![]() |
LAPACK
3.4.1
LAPACK: Linear Algebra PACKage
|
00001 *> \brief \b DERRGT 00002 * 00003 * =========== DOCUMENTATION =========== 00004 * 00005 * Online html documentation available at 00006 * http://www.netlib.org/lapack/explore-html/ 00007 * 00008 * Definition: 00009 * =========== 00010 * 00011 * SUBROUTINE DERRGT( PATH, NUNIT ) 00012 * 00013 * .. Scalar Arguments .. 00014 * CHARACTER*3 PATH 00015 * INTEGER NUNIT 00016 * .. 00017 * 00018 * 00019 *> \par Purpose: 00020 * ============= 00021 *> 00022 *> \verbatim 00023 *> 00024 *> DERRGT tests the error exits for the DOUBLE PRECISION tridiagonal 00025 *> routines. 00026 *> \endverbatim 00027 * 00028 * Arguments: 00029 * ========== 00030 * 00031 *> \param[in] PATH 00032 *> \verbatim 00033 *> PATH is CHARACTER*3 00034 *> The LAPACK path name for the routines to be tested. 00035 *> \endverbatim 00036 *> 00037 *> \param[in] NUNIT 00038 *> \verbatim 00039 *> NUNIT is INTEGER 00040 *> The unit number for output. 00041 *> \endverbatim 00042 * 00043 * Authors: 00044 * ======== 00045 * 00046 *> \author Univ. of Tennessee 00047 *> \author Univ. of California Berkeley 00048 *> \author Univ. of Colorado Denver 00049 *> \author NAG Ltd. 00050 * 00051 *> \date November 2011 00052 * 00053 *> \ingroup double_lin 00054 * 00055 * ===================================================================== 00056 SUBROUTINE DERRGT( PATH, NUNIT ) 00057 * 00058 * -- LAPACK test routine (version 3.4.0) -- 00059 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00060 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00061 * November 2011 00062 * 00063 * .. Scalar Arguments .. 00064 CHARACTER*3 PATH 00065 INTEGER NUNIT 00066 * .. 00067 * 00068 * ===================================================================== 00069 * 00070 * .. Parameters .. 00071 INTEGER NMAX 00072 PARAMETER ( NMAX = 2 ) 00073 * .. 00074 * .. Local Scalars .. 00075 CHARACTER*2 C2 00076 INTEGER INFO 00077 DOUBLE PRECISION ANORM, RCOND 00078 * .. 00079 * .. Local Arrays .. 00080 INTEGER IP( NMAX ), IW( NMAX ) 00081 DOUBLE PRECISION B( NMAX ), C( NMAX ), CF( NMAX ), D( NMAX ), 00082 $ DF( NMAX ), E( NMAX ), EF( NMAX ), F( NMAX ), 00083 $ R1( NMAX ), R2( NMAX ), W( NMAX ), X( NMAX ) 00084 * .. 00085 * .. External Functions .. 00086 LOGICAL LSAMEN 00087 EXTERNAL LSAMEN 00088 * .. 00089 * .. External Subroutines .. 00090 EXTERNAL ALAESM, CHKXER, DGTCON, DGTRFS, DGTTRF, DGTTRS, 00091 $ DPTCON, DPTRFS, DPTTRF, DPTTRS 00092 * .. 00093 * .. Scalars in Common .. 00094 LOGICAL LERR, OK 00095 CHARACTER*32 SRNAMT 00096 INTEGER INFOT, NOUT 00097 * .. 00098 * .. Common blocks .. 00099 COMMON / INFOC / INFOT, NOUT, OK, LERR 00100 COMMON / SRNAMC / SRNAMT 00101 * .. 00102 * .. Executable Statements .. 00103 * 00104 NOUT = NUNIT 00105 WRITE( NOUT, FMT = * ) 00106 C2 = PATH( 2: 3 ) 00107 D( 1 ) = 1.D0 00108 D( 2 ) = 2.D0 00109 DF( 1 ) = 1.D0 00110 DF( 2 ) = 2.D0 00111 E( 1 ) = 3.D0 00112 E( 2 ) = 4.D0 00113 EF( 1 ) = 3.D0 00114 EF( 2 ) = 4.D0 00115 ANORM = 1.0D0 00116 OK = .TRUE. 00117 * 00118 IF( LSAMEN( 2, C2, 'GT' ) ) THEN 00119 * 00120 * Test error exits for the general tridiagonal routines. 00121 * 00122 * DGTTRF 00123 * 00124 SRNAMT = 'DGTTRF' 00125 INFOT = 1 00126 CALL DGTTRF( -1, C, D, E, F, IP, INFO ) 00127 CALL CHKXER( 'DGTTRF', INFOT, NOUT, LERR, OK ) 00128 * 00129 * DGTTRS 00130 * 00131 SRNAMT = 'DGTTRS' 00132 INFOT = 1 00133 CALL DGTTRS( '/', 0, 0, C, D, E, F, IP, X, 1, INFO ) 00134 CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK ) 00135 INFOT = 2 00136 CALL DGTTRS( 'N', -1, 0, C, D, E, F, IP, X, 1, INFO ) 00137 CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK ) 00138 INFOT = 3 00139 CALL DGTTRS( 'N', 0, -1, C, D, E, F, IP, X, 1, INFO ) 00140 CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK ) 00141 INFOT = 10 00142 CALL DGTTRS( 'N', 2, 1, C, D, E, F, IP, X, 1, INFO ) 00143 CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK ) 00144 * 00145 * DGTRFS 00146 * 00147 SRNAMT = 'DGTRFS' 00148 INFOT = 1 00149 CALL DGTRFS( '/', 0, 0, C, D, E, CF, DF, EF, F, IP, B, 1, X, 1, 00150 $ R1, R2, W, IW, INFO ) 00151 CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK ) 00152 INFOT = 2 00153 CALL DGTRFS( 'N', -1, 0, C, D, E, CF, DF, EF, F, IP, B, 1, X, 00154 $ 1, R1, R2, W, IW, INFO ) 00155 CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK ) 00156 INFOT = 3 00157 CALL DGTRFS( 'N', 0, -1, C, D, E, CF, DF, EF, F, IP, B, 1, X, 00158 $ 1, R1, R2, W, IW, INFO ) 00159 CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK ) 00160 INFOT = 13 00161 CALL DGTRFS( 'N', 2, 1, C, D, E, CF, DF, EF, F, IP, B, 1, X, 2, 00162 $ R1, R2, W, IW, INFO ) 00163 CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK ) 00164 INFOT = 15 00165 CALL DGTRFS( 'N', 2, 1, C, D, E, CF, DF, EF, F, IP, B, 2, X, 1, 00166 $ R1, R2, W, IW, INFO ) 00167 CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK ) 00168 * 00169 * DGTCON 00170 * 00171 SRNAMT = 'DGTCON' 00172 INFOT = 1 00173 CALL DGTCON( '/', 0, C, D, E, F, IP, ANORM, RCOND, W, IW, 00174 $ INFO ) 00175 CALL CHKXER( 'DGTCON', INFOT, NOUT, LERR, OK ) 00176 INFOT = 2 00177 CALL DGTCON( 'I', -1, C, D, E, F, IP, ANORM, RCOND, W, IW, 00178 $ INFO ) 00179 CALL CHKXER( 'DGTCON', INFOT, NOUT, LERR, OK ) 00180 INFOT = 8 00181 CALL DGTCON( 'I', 0, C, D, E, F, IP, -ANORM, RCOND, W, IW, 00182 $ INFO ) 00183 CALL CHKXER( 'DGTCON', INFOT, NOUT, LERR, OK ) 00184 * 00185 ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN 00186 * 00187 * Test error exits for the positive definite tridiagonal 00188 * routines. 00189 * 00190 * DPTTRF 00191 * 00192 SRNAMT = 'DPTTRF' 00193 INFOT = 1 00194 CALL DPTTRF( -1, D, E, INFO ) 00195 CALL CHKXER( 'DPTTRF', INFOT, NOUT, LERR, OK ) 00196 * 00197 * DPTTRS 00198 * 00199 SRNAMT = 'DPTTRS' 00200 INFOT = 1 00201 CALL DPTTRS( -1, 0, D, E, X, 1, INFO ) 00202 CALL CHKXER( 'DPTTRS', INFOT, NOUT, LERR, OK ) 00203 INFOT = 2 00204 CALL DPTTRS( 0, -1, D, E, X, 1, INFO ) 00205 CALL CHKXER( 'DPTTRS', INFOT, NOUT, LERR, OK ) 00206 INFOT = 6 00207 CALL DPTTRS( 2, 1, D, E, X, 1, INFO ) 00208 CALL CHKXER( 'DPTTRS', INFOT, NOUT, LERR, OK ) 00209 * 00210 * DPTRFS 00211 * 00212 SRNAMT = 'DPTRFS' 00213 INFOT = 1 00214 CALL DPTRFS( -1, 0, D, E, DF, EF, B, 1, X, 1, R1, R2, W, INFO ) 00215 CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK ) 00216 INFOT = 2 00217 CALL DPTRFS( 0, -1, D, E, DF, EF, B, 1, X, 1, R1, R2, W, INFO ) 00218 CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK ) 00219 INFOT = 8 00220 CALL DPTRFS( 2, 1, D, E, DF, EF, B, 1, X, 2, R1, R2, W, INFO ) 00221 CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK ) 00222 INFOT = 10 00223 CALL DPTRFS( 2, 1, D, E, DF, EF, B, 2, X, 1, R1, R2, W, INFO ) 00224 CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK ) 00225 * 00226 * DPTCON 00227 * 00228 SRNAMT = 'DPTCON' 00229 INFOT = 1 00230 CALL DPTCON( -1, D, E, ANORM, RCOND, W, INFO ) 00231 CALL CHKXER( 'DPTCON', INFOT, NOUT, LERR, OK ) 00232 INFOT = 4 00233 CALL DPTCON( 0, D, E, -ANORM, RCOND, W, INFO ) 00234 CALL CHKXER( 'DPTCON', INFOT, NOUT, LERR, OK ) 00235 END IF 00236 * 00237 * Print a summary line. 00238 * 00239 CALL ALAESM( PATH, OK, NOUT ) 00240 * 00241 RETURN 00242 * 00243 * End of DERRGT 00244 * 00245 END