LAPACK  3.4.1
LAPACK: Linear Algebra PACKage
cunbdb.f
Go to the documentation of this file.
00001 *> \brief \b CUNBDB
00002 *
00003 *  =========== DOCUMENTATION ===========
00004 *
00005 * Online html documentation available at 
00006 *            http://www.netlib.org/lapack/explore-html/ 
00007 *
00008 *> \htmlonly
00009 *> Download CUNBDB + dependencies 
00010 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunbdb.f"> 
00011 *> [TGZ]</a> 
00012 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunbdb.f"> 
00013 *> [ZIP]</a> 
00014 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunbdb.f"> 
00015 *> [TXT]</a>
00016 *> \endhtmlonly 
00017 *
00018 *  Definition:
00019 *  ===========
00020 *
00021 *       SUBROUTINE CUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
00022 *                          X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
00023 *                          TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
00024 * 
00025 *       .. Scalar Arguments ..
00026 *       CHARACTER          SIGNS, TRANS
00027 *       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
00028 *      $                   Q
00029 *       ..
00030 *       .. Array Arguments ..
00031 *       REAL               PHI( * ), THETA( * )
00032 *       COMPLEX            TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
00033 *      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
00034 *      $                   X21( LDX21, * ), X22( LDX22, * )
00035 *       ..
00036 *  
00037 *
00038 *> \par Purpose:
00039 *  =============
00040 *>
00041 *> \verbatim
00042 *>
00043 *> CUNBDB simultaneously bidiagonalizes the blocks of an M-by-M
00044 *> partitioned unitary matrix X:
00045 *>
00046 *>                                 [ B11 | B12 0  0 ]
00047 *>     [ X11 | X12 ]   [ P1 |    ] [  0  |  0 -I  0 ] [ Q1 |    ]**H
00048 *> X = [-----------] = [---------] [----------------] [---------]   .
00049 *>     [ X21 | X22 ]   [    | P2 ] [ B21 | B22 0  0 ] [    | Q2 ]
00050 *>                                 [  0  |  0  0  I ]
00051 *>
00052 *> X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
00053 *> not the case, then X must be transposed and/or permuted. This can be
00054 *> done in constant time using the TRANS and SIGNS options. See CUNCSD
00055 *> for details.)
00056 *>
00057 *> The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
00058 *> (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
00059 *> represented implicitly by Householder vectors.
00060 *>
00061 *> B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
00062 *> implicitly by angles THETA, PHI.
00063 *> \endverbatim
00064 *
00065 *  Arguments:
00066 *  ==========
00067 *
00068 *> \param[in] TRANS
00069 *> \verbatim
00070 *>          TRANS is CHARACTER
00071 *>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
00072 *>                      order;
00073 *>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
00074 *>                      major order.
00075 *> \endverbatim
00076 *>
00077 *> \param[in] SIGNS
00078 *> \verbatim
00079 *>          SIGNS is CHARACTER
00080 *>          = 'O':      The lower-left block is made nonpositive (the
00081 *>                      "other" convention);
00082 *>          otherwise:  The upper-right block is made nonpositive (the
00083 *>                      "default" convention).
00084 *> \endverbatim
00085 *>
00086 *> \param[in] M
00087 *> \verbatim
00088 *>          M is INTEGER
00089 *>          The number of rows and columns in X.
00090 *> \endverbatim
00091 *>
00092 *> \param[in] P
00093 *> \verbatim
00094 *>          P is INTEGER
00095 *>          The number of rows in X11 and X12. 0 <= P <= M.
00096 *> \endverbatim
00097 *>
00098 *> \param[in] Q
00099 *> \verbatim
00100 *>          Q is INTEGER
00101 *>          The number of columns in X11 and X21. 0 <= Q <=
00102 *>          MIN(P,M-P,M-Q).
00103 *> \endverbatim
00104 *>
00105 *> \param[in,out] X11
00106 *> \verbatim
00107 *>          X11 is COMPLEX array, dimension (LDX11,Q)
00108 *>          On entry, the top-left block of the unitary matrix to be
00109 *>          reduced. On exit, the form depends on TRANS:
00110 *>          If TRANS = 'N', then
00111 *>             the columns of tril(X11) specify reflectors for P1,
00112 *>             the rows of triu(X11,1) specify reflectors for Q1;
00113 *>          else TRANS = 'T', and
00114 *>             the rows of triu(X11) specify reflectors for P1,
00115 *>             the columns of tril(X11,-1) specify reflectors for Q1.
00116 *> \endverbatim
00117 *>
00118 *> \param[in] LDX11
00119 *> \verbatim
00120 *>          LDX11 is INTEGER
00121 *>          The leading dimension of X11. If TRANS = 'N', then LDX11 >=
00122 *>          P; else LDX11 >= Q.
00123 *> \endverbatim
00124 *>
00125 *> \param[in,out] X12
00126 *> \verbatim
00127 *>          X12 is CMPLX array, dimension (LDX12,M-Q)
00128 *>          On entry, the top-right block of the unitary matrix to
00129 *>          be reduced. On exit, the form depends on TRANS:
00130 *>          If TRANS = 'N', then
00131 *>             the rows of triu(X12) specify the first P reflectors for
00132 *>             Q2;
00133 *>          else TRANS = 'T', and
00134 *>             the columns of tril(X12) specify the first P reflectors
00135 *>             for Q2.
00136 *> \endverbatim
00137 *>
00138 *> \param[in] LDX12
00139 *> \verbatim
00140 *>          LDX12 is INTEGER
00141 *>          The leading dimension of X12. If TRANS = 'N', then LDX12 >=
00142 *>          P; else LDX11 >= M-Q.
00143 *> \endverbatim
00144 *>
00145 *> \param[in,out] X21
00146 *> \verbatim
00147 *>          X21 is COMPLEX array, dimension (LDX21,Q)
00148 *>          On entry, the bottom-left block of the unitary matrix to
00149 *>          be reduced. On exit, the form depends on TRANS:
00150 *>          If TRANS = 'N', then
00151 *>             the columns of tril(X21) specify reflectors for P2;
00152 *>          else TRANS = 'T', and
00153 *>             the rows of triu(X21) specify reflectors for P2.
00154 *> \endverbatim
00155 *>
00156 *> \param[in] LDX21
00157 *> \verbatim
00158 *>          LDX21 is INTEGER
00159 *>          The leading dimension of X21. If TRANS = 'N', then LDX21 >=
00160 *>          M-P; else LDX21 >= Q.
00161 *> \endverbatim
00162 *>
00163 *> \param[in,out] X22
00164 *> \verbatim
00165 *>          X22 is COMPLEX array, dimension (LDX22,M-Q)
00166 *>          On entry, the bottom-right block of the unitary matrix to
00167 *>          be reduced. On exit, the form depends on TRANS:
00168 *>          If TRANS = 'N', then
00169 *>             the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
00170 *>             M-P-Q reflectors for Q2,
00171 *>          else TRANS = 'T', and
00172 *>             the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
00173 *>             M-P-Q reflectors for P2.
00174 *> \endverbatim
00175 *>
00176 *> \param[in] LDX22
00177 *> \verbatim
00178 *>          LDX22 is INTEGER
00179 *>          The leading dimension of X22. If TRANS = 'N', then LDX22 >=
00180 *>          M-P; else LDX22 >= M-Q.
00181 *> \endverbatim
00182 *>
00183 *> \param[out] THETA
00184 *> \verbatim
00185 *>          THETA is REAL array, dimension (Q)
00186 *>          The entries of the bidiagonal blocks B11, B12, B21, B22 can
00187 *>          be computed from the angles THETA and PHI. See Further
00188 *>          Details.
00189 *> \endverbatim
00190 *>
00191 *> \param[out] PHI
00192 *> \verbatim
00193 *>          PHI is REAL array, dimension (Q-1)
00194 *>          The entries of the bidiagonal blocks B11, B12, B21, B22 can
00195 *>          be computed from the angles THETA and PHI. See Further
00196 *>          Details.
00197 *> \endverbatim
00198 *>
00199 *> \param[out] TAUP1
00200 *> \verbatim
00201 *>          TAUP1 is COMPLEX array, dimension (P)
00202 *>          The scalar factors of the elementary reflectors that define
00203 *>          P1.
00204 *> \endverbatim
00205 *>
00206 *> \param[out] TAUP2
00207 *> \verbatim
00208 *>          TAUP2 is COMPLEX array, dimension (M-P)
00209 *>          The scalar factors of the elementary reflectors that define
00210 *>          P2.
00211 *> \endverbatim
00212 *>
00213 *> \param[out] TAUQ1
00214 *> \verbatim
00215 *>          TAUQ1 is COMPLEX array, dimension (Q)
00216 *>          The scalar factors of the elementary reflectors that define
00217 *>          Q1.
00218 *> \endverbatim
00219 *>
00220 *> \param[out] TAUQ2
00221 *> \verbatim
00222 *>          TAUQ2 is COMPLEX array, dimension (M-Q)
00223 *>          The scalar factors of the elementary reflectors that define
00224 *>          Q2.
00225 *> \endverbatim
00226 *>
00227 *> \param[out] WORK
00228 *> \verbatim
00229 *>          WORK is COMPLEX array, dimension (LWORK)
00230 *> \endverbatim
00231 *>
00232 *> \param[in] LWORK
00233 *> \verbatim
00234 *>          LWORK is INTEGER
00235 *>          The dimension of the array WORK. LWORK >= M-Q.
00236 *>
00237 *>          If LWORK = -1, then a workspace query is assumed; the routine
00238 *>          only calculates the optimal size of the WORK array, returns
00239 *>          this value as the first entry of the WORK array, and no error
00240 *>          message related to LWORK is issued by XERBLA.
00241 *> \endverbatim
00242 *>
00243 *> \param[out] INFO
00244 *> \verbatim
00245 *>          INFO is INTEGER
00246 *>          = 0:  successful exit.
00247 *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
00248 *> \endverbatim
00249 *
00250 *  Authors:
00251 *  ========
00252 *
00253 *> \author Univ. of Tennessee 
00254 *> \author Univ. of California Berkeley 
00255 *> \author Univ. of Colorado Denver 
00256 *> \author NAG Ltd. 
00257 *
00258 *> \date November 2011
00259 *
00260 *> \ingroup complexOTHERcomputational
00261 *
00262 *> \par Further Details:
00263 *  =====================
00264 *>
00265 *> \verbatim
00266 *>
00267 *>  The bidiagonal blocks B11, B12, B21, and B22 are represented
00268 *>  implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
00269 *>  PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
00270 *>  lower bidiagonal. Every entry in each bidiagonal band is a product
00271 *>  of a sine or cosine of a THETA with a sine or cosine of a PHI. See
00272 *>  [1] or CUNCSD for details.
00273 *>
00274 *>  P1, P2, Q1, and Q2 are represented as products of elementary
00275 *>  reflectors. See CUNCSD for details on generating P1, P2, Q1, and Q2
00276 *>  using CUNGQR and CUNGLQ.
00277 *> \endverbatim
00278 *
00279 *> \par References:
00280 *  ================
00281 *>
00282 *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
00283 *>      Algorithms, 50(1):33-65, 2009.
00284 *>
00285 *  =====================================================================
00286       SUBROUTINE CUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
00287      $                   X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
00288      $                   TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
00289 *
00290 *  -- LAPACK computational routine (version 3.4.0) --
00291 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00292 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00293 *     November 2011
00294 *
00295 *     .. Scalar Arguments ..
00296       CHARACTER          SIGNS, TRANS
00297       INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
00298      $                   Q
00299 *     ..
00300 *     .. Array Arguments ..
00301       REAL               PHI( * ), THETA( * )
00302       COMPLEX            TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
00303      $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
00304      $                   X21( LDX21, * ), X22( LDX22, * )
00305 *     ..
00306 *
00307 *  ====================================================================
00308 *
00309 *     .. Parameters ..
00310       REAL               REALONE
00311       PARAMETER          ( REALONE = 1.0E0 )
00312       COMPLEX            ONE
00313       PARAMETER          ( ONE = (1.0E0,0.0E0) )
00314 *     ..
00315 *     .. Local Scalars ..
00316       LOGICAL            COLMAJOR, LQUERY
00317       INTEGER            I, LWORKMIN, LWORKOPT
00318       REAL               Z1, Z2, Z3, Z4
00319 *     ..
00320 *     .. External Subroutines ..
00321       EXTERNAL           CAXPY, CLARF, CLARFGP, CSCAL, XERBLA
00322       EXTERNAL           CLACGV
00323 *
00324 *     ..
00325 *     .. External Functions ..
00326       REAL               SCNRM2
00327       LOGICAL            LSAME
00328       EXTERNAL           SCNRM2, LSAME
00329 *     ..
00330 *     .. Intrinsic Functions
00331       INTRINSIC          ATAN2, COS, MAX, MIN, SIN
00332       INTRINSIC          CMPLX, CONJG
00333 *     ..
00334 *     .. Executable Statements ..
00335 *
00336 *     Test input arguments
00337 *
00338       INFO = 0
00339       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
00340       IF( .NOT. LSAME( SIGNS, 'O' ) ) THEN
00341          Z1 = REALONE
00342          Z2 = REALONE
00343          Z3 = REALONE
00344          Z4 = REALONE
00345       ELSE
00346          Z1 = REALONE
00347          Z2 = -REALONE
00348          Z3 = REALONE
00349          Z4 = -REALONE
00350       END IF
00351       LQUERY = LWORK .EQ. -1
00352 *
00353       IF( M .LT. 0 ) THEN
00354          INFO = -3
00355       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
00356          INFO = -4
00357       ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-P .OR.
00358      $         Q .GT. M-Q ) THEN
00359          INFO = -5
00360       ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
00361          INFO = -7
00362       ELSE IF( .NOT.COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
00363          INFO = -7
00364       ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
00365          INFO = -9
00366       ELSE IF( .NOT.COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
00367          INFO = -9
00368       ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
00369          INFO = -11
00370       ELSE IF( .NOT.COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
00371          INFO = -11
00372       ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
00373          INFO = -13
00374       ELSE IF( .NOT.COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
00375          INFO = -13
00376       END IF
00377 *
00378 *     Compute workspace
00379 *
00380       IF( INFO .EQ. 0 ) THEN
00381          LWORKOPT = M - Q
00382          LWORKMIN = M - Q
00383          WORK(1) = LWORKOPT
00384          IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
00385             INFO = -21
00386          END IF
00387       END IF
00388       IF( INFO .NE. 0 ) THEN
00389          CALL XERBLA( 'xORBDB', -INFO )
00390          RETURN
00391       ELSE IF( LQUERY ) THEN
00392          RETURN
00393       END IF
00394 *
00395 *     Handle column-major and row-major separately
00396 *
00397       IF( COLMAJOR ) THEN
00398 *
00399 *        Reduce columns 1, ..., Q of X11, X12, X21, and X22 
00400 *
00401          DO I = 1, Q
00402 *
00403             IF( I .EQ. 1 ) THEN
00404                CALL CSCAL( P-I+1, CMPLX( Z1, 0.0E0 ), X11(I,I), 1 )
00405             ELSE
00406                CALL CSCAL( P-I+1, CMPLX( Z1*COS(PHI(I-1)), 0.0E0 ),
00407      $                     X11(I,I), 1 )
00408                CALL CAXPY( P-I+1, CMPLX( -Z1*Z3*Z4*SIN(PHI(I-1)),
00409      $                     0.0E0 ), X12(I,I-1), 1, X11(I,I), 1 )
00410             END IF
00411             IF( I .EQ. 1 ) THEN
00412                CALL CSCAL( M-P-I+1, CMPLX( Z2, 0.0E0 ), X21(I,I), 1 )
00413             ELSE
00414                CALL CSCAL( M-P-I+1, CMPLX( Z2*COS(PHI(I-1)), 0.0E0 ),
00415      $                     X21(I,I), 1 )
00416                CALL CAXPY( M-P-I+1, CMPLX( -Z2*Z3*Z4*SIN(PHI(I-1)),
00417      $                     0.0E0 ), X22(I,I-1), 1, X21(I,I), 1 )
00418             END IF
00419 *
00420             THETA(I) = ATAN2( SCNRM2( M-P-I+1, X21(I,I), 1 ),
00421      $                 SCNRM2( P-I+1, X11(I,I), 1 ) )
00422 *
00423             CALL CLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
00424             X11(I,I) = ONE
00425             CALL CLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
00426             X21(I,I) = ONE
00427 *
00428             CALL CLARF( 'L', P-I+1, Q-I, X11(I,I), 1, CONJG(TAUP1(I)),
00429      $                  X11(I,I+1), LDX11, WORK )
00430             CALL CLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1,
00431      $                  CONJG(TAUP1(I)), X12(I,I), LDX12, WORK )
00432             CALL CLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, CONJG(TAUP2(I)),
00433      $                  X21(I,I+1), LDX21, WORK )
00434             CALL CLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1,
00435      $                  CONJG(TAUP2(I)), X22(I,I), LDX22, WORK )
00436 *
00437             IF( I .LT. Q ) THEN
00438                CALL CSCAL( Q-I, CMPLX( -Z1*Z3*SIN(THETA(I)), 0.0E0 ),
00439      $                     X11(I,I+1), LDX11 )
00440                CALL CAXPY( Q-I, CMPLX( Z2*Z3*COS(THETA(I)), 0.0E0 ),
00441      $                     X21(I,I+1), LDX21, X11(I,I+1), LDX11 )
00442             END IF
00443             CALL CSCAL( M-Q-I+1, CMPLX( -Z1*Z4*SIN(THETA(I)), 0.0E0 ),
00444      $                  X12(I,I), LDX12 )
00445             CALL CAXPY( M-Q-I+1, CMPLX( Z2*Z4*COS(THETA(I)), 0.0E0 ),
00446      $                  X22(I,I), LDX22, X12(I,I), LDX12 )
00447 *
00448             IF( I .LT. Q )
00449      $         PHI(I) = ATAN2( SCNRM2( Q-I, X11(I,I+1), LDX11 ),
00450      $                  SCNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
00451 *
00452             IF( I .LT. Q ) THEN
00453                CALL CLACGV( Q-I, X11(I,I+1), LDX11 )
00454                CALL CLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
00455      $                       TAUQ1(I) )
00456                X11(I,I+1) = ONE
00457             END IF
00458             CALL CLACGV( M-Q-I+1, X12(I,I), LDX12 )
00459             CALL CLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
00460      $                    TAUQ2(I) )
00461             X12(I,I) = ONE
00462 *
00463             IF( I .LT. Q ) THEN
00464                CALL CLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
00465      $                     X11(I+1,I+1), LDX11, WORK )
00466                CALL CLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
00467      $                     X21(I+1,I+1), LDX21, WORK )
00468             END IF
00469             CALL CLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
00470      $                  X12(I+1,I), LDX12, WORK )
00471             CALL CLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
00472      $                  X22(I+1,I), LDX22, WORK )
00473 *
00474             IF( I .LT. Q )
00475      $         CALL CLACGV( Q-I, X11(I,I+1), LDX11 )
00476             CALL CLACGV( M-Q-I+1, X12(I,I), LDX12 )
00477 *
00478          END DO
00479 *
00480 *        Reduce columns Q + 1, ..., P of X12, X22
00481 *
00482          DO I = Q + 1, P
00483 *
00484             CALL CSCAL( M-Q-I+1, CMPLX( -Z1*Z4, 0.0E0 ), X12(I,I),
00485      $                  LDX12 )
00486             CALL CLACGV( M-Q-I+1, X12(I,I), LDX12 )
00487             CALL CLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
00488      $                    TAUQ2(I) )
00489             X12(I,I) = ONE
00490 *
00491             CALL CLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
00492      $                  X12(I+1,I), LDX12, WORK )
00493             IF( M-P-Q .GE. 1 )
00494      $         CALL CLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
00495      $                     TAUQ2(I), X22(Q+1,I), LDX22, WORK )
00496 *
00497             CALL CLACGV( M-Q-I+1, X12(I,I), LDX12 )
00498 *
00499          END DO
00500 *
00501 *        Reduce columns P + 1, ..., M - Q of X12, X22
00502 *
00503          DO I = 1, M - P - Q
00504 *
00505             CALL CSCAL( M-P-Q-I+1, CMPLX( Z2*Z4, 0.0E0 ),
00506      $                  X22(Q+I,P+I), LDX22 )
00507             CALL CLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
00508             CALL CLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
00509      $                    LDX22, TAUQ2(P+I) )
00510             X22(Q+I,P+I) = ONE
00511             CALL CLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
00512      $                  TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
00513 *
00514             CALL CLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
00515 *
00516          END DO
00517 *
00518       ELSE
00519 *
00520 *        Reduce columns 1, ..., Q of X11, X12, X21, X22
00521 *
00522          DO I = 1, Q
00523 *
00524             IF( I .EQ. 1 ) THEN
00525                CALL CSCAL( P-I+1, CMPLX( Z1, 0.0E0 ), X11(I,I),
00526      $                     LDX11 )
00527             ELSE
00528                CALL CSCAL( P-I+1, CMPLX( Z1*COS(PHI(I-1)), 0.0E0 ),
00529      $                     X11(I,I), LDX11 )
00530                CALL CAXPY( P-I+1, CMPLX( -Z1*Z3*Z4*SIN(PHI(I-1)),
00531      $                     0.0E0 ), X12(I-1,I), LDX12, X11(I,I), LDX11 )
00532             END IF
00533             IF( I .EQ. 1 ) THEN
00534                CALL CSCAL( M-P-I+1, CMPLX( Z2, 0.0E0 ), X21(I,I),
00535      $                     LDX21 )
00536             ELSE
00537                CALL CSCAL( M-P-I+1, CMPLX( Z2*COS(PHI(I-1)), 0.0E0 ),
00538      $                     X21(I,I), LDX21 )
00539                CALL CAXPY( M-P-I+1, CMPLX( -Z2*Z3*Z4*SIN(PHI(I-1)),
00540      $                     0.0E0 ), X22(I-1,I), LDX22, X21(I,I), LDX21 )
00541             END IF
00542 *
00543             THETA(I) = ATAN2( SCNRM2( M-P-I+1, X21(I,I), LDX21 ),
00544      $                 SCNRM2( P-I+1, X11(I,I), LDX11 ) )
00545 *
00546             CALL CLACGV( P-I+1, X11(I,I), LDX11 )
00547             CALL CLACGV( M-P-I+1, X21(I,I), LDX21 )
00548 *
00549             CALL CLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
00550             X11(I,I) = ONE
00551             CALL CLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
00552      $                    TAUP2(I) )
00553             X21(I,I) = ONE
00554 *
00555             CALL CLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
00556      $                  X11(I+1,I), LDX11, WORK )
00557             CALL CLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11, TAUP1(I),
00558      $                  X12(I,I), LDX12, WORK )
00559             CALL CLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
00560      $                  X21(I+1,I), LDX21, WORK )
00561             CALL CLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
00562      $                  TAUP2(I), X22(I,I), LDX22, WORK )
00563 *
00564             CALL CLACGV( P-I+1, X11(I,I), LDX11 )
00565             CALL CLACGV( M-P-I+1, X21(I,I), LDX21 )
00566 *
00567             IF( I .LT. Q ) THEN
00568                CALL CSCAL( Q-I, CMPLX( -Z1*Z3*SIN(THETA(I)), 0.0E0 ),
00569      $                     X11(I+1,I), 1 )
00570                CALL CAXPY( Q-I, CMPLX( Z2*Z3*COS(THETA(I)), 0.0E0 ),
00571      $                     X21(I+1,I), 1, X11(I+1,I), 1 )
00572             END IF
00573             CALL CSCAL( M-Q-I+1, CMPLX( -Z1*Z4*SIN(THETA(I)), 0.0E0 ),
00574      $                  X12(I,I), 1 )
00575             CALL CAXPY( M-Q-I+1, CMPLX( Z2*Z4*COS(THETA(I)), 0.0E0 ),
00576      $                  X22(I,I), 1, X12(I,I), 1 )
00577 *
00578             IF( I .LT. Q )
00579      $         PHI(I) = ATAN2( SCNRM2( Q-I, X11(I+1,I), 1 ),
00580      $                  SCNRM2( M-Q-I+1, X12(I,I), 1 ) )
00581 *
00582             IF( I .LT. Q ) THEN
00583                CALL CLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1, TAUQ1(I) )
00584                X11(I+1,I) = ONE
00585             END IF
00586             CALL CLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
00587             X12(I,I) = ONE
00588 *
00589             IF( I .LT. Q ) THEN
00590                CALL CLARF( 'L', Q-I, P-I, X11(I+1,I), 1,
00591      $                     CONJG(TAUQ1(I)), X11(I+1,I+1), LDX11, WORK )
00592                CALL CLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1,
00593      $                     CONJG(TAUQ1(I)), X21(I+1,I+1), LDX21, WORK )
00594             END IF
00595             CALL CLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, CONJG(TAUQ2(I)),
00596      $                  X12(I,I+1), LDX12, WORK )
00597             CALL CLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1,
00598      $                  CONJG(TAUQ2(I)), X22(I,I+1), LDX22, WORK )
00599 *
00600          END DO
00601 *
00602 *        Reduce columns Q + 1, ..., P of X12, X22
00603 *
00604          DO I = Q + 1, P
00605 *
00606             CALL CSCAL( M-Q-I+1, CMPLX( -Z1*Z4, 0.0E0 ), X12(I,I), 1 )
00607             CALL CLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
00608             X12(I,I) = ONE
00609 *
00610             CALL CLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, CONJG(TAUQ2(I)),
00611      $                  X12(I,I+1), LDX12, WORK )
00612             IF( M-P-Q .GE. 1 )
00613      $         CALL CLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1,
00614      $                     CONJG(TAUQ2(I)), X22(I,Q+1), LDX22, WORK )
00615 *
00616          END DO
00617 *
00618 *        Reduce columns P + 1, ..., M - Q of X12, X22
00619 *
00620          DO I = 1, M - P - Q
00621 *
00622             CALL CSCAL( M-P-Q-I+1, CMPLX( Z2*Z4, 0.0E0 ),
00623      $                  X22(P+I,Q+I), 1 )
00624             CALL CLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
00625      $                    TAUQ2(P+I) )
00626             X22(P+I,Q+I) = ONE
00627 *
00628             CALL CLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
00629      $                  CONJG(TAUQ2(P+I)), X22(P+I,Q+I+1), LDX22, WORK )
00630 *
00631          END DO
00632 *
00633       END IF
00634 *
00635       RETURN
00636 *
00637 *     End of CUNBDB
00638 *
00639       END
00640 
 All Files Functions