![]() |
LAPACK
3.4.1
LAPACK: Linear Algebra PACKage
|
00001 *> \brief \b CLAQPS 00002 * 00003 * =========== DOCUMENTATION =========== 00004 * 00005 * Online html documentation available at 00006 * http://www.netlib.org/lapack/explore-html/ 00007 * 00008 *> \htmlonly 00009 *> Download CLAQPS + dependencies 00010 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqps.f"> 00011 *> [TGZ]</a> 00012 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqps.f"> 00013 *> [ZIP]</a> 00014 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqps.f"> 00015 *> [TXT]</a> 00016 *> \endhtmlonly 00017 * 00018 * Definition: 00019 * =========== 00020 * 00021 * SUBROUTINE CLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1, 00022 * VN2, AUXV, F, LDF ) 00023 * 00024 * .. Scalar Arguments .. 00025 * INTEGER KB, LDA, LDF, M, N, NB, OFFSET 00026 * .. 00027 * .. Array Arguments .. 00028 * INTEGER JPVT( * ) 00029 * REAL VN1( * ), VN2( * ) 00030 * COMPLEX A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ) 00031 * .. 00032 * 00033 * 00034 *> \par Purpose: 00035 * ============= 00036 *> 00037 *> \verbatim 00038 *> 00039 *> CLAQPS computes a step of QR factorization with column pivoting 00040 *> of a complex M-by-N matrix A by using Blas-3. It tries to factorize 00041 *> NB columns from A starting from the row OFFSET+1, and updates all 00042 *> of the matrix with Blas-3 xGEMM. 00043 *> 00044 *> In some cases, due to catastrophic cancellations, it cannot 00045 *> factorize NB columns. Hence, the actual number of factorized 00046 *> columns is returned in KB. 00047 *> 00048 *> Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. 00049 *> \endverbatim 00050 * 00051 * Arguments: 00052 * ========== 00053 * 00054 *> \param[in] M 00055 *> \verbatim 00056 *> M is INTEGER 00057 *> The number of rows of the matrix A. M >= 0. 00058 *> \endverbatim 00059 *> 00060 *> \param[in] N 00061 *> \verbatim 00062 *> N is INTEGER 00063 *> The number of columns of the matrix A. N >= 0 00064 *> \endverbatim 00065 *> 00066 *> \param[in] OFFSET 00067 *> \verbatim 00068 *> OFFSET is INTEGER 00069 *> The number of rows of A that have been factorized in 00070 *> previous steps. 00071 *> \endverbatim 00072 *> 00073 *> \param[in] NB 00074 *> \verbatim 00075 *> NB is INTEGER 00076 *> The number of columns to factorize. 00077 *> \endverbatim 00078 *> 00079 *> \param[out] KB 00080 *> \verbatim 00081 *> KB is INTEGER 00082 *> The number of columns actually factorized. 00083 *> \endverbatim 00084 *> 00085 *> \param[in,out] A 00086 *> \verbatim 00087 *> A is COMPLEX array, dimension (LDA,N) 00088 *> On entry, the M-by-N matrix A. 00089 *> On exit, block A(OFFSET+1:M,1:KB) is the triangular 00090 *> factor obtained and block A(1:OFFSET,1:N) has been 00091 *> accordingly pivoted, but no factorized. 00092 *> The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has 00093 *> been updated. 00094 *> \endverbatim 00095 *> 00096 *> \param[in] LDA 00097 *> \verbatim 00098 *> LDA is INTEGER 00099 *> The leading dimension of the array A. LDA >= max(1,M). 00100 *> \endverbatim 00101 *> 00102 *> \param[in,out] JPVT 00103 *> \verbatim 00104 *> JPVT is INTEGER array, dimension (N) 00105 *> JPVT(I) = K <==> Column K of the full matrix A has been 00106 *> permuted into position I in AP. 00107 *> \endverbatim 00108 *> 00109 *> \param[out] TAU 00110 *> \verbatim 00111 *> TAU is COMPLEX array, dimension (KB) 00112 *> The scalar factors of the elementary reflectors. 00113 *> \endverbatim 00114 *> 00115 *> \param[in,out] VN1 00116 *> \verbatim 00117 *> VN1 is REAL array, dimension (N) 00118 *> The vector with the partial column norms. 00119 *> \endverbatim 00120 *> 00121 *> \param[in,out] VN2 00122 *> \verbatim 00123 *> VN2 is REAL array, dimension (N) 00124 *> The vector with the exact column norms. 00125 *> \endverbatim 00126 *> 00127 *> \param[in,out] AUXV 00128 *> \verbatim 00129 *> AUXV is COMPLEX array, dimension (NB) 00130 *> Auxiliar vector. 00131 *> \endverbatim 00132 *> 00133 *> \param[in,out] F 00134 *> \verbatim 00135 *> F is COMPLEX array, dimension (LDF,NB) 00136 *> Matrix F**H = L * Y**H * A. 00137 *> \endverbatim 00138 *> 00139 *> \param[in] LDF 00140 *> \verbatim 00141 *> LDF is INTEGER 00142 *> The leading dimension of the array F. LDF >= max(1,N). 00143 *> \endverbatim 00144 * 00145 * Authors: 00146 * ======== 00147 * 00148 *> \author Univ. of Tennessee 00149 *> \author Univ. of California Berkeley 00150 *> \author Univ. of Colorado Denver 00151 *> \author NAG Ltd. 00152 * 00153 *> \date November 2011 00154 * 00155 *> \ingroup complexOTHERauxiliary 00156 * 00157 *> \par Contributors: 00158 * ================== 00159 *> 00160 *> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain 00161 *> X. Sun, Computer Science Dept., Duke University, USA 00162 *> 00163 *> \n 00164 *> Partial column norm updating strategy modified on April 2011 00165 *> Z. Drmac and Z. Bujanovic, Dept. of Mathematics, 00166 *> University of Zagreb, Croatia. 00167 * 00168 *> \par References: 00169 * ================ 00170 *> 00171 *> LAPACK Working Note 176 00172 * 00173 *> \htmlonly 00174 *> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a> 00175 *> \endhtmlonly 00176 * 00177 * ===================================================================== 00178 SUBROUTINE CLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1, 00179 $ VN2, AUXV, F, LDF ) 00180 * 00181 * -- LAPACK auxiliary routine (version 3.4.0) -- 00182 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00183 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00184 * November 2011 00185 * 00186 * .. Scalar Arguments .. 00187 INTEGER KB, LDA, LDF, M, N, NB, OFFSET 00188 * .. 00189 * .. Array Arguments .. 00190 INTEGER JPVT( * ) 00191 REAL VN1( * ), VN2( * ) 00192 COMPLEX A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ) 00193 * .. 00194 * 00195 * ===================================================================== 00196 * 00197 * .. Parameters .. 00198 REAL ZERO, ONE 00199 COMPLEX CZERO, CONE 00200 PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, 00201 $ CZERO = ( 0.0E+0, 0.0E+0 ), 00202 $ CONE = ( 1.0E+0, 0.0E+0 ) ) 00203 * .. 00204 * .. Local Scalars .. 00205 INTEGER ITEMP, J, K, LASTRK, LSTICC, PVT, RK 00206 REAL TEMP, TEMP2, TOL3Z 00207 COMPLEX AKK 00208 * .. 00209 * .. External Subroutines .. 00210 EXTERNAL CGEMM, CGEMV, CLARFG, CSWAP 00211 * .. 00212 * .. Intrinsic Functions .. 00213 INTRINSIC ABS, CONJG, MAX, MIN, NINT, REAL, SQRT 00214 * .. 00215 * .. External Functions .. 00216 INTEGER ISAMAX 00217 REAL SCNRM2, SLAMCH 00218 EXTERNAL ISAMAX, SCNRM2, SLAMCH 00219 * .. 00220 * .. Executable Statements .. 00221 * 00222 LASTRK = MIN( M, N+OFFSET ) 00223 LSTICC = 0 00224 K = 0 00225 TOL3Z = SQRT(SLAMCH('Epsilon')) 00226 * 00227 * Beginning of while loop. 00228 * 00229 10 CONTINUE 00230 IF( ( K.LT.NB ) .AND. ( LSTICC.EQ.0 ) ) THEN 00231 K = K + 1 00232 RK = OFFSET + K 00233 * 00234 * Determine ith pivot column and swap if necessary 00235 * 00236 PVT = ( K-1 ) + ISAMAX( N-K+1, VN1( K ), 1 ) 00237 IF( PVT.NE.K ) THEN 00238 CALL CSWAP( M, A( 1, PVT ), 1, A( 1, K ), 1 ) 00239 CALL CSWAP( K-1, F( PVT, 1 ), LDF, F( K, 1 ), LDF ) 00240 ITEMP = JPVT( PVT ) 00241 JPVT( PVT ) = JPVT( K ) 00242 JPVT( K ) = ITEMP 00243 VN1( PVT ) = VN1( K ) 00244 VN2( PVT ) = VN2( K ) 00245 END IF 00246 * 00247 * Apply previous Householder reflectors to column K: 00248 * A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)**H. 00249 * 00250 IF( K.GT.1 ) THEN 00251 DO 20 J = 1, K - 1 00252 F( K, J ) = CONJG( F( K, J ) ) 00253 20 CONTINUE 00254 CALL CGEMV( 'No transpose', M-RK+1, K-1, -CONE, A( RK, 1 ), 00255 $ LDA, F( K, 1 ), LDF, CONE, A( RK, K ), 1 ) 00256 DO 30 J = 1, K - 1 00257 F( K, J ) = CONJG( F( K, J ) ) 00258 30 CONTINUE 00259 END IF 00260 * 00261 * Generate elementary reflector H(k). 00262 * 00263 IF( RK.LT.M ) THEN 00264 CALL CLARFG( M-RK+1, A( RK, K ), A( RK+1, K ), 1, TAU( K ) ) 00265 ELSE 00266 CALL CLARFG( 1, A( RK, K ), A( RK, K ), 1, TAU( K ) ) 00267 END IF 00268 * 00269 AKK = A( RK, K ) 00270 A( RK, K ) = CONE 00271 * 00272 * Compute Kth column of F: 00273 * 00274 * Compute F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)**H*A(RK:M,K). 00275 * 00276 IF( K.LT.N ) THEN 00277 CALL CGEMV( 'Conjugate transpose', M-RK+1, N-K, TAU( K ), 00278 $ A( RK, K+1 ), LDA, A( RK, K ), 1, CZERO, 00279 $ F( K+1, K ), 1 ) 00280 END IF 00281 * 00282 * Padding F(1:K,K) with zeros. 00283 * 00284 DO 40 J = 1, K 00285 F( J, K ) = CZERO 00286 40 CONTINUE 00287 * 00288 * Incremental updating of F: 00289 * F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)**H 00290 * *A(RK:M,K). 00291 * 00292 IF( K.GT.1 ) THEN 00293 CALL CGEMV( 'Conjugate transpose', M-RK+1, K-1, -TAU( K ), 00294 $ A( RK, 1 ), LDA, A( RK, K ), 1, CZERO, 00295 $ AUXV( 1 ), 1 ) 00296 * 00297 CALL CGEMV( 'No transpose', N, K-1, CONE, F( 1, 1 ), LDF, 00298 $ AUXV( 1 ), 1, CONE, F( 1, K ), 1 ) 00299 END IF 00300 * 00301 * Update the current row of A: 00302 * A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)**H. 00303 * 00304 IF( K.LT.N ) THEN 00305 CALL CGEMM( 'No transpose', 'Conjugate transpose', 1, N-K, 00306 $ K, -CONE, A( RK, 1 ), LDA, F( K+1, 1 ), LDF, 00307 $ CONE, A( RK, K+1 ), LDA ) 00308 END IF 00309 * 00310 * Update partial column norms. 00311 * 00312 IF( RK.LT.LASTRK ) THEN 00313 DO 50 J = K + 1, N 00314 IF( VN1( J ).NE.ZERO ) THEN 00315 * 00316 * NOTE: The following 4 lines follow from the analysis in 00317 * Lapack Working Note 176. 00318 * 00319 TEMP = ABS( A( RK, J ) ) / VN1( J ) 00320 TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) ) 00321 TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2 00322 IF( TEMP2 .LE. TOL3Z ) THEN 00323 VN2( J ) = REAL( LSTICC ) 00324 LSTICC = J 00325 ELSE 00326 VN1( J ) = VN1( J )*SQRT( TEMP ) 00327 END IF 00328 END IF 00329 50 CONTINUE 00330 END IF 00331 * 00332 A( RK, K ) = AKK 00333 * 00334 * End of while loop. 00335 * 00336 GO TO 10 00337 END IF 00338 KB = K 00339 RK = OFFSET + KB 00340 * 00341 * Apply the block reflector to the rest of the matrix: 00342 * A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - 00343 * A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)**H. 00344 * 00345 IF( KB.LT.MIN( N, M-OFFSET ) ) THEN 00346 CALL CGEMM( 'No transpose', 'Conjugate transpose', M-RK, N-KB, 00347 $ KB, -CONE, A( RK+1, 1 ), LDA, F( KB+1, 1 ), LDF, 00348 $ CONE, A( RK+1, KB+1 ), LDA ) 00349 END IF 00350 * 00351 * Recomputation of difficult columns. 00352 * 00353 60 CONTINUE 00354 IF( LSTICC.GT.0 ) THEN 00355 ITEMP = NINT( VN2( LSTICC ) ) 00356 VN1( LSTICC ) = SCNRM2( M-RK, A( RK+1, LSTICC ), 1 ) 00357 * 00358 * NOTE: The computation of VN1( LSTICC ) relies on the fact that 00359 * SNRM2 does not fail on vectors with norm below the value of 00360 * SQRT(DLAMCH('S')) 00361 * 00362 VN2( LSTICC ) = VN1( LSTICC ) 00363 LSTICC = ITEMP 00364 GO TO 60 00365 END IF 00366 * 00367 RETURN 00368 * 00369 * End of CLAQPS 00370 * 00371 END