
00363                      ELSE
00364                         IF( IUPLO.EQ.1 ) THEN
00365 *
00366 *                          Set the first IZERO rows to zero.
00367 *
00368                            IOFF = 0
00369                            DO 70 J = 1, N
00370                               I2 = MIN( J, IZERO )
00371                               DO 60 I = 1, I2
00372                                  A( IOFF+I ) = CZERO
00373    60                         CONTINUE
00374                               IOFF = IOFF + LDA
00375    70                      CONTINUE
00376                         ELSE
00377 *
00378 *                          Set the last IZERO rows to zero.
00379 *
00380                            IOFF = 0
00381                            DO 90 J = 1, N
00382                               I1 = MAX( J, IZERO )
00383                               DO 80 I = I1, N
00384                                  A( IOFF+I ) = CZERO
00385    80                         CONTINUE
00386                               IOFF = IOFF + LDA
00387    90                      CONTINUE
00388                         END IF
00389                      END IF
00390                   ELSE
00391                      IZERO = 0
00392                   END IF
00393 *
00394 *                 End generate the test matrix A.
00395 *
00396                ELSE
00397 *
00398 *                 Use a special block diagonal matrix to test alternate
00399 *                 code for the 2 x 2 blocks.
00400 *
00401                   CALL ZLATSY( UPLO, N, A, LDA, ISEED )
00402 *
00403                END IF
00404 *
00405 *              Do for each value of NB in NBVAL
00406 *
00407                DO 150 INB = 1, NNB
00408 *
00409 *                 Set the optimal blocksize, which will be later
00410 *                 returned by ILAENV.
00411 *
00412                   NB = NBVAL( INB )
00413                   CALL XLAENV( 1, NB )
00414 *
00415 *                 Copy the test matrix A into matrix AFAC which
00416 *                 will be factorized in place. This is needed to
00417 *                 preserve the test matrix A for subsequent tests.
00418 *
00419                   CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
00420 *
00421 *                 Compute the L*D*L**T or U*D*U**T factorization of the
00422 *                 matrix. IWORK stores details of the interchanges and
00423 *                 the block structure of D. AINV is a work array for
00424 *                 block factorization, LWORK is the length of AINV.
00425 *
00426                   LWORK = MAX( 2, NB )*LDA
00427                   SRNAMT = 'ZSYTRF'
00428                   CALL ZSYTRF( UPLO, N, AFAC, LDA, IWORK, AINV, LWORK,
00429      $                         INFO )
00430 *
00431 *                 Adjust the expected value of INFO to account for
00432 *                 pivoting.
00433 *
00434                   K = IZERO
00435                   IF( K.GT.0 ) THEN
00436   100                CONTINUE
00437                      IF( IWORK( K ).LT.0 ) THEN
00438                         IF( IWORK( K ).NE.-K ) THEN
00439                            K = -IWORK( K )
00440                            GO TO 100
00441                         END IF
00442                      ELSE IF( IWORK( K ).NE.K ) THEN
00443                         K = IWORK( K )
00444                         GO TO 100
00445                      END IF
00446                   END IF
00447 *
00448 *                 Check error code from ZSYTRF and handle error.
00449 *
00450                   IF( INFO.NE.K )
00451      $               CALL ALAERH( PATH, 'ZSYTRF', INFO, K, UPLO, N, N,
00452      $                            -1, -1, NB, IMAT, NFAIL, NERRS, NOUT )
00453 *
00454 *                 Set the condition estimate flag if the INFO is not 0.
00455 *
00456                   IF( INFO.NE.0 ) THEN
00457                      TRFCON = .TRUE.
00458                   ELSE
00459                      TRFCON = .FALSE.
00460                   END IF
00461 *
00462 *+    TEST 1
00463 *                 Reconstruct matrix from factors and compute residual.
00464 *
00465                   CALL ZSYT01( UPLO, N, A, LDA, AFAC, LDA, IWORK, AINV,
00466      $                         LDA, RWORK, RESULT( 1 ) )
00467                   NT = 1
00468 *
00469 *+    TEST 2
00470 *                 Form the inverse and compute the residual,
00471 *                 if the factorization was competed without INFO > 0
00472 *                 (i.e. there is no zero rows and columns).
00473 *                 Do it only for the first block size.
00474 *
00475                   IF( INB.EQ.1 .AND. .NOT.TRFCON ) THEN
00476                      CALL ZLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
00477                      SRNAMT = 'ZSYTRI2'
00478                      LWORK = (N+NB+1)*(NB+3)
00479                      CALL ZSYTRI2( UPLO, N, AINV, LDA, IWORK, WORK,
00480      $                            LWORK, INFO )
00481 *
00482 *                    Check error code from ZSYTRI2 and handle error.
00483 *
00484                      IF( INFO.NE.0 )
00485      $                  CALL ALAERH( PATH, 'ZSYTRI2', INFO, 0, UPLO, N,
00486      $                               N, -1, -1, -1, IMAT, NFAIL, NERRS,
00487      $                               NOUT )
00488 *
00489 *                    Compute the residual for a symmetric matrix times
00490 *                    its inverse.
00491 *
00492                      CALL ZSYT03( UPLO, N, A, LDA, AINV, LDA, WORK, LDA,
00493      $                            RWORK, RCONDC, RESULT( 2 ) )
00494                      NT = 2
00495                   END IF
00496 *
00497 *                 Print information about the tests that did not pass
00498 *                 the threshold.
00499 *
00500                   DO 110 K = 1, NT
00501                      IF( RESULT( K ).GE.THRESH ) THEN
00502                         IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00503      $                     CALL ALAHD( NOUT, PATH )
00504                         WRITE( NOUT, FMT = 9999 )UPLO, N, NB, IMAT, K,
00505      $                     RESULT( K )
00506                         NFAIL = NFAIL + 1
00507                      END IF
00508   110             CONTINUE
00509                   NRUN = NRUN + NT
00510 *
00511 *                 Skip the other tests if this is not the first block
00512 *                 size.
00513 *
00514                   IF( INB.GT.1 )
00515      $               GO TO 150
00516 *
00517 *                 Do only the condition estimate if INFO is not 0.
00518 *
00519                   IF( TRFCON ) THEN
00520                      RCONDC = ZERO
00521                      GO TO 140
00522                   END IF
00523 *
00524                   DO 130 IRHS = 1, NNS
00525                      NRHS = NSVAL( IRHS )
00526 *
00527 *+    TEST 3 (Using TRS)
00528 *                 Solve and compute residual for  A * X = B.
00529 *
00530 *                    Choose a set of NRHS random solution vectors
00531 *                    stored in XACT and set up the right hand side B
00532 *
00533                      SRNAMT = 'ZLARHS'
00534                      CALL ZLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
00535      $                            NRHS, A, LDA, XACT, LDA, B, LDA,
00536      $                            ISEED, INFO )
00537                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
00538 *
00539                      SRNAMT = 'ZSYTRS'
00540                      CALL ZSYTRS( UPLO, N, NRHS, AFAC, LDA, IWORK, X,
00541      $                            LDA, INFO )
00542 *
00543 *                    Check error code from ZSYTRS and handle error.
00544 *
00545                      IF( INFO.NE.0 )
00546      $                  CALL ALAERH( PATH, 'ZSYTRS', INFO, 0, UPLO, N,
00547      $                               N, -1, -1, NRHS, IMAT, NFAIL,
00548      $                               NERRS, NOUT )
00549 *
00550                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00551 *
00552 *                    Compute the residual for the solution
00553 *
00554                      CALL ZSYT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
00555      $                            LDA, RWORK, RESULT( 3 ) )
00556 *
00557 *+    TEST 4 (Using TRS2)
00558 *                 Solve and compute residual for  A * X = B.
00559 *
00560 *                    Choose a set of NRHS random solution vectors
00561 *                    stored in XACT and set up the right hand side B
00562 *
00563                      SRNAMT = 'ZLARHS'
00564                      CALL ZLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
00565      $                            NRHS, A, LDA, XACT, LDA, B, LDA,
00566      $                            ISEED, INFO )
00567                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
00568 *
00569                      SRNAMT = 'ZSYTRS2'
00570                      CALL ZSYTRS2( UPLO, N, NRHS, AFAC, LDA, IWORK, X,
00571      $                            LDA, WORK, INFO )
00572 *
00573 *                    Check error code from ZSYTRS2 and handle error.
00574 *
00575                      IF( INFO.NE.0 )
00576      $                  CALL ALAERH( PATH, 'ZSYTRS', INFO, 0, UPLO, N,
00577      $                               N, -1, -1, NRHS, IMAT, NFAIL,
00578      $                               NERRS, NOUT )
00579 *
00580                      CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00581 *
00582 *                    Compute the residual for the solution
00583 *
00584                      CALL ZSYT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
00585      $                            LDA, RWORK, RESULT( 4 ) )
00586 *
00587 *
00588 *+    TEST 5
00589 *                 Check solution from generated exact solution.
00590 *
00591                      CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00592      $                            RESULT( 5 ) )
00593 *
00594 *+    TESTS 6, 7, and 8
00595 *                 Use iterative refinement to improve the solution.
00596 *
00597                      SRNAMT = 'ZSYRFS'
00598                      CALL ZSYRFS( UPLO, N, NRHS, A, LDA, AFAC, LDA,
00599      $                            IWORK, B, LDA, X, LDA, RWORK,
00600      $                            RWORK( NRHS+1 ), WORK,
00601      $                            RWORK( 2*NRHS+1 ), INFO )
00602 *
00603 *                    Check error code from ZSYRFS and handle error.
00604 *
00605                      IF( INFO.NE.0 )
00606      $                  CALL ALAERH( PATH, 'ZSYRFS', INFO, 0, UPLO, N,
00607      $                               N, -1, -1, NRHS, IMAT, NFAIL,
00608      $                               NERRS, NOUT )
00609 *
00610                      CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00611      $                            RESULT( 6 ) )
00612                      CALL ZPOT05( UPLO, N, NRHS, A, LDA, B, LDA, X, LDA,
00613      $                            XACT, LDA, RWORK, RWORK( NRHS+1 ),
00614      $                            RESULT( 7 ) )
00615 *
00616 *                    Print information about the tests that did not pass
00617 *                    the threshold.
00618 *
00619                      DO 120 K = 3, 8
00620                         IF( RESULT( K ).GE.THRESH ) THEN
00621                            IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00622      $                        CALL ALAHD( NOUT, PATH )
00623                            WRITE( NOUT, FMT = 9998 )UPLO, N, NRHS,
00624      $                        IMAT, K, RESULT( K )
00625                            NFAIL = NFAIL + 1
00626                         END IF
00627   120                CONTINUE
00628                      NRUN = NRUN + 6
00629   130             CONTINUE
00630 *
00631 *+    TEST 9
00632 *                 Get an estimate of RCOND = 1/CNDNUM.
00633 *
00634   140             CONTINUE
00635                   ANORM = ZLANSY( '1', UPLO, N, A, LDA, RWORK )
00636                   SRNAMT = 'ZSYCON'
00637                   CALL ZSYCON( UPLO, N, AFAC, LDA, IWORK, ANORM, RCOND,
00638      $                         WORK, INFO )
00639 *
00640 *                 Check error code from ZSYCON and handle error.
00641 *
00642                   IF( INFO.NE.0 )
00643      $               CALL ALAERH( PATH, 'ZSYCON', INFO, 0, UPLO, N, N,
00644      $                            -1, -1, -1, IMAT, NFAIL, NERRS, NOUT )
00645 *
00646 *                 Compute the test ratio to compare to values of RCOND
00647 *
00648                   RESULT( 9 ) = DGET06( RCOND, RCONDC )
00649 *
00650 *                 Print information about the tests that did not pass
00651 *                 the threshold.
00652 *
00653                   IF( RESULT( 9 ).GE.THRESH ) THEN
00654                      IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00655      $                  CALL ALAHD( NOUT, PATH )
00656                      WRITE( NOUT, FMT = 9997 )UPLO, N, IMAT, 9,
00657      $                  RESULT( 9 )
00658                      NFAIL = NFAIL + 1
00659                   END IF
00660                   NRUN = NRUN + 1
00661   150          CONTINUE
00662   160       CONTINUE
00663   170    CONTINUE
00664   180 CONTINUE
00665 *
00666 *     Print a summary of the results.
00667 *
00668       CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
00669 *
00670  9999 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NB =', I4, ', type ',
00671      $      I2, ', test ', I2, ', ratio =', G12.5 )
00672  9998 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NRHS=', I3, ', type ',
00673      $      I2, ', test(', I2, ') =', G12.5 )
00674  9997 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ',', 10X, ' type ', I2,
00675      $      ', test(', I2, ') =', G12.5 )
00676       RETURN
00677 *
00678 *     End of ZCHKSY
00679 *
00680       END
 All Files Functions