![]() |
LAPACK
3.4.1
LAPACK: Linear Algebra PACKage
|
00001 *> \brief \b CDRVPB 00002 * 00003 * =========== DOCUMENTATION =========== 00004 * 00005 * Online html documentation available at 00006 * http://www.netlib.org/lapack/explore-html/ 00007 * 00008 * Definition: 00009 * =========== 00010 * 00011 * SUBROUTINE CDRVPB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, 00012 * A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, 00013 * RWORK, NOUT ) 00014 * 00015 * .. Scalar Arguments .. 00016 * LOGICAL TSTERR 00017 * INTEGER NMAX, NN, NOUT, NRHS 00018 * REAL THRESH 00019 * .. 00020 * .. Array Arguments .. 00021 * LOGICAL DOTYPE( * ) 00022 * INTEGER NVAL( * ) 00023 * REAL RWORK( * ), S( * ) 00024 * COMPLEX A( * ), AFAC( * ), ASAV( * ), B( * ), 00025 * $ BSAV( * ), WORK( * ), X( * ), XACT( * ) 00026 * .. 00027 * 00028 * 00029 *> \par Purpose: 00030 * ============= 00031 *> 00032 *> \verbatim 00033 *> 00034 *> CDRVPB tests the driver routines CPBSV and -SVX. 00035 *> \endverbatim 00036 * 00037 * Arguments: 00038 * ========== 00039 * 00040 *> \param[in] DOTYPE 00041 *> \verbatim 00042 *> DOTYPE is LOGICAL array, dimension (NTYPES) 00043 *> The matrix types to be used for testing. Matrices of type j 00044 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = 00045 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. 00046 *> \endverbatim 00047 *> 00048 *> \param[in] NN 00049 *> \verbatim 00050 *> NN is INTEGER 00051 *> The number of values of N contained in the vector NVAL. 00052 *> \endverbatim 00053 *> 00054 *> \param[in] NVAL 00055 *> \verbatim 00056 *> NVAL is INTEGER array, dimension (NN) 00057 *> The values of the matrix dimension N. 00058 *> \endverbatim 00059 *> 00060 *> \param[in] NRHS 00061 *> \verbatim 00062 *> NRHS is INTEGER 00063 *> The number of right hand side vectors to be generated for 00064 *> each linear system. 00065 *> \endverbatim 00066 *> 00067 *> \param[in] THRESH 00068 *> \verbatim 00069 *> THRESH is REAL 00070 *> The threshold value for the test ratios. A result is 00071 *> included in the output file if RESULT >= THRESH. To have 00072 *> every test ratio printed, use THRESH = 0. 00073 *> \endverbatim 00074 *> 00075 *> \param[in] TSTERR 00076 *> \verbatim 00077 *> TSTERR is LOGICAL 00078 *> Flag that indicates whether error exits are to be tested. 00079 *> \endverbatim 00080 *> 00081 *> \param[in] NMAX 00082 *> \verbatim 00083 *> NMAX is INTEGER 00084 *> The maximum value permitted for N, used in dimensioning the 00085 *> work arrays. 00086 *> \endverbatim 00087 *> 00088 *> \param[out] A 00089 *> \verbatim 00090 *> A is COMPLEX array, dimension (NMAX*NMAX) 00091 *> \endverbatim 00092 *> 00093 *> \param[out] AFAC 00094 *> \verbatim 00095 *> AFAC is COMPLEX array, dimension (NMAX*NMAX) 00096 *> \endverbatim 00097 *> 00098 *> \param[out] ASAV 00099 *> \verbatim 00100 *> ASAV is COMPLEX array, dimension (NMAX*NMAX) 00101 *> \endverbatim 00102 *> 00103 *> \param[out] B 00104 *> \verbatim 00105 *> B is COMPLEX array, dimension (NMAX*NRHS) 00106 *> \endverbatim 00107 *> 00108 *> \param[out] BSAV 00109 *> \verbatim 00110 *> BSAV is COMPLEX array, dimension (NMAX*NRHS) 00111 *> \endverbatim 00112 *> 00113 *> \param[out] X 00114 *> \verbatim 00115 *> X is COMPLEX array, dimension (NMAX*NRHS) 00116 *> \endverbatim 00117 *> 00118 *> \param[out] XACT 00119 *> \verbatim 00120 *> XACT is COMPLEX array, dimension (NMAX*NRHS) 00121 *> \endverbatim 00122 *> 00123 *> \param[out] S 00124 *> \verbatim 00125 *> S is REAL array, dimension (NMAX) 00126 *> \endverbatim 00127 *> 00128 *> \param[out] WORK 00129 *> \verbatim 00130 *> WORK is COMPLEX array, dimension 00131 *> (NMAX*max(3,NRHS)) 00132 *> \endverbatim 00133 *> 00134 *> \param[out] RWORK 00135 *> \verbatim 00136 *> RWORK is REAL array, dimension (NMAX+2*NRHS) 00137 *> \endverbatim 00138 *> 00139 *> \param[in] NOUT 00140 *> \verbatim 00141 *> NOUT is INTEGER 00142 *> The unit number for output. 00143 *> \endverbatim 00144 * 00145 * Authors: 00146 * ======== 00147 * 00148 *> \author Univ. of Tennessee 00149 *> \author Univ. of California Berkeley 00150 *> \author Univ. of Colorado Denver 00151 *> \author NAG Ltd. 00152 * 00153 *> \date November 2011 00154 * 00155 *> \ingroup complex_lin 00156 * 00157 * ===================================================================== 00158 SUBROUTINE CDRVPB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, 00159 $ A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, 00160 $ RWORK, NOUT ) 00161 * 00162 * -- LAPACK test routine (version 3.4.0) -- 00163 * -- LAPACK is a software package provided by Univ. of Tennessee, -- 00164 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 00165 * November 2011 00166 * 00167 * .. Scalar Arguments .. 00168 LOGICAL TSTERR 00169 INTEGER NMAX, NN, NOUT, NRHS 00170 REAL THRESH 00171 * .. 00172 * .. Array Arguments .. 00173 LOGICAL DOTYPE( * ) 00174 INTEGER NVAL( * ) 00175 REAL RWORK( * ), S( * ) 00176 COMPLEX A( * ), AFAC( * ), ASAV( * ), B( * ), 00177 $ BSAV( * ), WORK( * ), X( * ), XACT( * ) 00178 * .. 00179 * 00180 * ===================================================================== 00181 * 00182 * .. Parameters .. 00183 REAL ONE, ZERO 00184 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) 00185 INTEGER NTYPES, NTESTS 00186 PARAMETER ( NTYPES = 8, NTESTS = 6 ) 00187 INTEGER NBW 00188 PARAMETER ( NBW = 4 ) 00189 * .. 00190 * .. Local Scalars .. 00191 LOGICAL EQUIL, NOFACT, PREFAC, ZEROT 00192 CHARACTER DIST, EQUED, FACT, PACKIT, TYPE, UPLO, XTYPE 00193 CHARACTER*3 PATH 00194 INTEGER I, I1, I2, IEQUED, IFACT, IKD, IMAT, IN, INFO, 00195 $ IOFF, IUPLO, IW, IZERO, K, K1, KD, KL, KOFF, 00196 $ KU, LDA, LDAB, MODE, N, NB, NBMIN, NERRS, 00197 $ NFACT, NFAIL, NIMAT, NKD, NRUN, NT 00198 REAL AINVNM, AMAX, ANORM, CNDNUM, RCOND, RCONDC, 00199 $ ROLDC, SCOND 00200 * .. 00201 * .. Local Arrays .. 00202 CHARACTER EQUEDS( 2 ), FACTS( 3 ) 00203 INTEGER ISEED( 4 ), ISEEDY( 4 ), KDVAL( NBW ) 00204 REAL RESULT( NTESTS ) 00205 * .. 00206 * .. External Functions .. 00207 LOGICAL LSAME 00208 REAL CLANGE, CLANHB, SGET06 00209 EXTERNAL LSAME, CLANGE, CLANHB, SGET06 00210 * .. 00211 * .. External Subroutines .. 00212 EXTERNAL ALADHD, ALAERH, ALASVM, CCOPY, CERRVX, CGET04, 00213 $ CLACPY, CLAIPD, CLAQHB, CLARHS, CLASET, CLATB4, 00214 $ CLATMS, CPBEQU, CPBSV, CPBSVX, CPBT01, CPBT02, 00215 $ CPBT05, CPBTRF, CPBTRS, CSWAP, XLAENV 00216 * .. 00217 * .. Intrinsic Functions .. 00218 INTRINSIC CMPLX, MAX, MIN 00219 * .. 00220 * .. Scalars in Common .. 00221 LOGICAL LERR, OK 00222 CHARACTER*32 SRNAMT 00223 INTEGER INFOT, NUNIT 00224 * .. 00225 * .. Common blocks .. 00226 COMMON / INFOC / INFOT, NUNIT, OK, LERR 00227 COMMON / SRNAMC / SRNAMT 00228 * .. 00229 * .. Data statements .. 00230 DATA ISEEDY / 1988, 1989, 1990, 1991 / 00231 DATA FACTS / 'F', 'N', 'E' / , EQUEDS / 'N', 'Y' / 00232 * .. 00233 * .. Executable Statements .. 00234 * 00235 * Initialize constants and the random number seed. 00236 * 00237 PATH( 1: 1 ) = 'Complex precision' 00238 PATH( 2: 3 ) = 'PB' 00239 NRUN = 0 00240 NFAIL = 0 00241 NERRS = 0 00242 DO 10 I = 1, 4 00243 ISEED( I ) = ISEEDY( I ) 00244 10 CONTINUE 00245 * 00246 * Test the error exits 00247 * 00248 IF( TSTERR ) 00249 $ CALL CERRVX( PATH, NOUT ) 00250 INFOT = 0 00251 KDVAL( 1 ) = 0 00252 * 00253 * Set the block size and minimum block size for testing. 00254 * 00255 NB = 1 00256 NBMIN = 2 00257 CALL XLAENV( 1, NB ) 00258 CALL XLAENV( 2, NBMIN ) 00259 * 00260 * Do for each value of N in NVAL 00261 * 00262 DO 110 IN = 1, NN 00263 N = NVAL( IN ) 00264 LDA = MAX( N, 1 ) 00265 XTYPE = 'N' 00266 * 00267 * Set limits on the number of loop iterations. 00268 * 00269 NKD = MAX( 1, MIN( N, 4 ) ) 00270 NIMAT = NTYPES 00271 IF( N.EQ.0 ) 00272 $ NIMAT = 1 00273 * 00274 KDVAL( 2 ) = N + ( N+1 ) / 4 00275 KDVAL( 3 ) = ( 3*N-1 ) / 4 00276 KDVAL( 4 ) = ( N+1 ) / 4 00277 * 00278 DO 100 IKD = 1, NKD 00279 * 00280 * Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order 00281 * makes it easier to skip redundant values for small values 00282 * of N. 00283 * 00284 KD = KDVAL( IKD ) 00285 LDAB = KD + 1 00286 * 00287 * Do first for UPLO = 'U', then for UPLO = 'L' 00288 * 00289 DO 90 IUPLO = 1, 2 00290 KOFF = 1 00291 IF( IUPLO.EQ.1 ) THEN 00292 UPLO = 'U' 00293 PACKIT = 'Q' 00294 KOFF = MAX( 1, KD+2-N ) 00295 ELSE 00296 UPLO = 'L' 00297 PACKIT = 'B' 00298 END IF 00299 * 00300 DO 80 IMAT = 1, NIMAT 00301 * 00302 * Do the tests only if DOTYPE( IMAT ) is true. 00303 * 00304 IF( .NOT.DOTYPE( IMAT ) ) 00305 $ GO TO 80 00306 * 00307 * Skip types 2, 3, or 4 if the matrix size is too small. 00308 * 00309 ZEROT = IMAT.GE.2 .AND. IMAT.LE.4 00310 IF( ZEROT .AND. N.LT.IMAT-1 ) 00311 $ GO TO 80 00312 * 00313 IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 1 ) ) THEN 00314 * 00315 * Set up parameters with CLATB4 and generate a test 00316 * matrix with CLATMS. 00317 * 00318 CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, 00319 $ MODE, CNDNUM, DIST ) 00320 * 00321 SRNAMT = 'CLATMS' 00322 CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, 00323 $ CNDNUM, ANORM, KD, KD, PACKIT, 00324 $ A( KOFF ), LDAB, WORK, INFO ) 00325 * 00326 * Check error code from CLATMS. 00327 * 00328 IF( INFO.NE.0 ) THEN 00329 CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N, 00330 $ N, -1, -1, -1, IMAT, NFAIL, NERRS, 00331 $ NOUT ) 00332 GO TO 80 00333 END IF 00334 ELSE IF( IZERO.GT.0 ) THEN 00335 * 00336 * Use the same matrix for types 3 and 4 as for type 00337 * 2 by copying back the zeroed out column, 00338 * 00339 IW = 2*LDA + 1 00340 IF( IUPLO.EQ.1 ) THEN 00341 IOFF = ( IZERO-1 )*LDAB + KD + 1 00342 CALL CCOPY( IZERO-I1, WORK( IW ), 1, 00343 $ A( IOFF-IZERO+I1 ), 1 ) 00344 IW = IW + IZERO - I1 00345 CALL CCOPY( I2-IZERO+1, WORK( IW ), 1, 00346 $ A( IOFF ), MAX( LDAB-1, 1 ) ) 00347 ELSE 00348 IOFF = ( I1-1 )*LDAB + 1 00349 CALL CCOPY( IZERO-I1, WORK( IW ), 1, 00350 $ A( IOFF+IZERO-I1 ), 00351 $ MAX( LDAB-1, 1 ) ) 00352 IOFF = ( IZERO-1 )*LDAB + 1 00353 IW = IW + IZERO - I1 00354 CALL CCOPY( I2-IZERO+1, WORK( IW ), 1, 00355 $ A( IOFF ), 1 ) 00356 END IF 00357 END IF 00358 * 00359 * For types 2-4, zero one row and column of the matrix 00360 * to test that INFO is returned correctly. 00361 * 00362 IZERO = 0 00363 IF( ZEROT ) THEN 00364 IF( IMAT.EQ.2 ) THEN 00365 IZERO = 1 00366 ELSE IF( IMAT.EQ.3 ) THEN 00367 IZERO = N 00368 ELSE 00369 IZERO = N / 2 + 1 00370 END IF 00371 * 00372 * Save the zeroed out row and column in WORK(*,3) 00373 * 00374 IW = 2*LDA 00375 DO 20 I = 1, MIN( 2*KD+1, N ) 00376 WORK( IW+I ) = ZERO 00377 20 CONTINUE 00378 IW = IW + 1 00379 I1 = MAX( IZERO-KD, 1 ) 00380 I2 = MIN( IZERO+KD, N ) 00381 * 00382 IF( IUPLO.EQ.1 ) THEN 00383 IOFF = ( IZERO-1 )*LDAB + KD + 1 00384 CALL CSWAP( IZERO-I1, A( IOFF-IZERO+I1 ), 1, 00385 $ WORK( IW ), 1 ) 00386 IW = IW + IZERO - I1 00387 CALL CSWAP( I2-IZERO+1, A( IOFF ), 00388 $ MAX( LDAB-1, 1 ), WORK( IW ), 1 ) 00389 ELSE 00390 IOFF = ( I1-1 )*LDAB + 1 00391 CALL CSWAP( IZERO-I1, A( IOFF+IZERO-I1 ), 00392 $ MAX( LDAB-1, 1 ), WORK( IW ), 1 ) 00393 IOFF = ( IZERO-1 )*LDAB + 1 00394 IW = IW + IZERO - I1 00395 CALL CSWAP( I2-IZERO+1, A( IOFF ), 1, 00396 $ WORK( IW ), 1 ) 00397 END IF 00398 END IF 00399 * 00400 * Set the imaginary part of the diagonals. 00401 * 00402 IF( IUPLO.EQ.1 ) THEN 00403 CALL CLAIPD( N, A( KD+1 ), LDAB, 0 ) 00404 ELSE 00405 CALL CLAIPD( N, A( 1 ), LDAB, 0 ) 00406 END IF 00407 * 00408 * Save a copy of the matrix A in ASAV. 00409 * 00410 CALL CLACPY( 'Full', KD+1, N, A, LDAB, ASAV, LDAB ) 00411 * 00412 DO 70 IEQUED = 1, 2 00413 EQUED = EQUEDS( IEQUED ) 00414 IF( IEQUED.EQ.1 ) THEN 00415 NFACT = 3 00416 ELSE 00417 NFACT = 1 00418 END IF 00419 * 00420 DO 60 IFACT = 1, NFACT 00421 FACT = FACTS( IFACT ) 00422 PREFAC = LSAME( FACT, 'F' ) 00423 NOFACT = LSAME( FACT, 'N' ) 00424 EQUIL = LSAME( FACT, 'E' ) 00425 * 00426 IF( ZEROT ) THEN 00427 IF( PREFAC ) 00428 $ GO TO 60 00429 RCONDC = ZERO 00430 * 00431 ELSE IF( .NOT.LSAME( FACT, 'N' ) ) THEN 00432 * 00433 * Compute the condition number for comparison 00434 * with the value returned by CPBSVX (FACT = 00435 * 'N' reuses the condition number from the 00436 * previous iteration with FACT = 'F'). 00437 * 00438 CALL CLACPY( 'Full', KD+1, N, ASAV, LDAB, 00439 $ AFAC, LDAB ) 00440 IF( EQUIL .OR. IEQUED.GT.1 ) THEN 00441 * 00442 * Compute row and column scale factors to 00443 * equilibrate the matrix A. 00444 * 00445 CALL CPBEQU( UPLO, N, KD, AFAC, LDAB, S, 00446 $ SCOND, AMAX, INFO ) 00447 IF( INFO.EQ.0 .AND. N.GT.0 ) THEN 00448 IF( IEQUED.GT.1 ) 00449 $ SCOND = ZERO 00450 * 00451 * Equilibrate the matrix. 00452 * 00453 CALL CLAQHB( UPLO, N, KD, AFAC, LDAB, 00454 $ S, SCOND, AMAX, EQUED ) 00455 END IF 00456 END IF 00457 * 00458 * Save the condition number of the 00459 * non-equilibrated system for use in CGET04. 00460 * 00461 IF( EQUIL ) 00462 $ ROLDC = RCONDC 00463 * 00464 * Compute the 1-norm of A. 00465 * 00466 ANORM = CLANHB( '1', UPLO, N, KD, AFAC, LDAB, 00467 $ RWORK ) 00468 * 00469 * Factor the matrix A. 00470 * 00471 CALL CPBTRF( UPLO, N, KD, AFAC, LDAB, INFO ) 00472 * 00473 * Form the inverse of A. 00474 * 00475 CALL CLASET( 'Full', N, N, CMPLX( ZERO ), 00476 $ CMPLX( ONE ), A, LDA ) 00477 SRNAMT = 'CPBTRS' 00478 CALL CPBTRS( UPLO, N, KD, N, AFAC, LDAB, A, 00479 $ LDA, INFO ) 00480 * 00481 * Compute the 1-norm condition number of A. 00482 * 00483 AINVNM = CLANGE( '1', N, N, A, LDA, RWORK ) 00484 IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN 00485 RCONDC = ONE 00486 ELSE 00487 RCONDC = ( ONE / ANORM ) / AINVNM 00488 END IF 00489 END IF 00490 * 00491 * Restore the matrix A. 00492 * 00493 CALL CLACPY( 'Full', KD+1, N, ASAV, LDAB, A, 00494 $ LDAB ) 00495 * 00496 * Form an exact solution and set the right hand 00497 * side. 00498 * 00499 SRNAMT = 'CLARHS' 00500 CALL CLARHS( PATH, XTYPE, UPLO, ' ', N, N, KD, 00501 $ KD, NRHS, A, LDAB, XACT, LDA, B, 00502 $ LDA, ISEED, INFO ) 00503 XTYPE = 'C' 00504 CALL CLACPY( 'Full', N, NRHS, B, LDA, BSAV, 00505 $ LDA ) 00506 * 00507 IF( NOFACT ) THEN 00508 * 00509 * --- Test CPBSV --- 00510 * 00511 * Compute the L*L' or U'*U factorization of the 00512 * matrix and solve the system. 00513 * 00514 CALL CLACPY( 'Full', KD+1, N, A, LDAB, AFAC, 00515 $ LDAB ) 00516 CALL CLACPY( 'Full', N, NRHS, B, LDA, X, 00517 $ LDA ) 00518 * 00519 SRNAMT = 'CPBSV ' 00520 CALL CPBSV( UPLO, N, KD, NRHS, AFAC, LDAB, X, 00521 $ LDA, INFO ) 00522 * 00523 * Check error code from CPBSV . 00524 * 00525 IF( INFO.NE.IZERO ) THEN 00526 CALL ALAERH( PATH, 'CPBSV ', INFO, IZERO, 00527 $ UPLO, N, N, KD, KD, NRHS, 00528 $ IMAT, NFAIL, NERRS, NOUT ) 00529 GO TO 40 00530 ELSE IF( INFO.NE.0 ) THEN 00531 GO TO 40 00532 END IF 00533 * 00534 * Reconstruct matrix from factors and compute 00535 * residual. 00536 * 00537 CALL CPBT01( UPLO, N, KD, A, LDAB, AFAC, 00538 $ LDAB, RWORK, RESULT( 1 ) ) 00539 * 00540 * Compute residual of the computed solution. 00541 * 00542 CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, 00543 $ LDA ) 00544 CALL CPBT02( UPLO, N, KD, NRHS, A, LDAB, X, 00545 $ LDA, WORK, LDA, RWORK, 00546 $ RESULT( 2 ) ) 00547 * 00548 * Check solution from generated exact solution. 00549 * 00550 CALL CGET04( N, NRHS, X, LDA, XACT, LDA, 00551 $ RCONDC, RESULT( 3 ) ) 00552 NT = 3 00553 * 00554 * Print information about the tests that did 00555 * not pass the threshold. 00556 * 00557 DO 30 K = 1, NT 00558 IF( RESULT( K ).GE.THRESH ) THEN 00559 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00560 $ CALL ALADHD( NOUT, PATH ) 00561 WRITE( NOUT, FMT = 9999 )'CPBSV ', 00562 $ UPLO, N, KD, IMAT, K, RESULT( K ) 00563 NFAIL = NFAIL + 1 00564 END IF 00565 30 CONTINUE 00566 NRUN = NRUN + NT 00567 40 CONTINUE 00568 END IF 00569 * 00570 * --- Test CPBSVX --- 00571 * 00572 IF( .NOT.PREFAC ) 00573 $ CALL CLASET( 'Full', KD+1, N, CMPLX( ZERO ), 00574 $ CMPLX( ZERO ), AFAC, LDAB ) 00575 CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ), 00576 $ CMPLX( ZERO ), X, LDA ) 00577 IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN 00578 * 00579 * Equilibrate the matrix if FACT='F' and 00580 * EQUED='Y' 00581 * 00582 CALL CLAQHB( UPLO, N, KD, A, LDAB, S, SCOND, 00583 $ AMAX, EQUED ) 00584 END IF 00585 * 00586 * Solve the system and compute the condition 00587 * number and error bounds using CPBSVX. 00588 * 00589 SRNAMT = 'CPBSVX' 00590 CALL CPBSVX( FACT, UPLO, N, KD, NRHS, A, LDAB, 00591 $ AFAC, LDAB, EQUED, S, B, LDA, X, 00592 $ LDA, RCOND, RWORK, RWORK( NRHS+1 ), 00593 $ WORK, RWORK( 2*NRHS+1 ), INFO ) 00594 * 00595 * Check the error code from CPBSVX. 00596 * 00597 IF( INFO.NE.IZERO ) THEN 00598 CALL ALAERH( PATH, 'CPBSVX', INFO, IZERO, 00599 $ FACT // UPLO, N, N, KD, KD, 00600 $ NRHS, IMAT, NFAIL, NERRS, NOUT ) 00601 GO TO 60 00602 END IF 00603 * 00604 IF( INFO.EQ.0 ) THEN 00605 IF( .NOT.PREFAC ) THEN 00606 * 00607 * Reconstruct matrix from factors and 00608 * compute residual. 00609 * 00610 CALL CPBT01( UPLO, N, KD, A, LDAB, AFAC, 00611 $ LDAB, RWORK( 2*NRHS+1 ), 00612 $ RESULT( 1 ) ) 00613 K1 = 1 00614 ELSE 00615 K1 = 2 00616 END IF 00617 * 00618 * Compute residual of the computed solution. 00619 * 00620 CALL CLACPY( 'Full', N, NRHS, BSAV, LDA, 00621 $ WORK, LDA ) 00622 CALL CPBT02( UPLO, N, KD, NRHS, ASAV, LDAB, 00623 $ X, LDA, WORK, LDA, 00624 $ RWORK( 2*NRHS+1 ), RESULT( 2 ) ) 00625 * 00626 * Check solution from generated exact solution. 00627 * 00628 IF( NOFACT .OR. ( PREFAC .AND. LSAME( EQUED, 00629 $ 'N' ) ) ) THEN 00630 CALL CGET04( N, NRHS, X, LDA, XACT, LDA, 00631 $ RCONDC, RESULT( 3 ) ) 00632 ELSE 00633 CALL CGET04( N, NRHS, X, LDA, XACT, LDA, 00634 $ ROLDC, RESULT( 3 ) ) 00635 END IF 00636 * 00637 * Check the error bounds from iterative 00638 * refinement. 00639 * 00640 CALL CPBT05( UPLO, N, KD, NRHS, ASAV, LDAB, 00641 $ B, LDA, X, LDA, XACT, LDA, 00642 $ RWORK, RWORK( NRHS+1 ), 00643 $ RESULT( 4 ) ) 00644 ELSE 00645 K1 = 6 00646 END IF 00647 * 00648 * Compare RCOND from CPBSVX with the computed 00649 * value in RCONDC. 00650 * 00651 RESULT( 6 ) = SGET06( RCOND, RCONDC ) 00652 * 00653 * Print information about the tests that did not 00654 * pass the threshold. 00655 * 00656 DO 50 K = K1, 6 00657 IF( RESULT( K ).GE.THRESH ) THEN 00658 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 00659 $ CALL ALADHD( NOUT, PATH ) 00660 IF( PREFAC ) THEN 00661 WRITE( NOUT, FMT = 9997 )'CPBSVX', 00662 $ FACT, UPLO, N, KD, EQUED, IMAT, K, 00663 $ RESULT( K ) 00664 ELSE 00665 WRITE( NOUT, FMT = 9998 )'CPBSVX', 00666 $ FACT, UPLO, N, KD, IMAT, K, 00667 $ RESULT( K ) 00668 END IF 00669 NFAIL = NFAIL + 1 00670 END IF 00671 50 CONTINUE 00672 NRUN = NRUN + 7 - K1 00673 60 CONTINUE 00674 70 CONTINUE 00675 80 CONTINUE 00676 90 CONTINUE 00677 100 CONTINUE 00678 110 CONTINUE 00679 * 00680 * Print a summary of the results. 00681 * 00682 CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS ) 00683 * 00684 9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', KD =', I5, 00685 $ ', type ', I1, ', test(', I1, ')=', G12.5 ) 00686 9998 FORMAT( 1X, A, '( ''', A1, ''', ''', A1, ''', ', I5, ', ', I5, 00687 $ ', ... ), type ', I1, ', test(', I1, ')=', G12.5 ) 00688 9997 FORMAT( 1X, A, '( ''', A1, ''', ''', A1, ''', ', I5, ', ', I5, 00689 $ ', ... ), EQUED=''', A1, ''', type ', I1, ', test(', I1, 00690 $ ')=', G12.5 ) 00691 RETURN 00692 * 00693 * End of CDRVPB 00694 * 00695 END