• Main Page
  • Related Pages
  • Modules
  • Data Structures
  • Files
  • File List
  • Globals

libavcodec/vp3.c

Go to the documentation of this file.
00001 /*
00002  * Copyright (C) 2003-2004 the ffmpeg project
00003  *
00004  * This file is part of FFmpeg.
00005  *
00006  * FFmpeg is free software; you can redistribute it and/or
00007  * modify it under the terms of the GNU Lesser General Public
00008  * License as published by the Free Software Foundation; either
00009  * version 2.1 of the License, or (at your option) any later version.
00010  *
00011  * FFmpeg is distributed in the hope that it will be useful,
00012  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00013  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00014  * Lesser General Public License for more details.
00015  *
00016  * You should have received a copy of the GNU Lesser General Public
00017  * License along with FFmpeg; if not, write to the Free Software
00018  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
00019  */
00020 
00032 #include <stdio.h>
00033 #include <stdlib.h>
00034 #include <string.h>
00035 
00036 #include "avcodec.h"
00037 #include "dsputil.h"
00038 #include "get_bits.h"
00039 
00040 #include "vp3data.h"
00041 #include "xiph.h"
00042 
00043 #define FRAGMENT_PIXELS 8
00044 
00045 static av_cold int vp3_decode_end(AVCodecContext *avctx);
00046 
00047 //FIXME split things out into their own arrays
00048 typedef struct Vp3Fragment {
00049     int16_t dc;
00050     uint8_t coding_method;
00051     uint8_t qpi;
00052 } Vp3Fragment;
00053 
00054 #define SB_NOT_CODED        0
00055 #define SB_PARTIALLY_CODED  1
00056 #define SB_FULLY_CODED      2
00057 
00058 // This is the maximum length of a single long bit run that can be encoded
00059 // for superblock coding or block qps. Theora special-cases this to read a
00060 // bit instead of flipping the current bit to allow for runs longer than 4129.
00061 #define MAXIMUM_LONG_BIT_RUN 4129
00062 
00063 #define MODE_INTER_NO_MV      0
00064 #define MODE_INTRA            1
00065 #define MODE_INTER_PLUS_MV    2
00066 #define MODE_INTER_LAST_MV    3
00067 #define MODE_INTER_PRIOR_LAST 4
00068 #define MODE_USING_GOLDEN     5
00069 #define MODE_GOLDEN_MV        6
00070 #define MODE_INTER_FOURMV     7
00071 #define CODING_MODE_COUNT     8
00072 
00073 /* special internal mode */
00074 #define MODE_COPY             8
00075 
00076 /* There are 6 preset schemes, plus a free-form scheme */
00077 static const int ModeAlphabet[6][CODING_MODE_COUNT] =
00078 {
00079     /* scheme 1: Last motion vector dominates */
00080     {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
00081          MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
00082          MODE_INTRA,            MODE_USING_GOLDEN,
00083          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00084 
00085     /* scheme 2 */
00086     {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
00087          MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
00088          MODE_INTRA,            MODE_USING_GOLDEN,
00089          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00090 
00091     /* scheme 3 */
00092     {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
00093          MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
00094          MODE_INTRA,            MODE_USING_GOLDEN,
00095          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00096 
00097     /* scheme 4 */
00098     {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
00099          MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
00100          MODE_INTRA,            MODE_USING_GOLDEN,
00101          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00102 
00103     /* scheme 5: No motion vector dominates */
00104     {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
00105          MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
00106          MODE_INTRA,            MODE_USING_GOLDEN,
00107          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00108 
00109     /* scheme 6 */
00110     {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
00111          MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
00112          MODE_INTER_PLUS_MV,    MODE_INTRA,
00113          MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
00114 
00115 };
00116 
00117 static const uint8_t hilbert_offset[16][2] = {
00118     {0,0}, {1,0}, {1,1}, {0,1},
00119     {0,2}, {0,3}, {1,3}, {1,2},
00120     {2,2}, {2,3}, {3,3}, {3,2},
00121     {3,1}, {2,1}, {2,0}, {3,0}
00122 };
00123 
00124 #define MIN_DEQUANT_VAL 2
00125 
00126 typedef struct Vp3DecodeContext {
00127     AVCodecContext *avctx;
00128     int theora, theora_tables;
00129     int version;
00130     int width, height;
00131     int chroma_x_shift, chroma_y_shift;
00132     AVFrame golden_frame;
00133     AVFrame last_frame;
00134     AVFrame current_frame;
00135     int keyframe;
00136     DSPContext dsp;
00137     int flipped_image;
00138     int last_slice_end;
00139 
00140     int qps[3];
00141     int nqps;
00142     int last_qps[3];
00143 
00144     int superblock_count;
00145     int y_superblock_width;
00146     int y_superblock_height;
00147     int y_superblock_count;
00148     int c_superblock_width;
00149     int c_superblock_height;
00150     int c_superblock_count;
00151     int u_superblock_start;
00152     int v_superblock_start;
00153     unsigned char *superblock_coding;
00154 
00155     int macroblock_count;
00156     int macroblock_width;
00157     int macroblock_height;
00158 
00159     int fragment_count;
00160     int fragment_width[2];
00161     int fragment_height[2];
00162 
00163     Vp3Fragment *all_fragments;
00164     int fragment_start[3];
00165     int data_offset[3];
00166 
00167     int8_t (*motion_val[2])[2];
00168 
00169     ScanTable scantable;
00170 
00171     /* tables */
00172     uint16_t coded_dc_scale_factor[64];
00173     uint32_t coded_ac_scale_factor[64];
00174     uint8_t base_matrix[384][64];
00175     uint8_t qr_count[2][3];
00176     uint8_t qr_size [2][3][64];
00177     uint16_t qr_base[2][3][64];
00178 
00196     int16_t *dct_tokens[3][64];
00197     int16_t *dct_tokens_base;
00198 #define TOKEN_EOB(eob_run)              ((eob_run) << 2)
00199 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
00200 #define TOKEN_COEFF(coeff)              (((coeff) << 2) + 2)
00201 
00205     int num_coded_frags[3][64];
00206     int total_num_coded_frags;
00207 
00208     /* this is a list of indexes into the all_fragments array indicating
00209      * which of the fragments are coded */
00210     int *coded_fragment_list[3];
00211 
00212     VLC dc_vlc[16];
00213     VLC ac_vlc_1[16];
00214     VLC ac_vlc_2[16];
00215     VLC ac_vlc_3[16];
00216     VLC ac_vlc_4[16];
00217 
00218     VLC superblock_run_length_vlc;
00219     VLC fragment_run_length_vlc;
00220     VLC mode_code_vlc;
00221     VLC motion_vector_vlc;
00222 
00223     /* these arrays need to be on 16-byte boundaries since SSE2 operations
00224      * index into them */
00225     DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64];     //<qmat[qpi][is_inter][plane]
00226 
00227     /* This table contains superblock_count * 16 entries. Each set of 16
00228      * numbers corresponds to the fragment indexes 0..15 of the superblock.
00229      * An entry will be -1 to indicate that no entry corresponds to that
00230      * index. */
00231     int *superblock_fragments;
00232 
00233     /* This is an array that indicates how a particular macroblock
00234      * is coded. */
00235     unsigned char *macroblock_coding;
00236 
00237     uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
00238     int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
00239 
00240     /* Huffman decode */
00241     int hti;
00242     unsigned int hbits;
00243     int entries;
00244     int huff_code_size;
00245     uint32_t huffman_table[80][32][2];
00246 
00247     uint8_t filter_limit_values[64];
00248     DECLARE_ALIGNED(8, int, bounding_values_array)[256+2];
00249 } Vp3DecodeContext;
00250 
00251 /************************************************************************
00252  * VP3 specific functions
00253  ************************************************************************/
00254 
00255 /*
00256  * This function sets up all of the various blocks mappings:
00257  * superblocks <-> fragments, macroblocks <-> fragments,
00258  * superblocks <-> macroblocks
00259  *
00260  * Returns 0 is successful; returns 1 if *anything* went wrong.
00261  */
00262 static int init_block_mapping(Vp3DecodeContext *s)
00263 {
00264     int sb_x, sb_y, plane;
00265     int x, y, i, j = 0;
00266 
00267     for (plane = 0; plane < 3; plane++) {
00268         int sb_width    = plane ? s->c_superblock_width  : s->y_superblock_width;
00269         int sb_height   = plane ? s->c_superblock_height : s->y_superblock_height;
00270         int frag_width  = s->fragment_width[!!plane];
00271         int frag_height = s->fragment_height[!!plane];
00272 
00273         for (sb_y = 0; sb_y < sb_height; sb_y++)
00274             for (sb_x = 0; sb_x < sb_width; sb_x++)
00275                 for (i = 0; i < 16; i++) {
00276                     x = 4*sb_x + hilbert_offset[i][0];
00277                     y = 4*sb_y + hilbert_offset[i][1];
00278 
00279                     if (x < frag_width && y < frag_height)
00280                         s->superblock_fragments[j++] = s->fragment_start[plane] + y*frag_width + x;
00281                     else
00282                         s->superblock_fragments[j++] = -1;
00283                 }
00284     }
00285 
00286     return 0;  /* successful path out */
00287 }
00288 
00289 /*
00290  * This function sets up the dequantization tables used for a particular
00291  * frame.
00292  */
00293 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
00294 {
00295     int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
00296     int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
00297     int i, plane, inter, qri, bmi, bmj, qistart;
00298 
00299     for(inter=0; inter<2; inter++){
00300         for(plane=0; plane<3; plane++){
00301             int sum=0;
00302             for(qri=0; qri<s->qr_count[inter][plane]; qri++){
00303                 sum+= s->qr_size[inter][plane][qri];
00304                 if(s->qps[qpi] <= sum)
00305                     break;
00306             }
00307             qistart= sum - s->qr_size[inter][plane][qri];
00308             bmi= s->qr_base[inter][plane][qri  ];
00309             bmj= s->qr_base[inter][plane][qri+1];
00310             for(i=0; i<64; i++){
00311                 int coeff= (  2*(sum    -s->qps[qpi])*s->base_matrix[bmi][i]
00312                             - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
00313                             + s->qr_size[inter][plane][qri])
00314                            / (2*s->qr_size[inter][plane][qri]);
00315 
00316                 int qmin= 8<<(inter + !i);
00317                 int qscale= i ? ac_scale_factor : dc_scale_factor;
00318 
00319                 s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
00320             }
00321             // all DC coefficients use the same quant so as not to interfere with DC prediction
00322             s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
00323         }
00324     }
00325 
00326     memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
00327 }
00328 
00329 /*
00330  * This function initializes the loop filter boundary limits if the frame's
00331  * quality index is different from the previous frame's.
00332  *
00333  * The filter_limit_values may not be larger than 127.
00334  */
00335 static void init_loop_filter(Vp3DecodeContext *s)
00336 {
00337     int *bounding_values= s->bounding_values_array+127;
00338     int filter_limit;
00339     int x;
00340     int value;
00341 
00342     filter_limit = s->filter_limit_values[s->qps[0]];
00343 
00344     /* set up the bounding values */
00345     memset(s->bounding_values_array, 0, 256 * sizeof(int));
00346     for (x = 0; x < filter_limit; x++) {
00347         bounding_values[-x] = -x;
00348         bounding_values[x] = x;
00349     }
00350     for (x = value = filter_limit; x < 128 && value; x++, value--) {
00351         bounding_values[ x] =  value;
00352         bounding_values[-x] = -value;
00353     }
00354     if (value)
00355         bounding_values[128] = value;
00356     bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
00357 }
00358 
00359 /*
00360  * This function unpacks all of the superblock/macroblock/fragment coding
00361  * information from the bitstream.
00362  */
00363 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
00364 {
00365     int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start };
00366     int bit = 0;
00367     int current_superblock = 0;
00368     int current_run = 0;
00369     int num_partial_superblocks = 0;
00370 
00371     int i, j;
00372     int current_fragment;
00373     int plane;
00374 
00375     if (s->keyframe) {
00376         memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
00377 
00378     } else {
00379 
00380         /* unpack the list of partially-coded superblocks */
00381         bit = get_bits1(gb);
00382         while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
00383                 current_run = get_vlc2(gb,
00384                     s->superblock_run_length_vlc.table, 6, 2) + 1;
00385                 if (current_run == 34)
00386                     current_run += get_bits(gb, 12);
00387 
00388             if (current_superblock + current_run > s->superblock_count) {
00389                 av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
00390                 return -1;
00391             }
00392 
00393             memset(s->superblock_coding + current_superblock, bit, current_run);
00394 
00395             current_superblock += current_run;
00396             if (bit)
00397                 num_partial_superblocks += current_run;
00398 
00399             if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
00400                 bit = get_bits1(gb);
00401             else
00402                 bit ^= 1;
00403         }
00404 
00405         /* unpack the list of fully coded superblocks if any of the blocks were
00406          * not marked as partially coded in the previous step */
00407         if (num_partial_superblocks < s->superblock_count) {
00408             int superblocks_decoded = 0;
00409 
00410             current_superblock = 0;
00411             bit = get_bits1(gb);
00412             while (superblocks_decoded < s->superblock_count - num_partial_superblocks
00413                    && get_bits_left(gb) > 0) {
00414                         current_run = get_vlc2(gb,
00415                             s->superblock_run_length_vlc.table, 6, 2) + 1;
00416                         if (current_run == 34)
00417                             current_run += get_bits(gb, 12);
00418 
00419                 for (j = 0; j < current_run; current_superblock++) {
00420                     if (current_superblock >= s->superblock_count) {
00421                         av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
00422                         return -1;
00423                     }
00424 
00425                 /* skip any superblocks already marked as partially coded */
00426                 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
00427                     s->superblock_coding[current_superblock] = 2*bit;
00428                     j++;
00429                 }
00430                 }
00431                 superblocks_decoded += current_run;
00432 
00433                 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
00434                     bit = get_bits1(gb);
00435                 else
00436                     bit ^= 1;
00437             }
00438         }
00439 
00440         /* if there were partial blocks, initialize bitstream for
00441          * unpacking fragment codings */
00442         if (num_partial_superblocks) {
00443 
00444             current_run = 0;
00445             bit = get_bits1(gb);
00446             /* toggle the bit because as soon as the first run length is
00447              * fetched the bit will be toggled again */
00448             bit ^= 1;
00449         }
00450     }
00451 
00452     /* figure out which fragments are coded; iterate through each
00453      * superblock (all planes) */
00454     s->total_num_coded_frags = 0;
00455     memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
00456 
00457     for (plane = 0; plane < 3; plane++) {
00458         int sb_start = superblock_starts[plane];
00459         int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count);
00460         int num_coded_frags = 0;
00461 
00462     for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
00463 
00464         /* iterate through all 16 fragments in a superblock */
00465         for (j = 0; j < 16; j++) {
00466 
00467             /* if the fragment is in bounds, check its coding status */
00468             current_fragment = s->superblock_fragments[i * 16 + j];
00469             if (current_fragment != -1) {
00470                 int coded = s->superblock_coding[i];
00471 
00472                 if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
00473 
00474                     /* fragment may or may not be coded; this is the case
00475                      * that cares about the fragment coding runs */
00476                     if (current_run-- == 0) {
00477                         bit ^= 1;
00478                         current_run = get_vlc2(gb,
00479                             s->fragment_run_length_vlc.table, 5, 2);
00480                     }
00481                     coded = bit;
00482                 }
00483 
00484                     if (coded) {
00485                         /* default mode; actual mode will be decoded in
00486                          * the next phase */
00487                         s->all_fragments[current_fragment].coding_method =
00488                             MODE_INTER_NO_MV;
00489                         s->coded_fragment_list[plane][num_coded_frags++] =
00490                             current_fragment;
00491                     } else {
00492                         /* not coded; copy this fragment from the prior frame */
00493                         s->all_fragments[current_fragment].coding_method =
00494                             MODE_COPY;
00495                     }
00496             }
00497         }
00498     }
00499         s->total_num_coded_frags += num_coded_frags;
00500         for (i = 0; i < 64; i++)
00501             s->num_coded_frags[plane][i] = num_coded_frags;
00502         if (plane < 2)
00503             s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags;
00504     }
00505     return 0;
00506 }
00507 
00508 /*
00509  * This function unpacks all the coding mode data for individual macroblocks
00510  * from the bitstream.
00511  */
00512 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
00513 {
00514     int i, j, k, sb_x, sb_y;
00515     int scheme;
00516     int current_macroblock;
00517     int current_fragment;
00518     int coding_mode;
00519     int custom_mode_alphabet[CODING_MODE_COUNT];
00520     const int *alphabet;
00521     Vp3Fragment *frag;
00522 
00523     if (s->keyframe) {
00524         for (i = 0; i < s->fragment_count; i++)
00525             s->all_fragments[i].coding_method = MODE_INTRA;
00526 
00527     } else {
00528 
00529         /* fetch the mode coding scheme for this frame */
00530         scheme = get_bits(gb, 3);
00531 
00532         /* is it a custom coding scheme? */
00533         if (scheme == 0) {
00534             for (i = 0; i < 8; i++)
00535                 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
00536             for (i = 0; i < 8; i++)
00537                 custom_mode_alphabet[get_bits(gb, 3)] = i;
00538             alphabet = custom_mode_alphabet;
00539         } else
00540             alphabet = ModeAlphabet[scheme-1];
00541 
00542         /* iterate through all of the macroblocks that contain 1 or more
00543          * coded fragments */
00544         for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
00545             for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
00546                 if (get_bits_left(gb) <= 0)
00547                     return -1;
00548 
00549             for (j = 0; j < 4; j++) {
00550                 int mb_x = 2*sb_x +   (j>>1);
00551                 int mb_y = 2*sb_y + (((j>>1)+j)&1);
00552                 current_macroblock = mb_y * s->macroblock_width + mb_x;
00553 
00554                 if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
00555                     continue;
00556 
00557 #define BLOCK_X (2*mb_x + (k&1))
00558 #define BLOCK_Y (2*mb_y + (k>>1))
00559                 /* coding modes are only stored if the macroblock has at least one
00560                  * luma block coded, otherwise it must be INTER_NO_MV */
00561                 for (k = 0; k < 4; k++) {
00562                     current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
00563                     if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
00564                         break;
00565                 }
00566                 if (k == 4) {
00567                     s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
00568                     continue;
00569                 }
00570 
00571                 /* mode 7 means get 3 bits for each coding mode */
00572                 if (scheme == 7)
00573                     coding_mode = get_bits(gb, 3);
00574                 else
00575                     coding_mode = alphabet
00576                         [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
00577 
00578                 s->macroblock_coding[current_macroblock] = coding_mode;
00579                 for (k = 0; k < 4; k++) {
00580                     frag = s->all_fragments + BLOCK_Y*s->fragment_width[0] + BLOCK_X;
00581                     if (frag->coding_method != MODE_COPY)
00582                         frag->coding_method = coding_mode;
00583                 }
00584 
00585 #define SET_CHROMA_MODES \
00586     if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
00587         frag[s->fragment_start[1]].coding_method = coding_mode;\
00588     if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
00589         frag[s->fragment_start[2]].coding_method = coding_mode;
00590 
00591                 if (s->chroma_y_shift) {
00592                     frag = s->all_fragments + mb_y*s->fragment_width[1] + mb_x;
00593                     SET_CHROMA_MODES
00594                 } else if (s->chroma_x_shift) {
00595                     frag = s->all_fragments + 2*mb_y*s->fragment_width[1] + mb_x;
00596                     for (k = 0; k < 2; k++) {
00597                         SET_CHROMA_MODES
00598                         frag += s->fragment_width[1];
00599                     }
00600                 } else {
00601                     for (k = 0; k < 4; k++) {
00602                         frag = s->all_fragments + BLOCK_Y*s->fragment_width[1] + BLOCK_X;
00603                         SET_CHROMA_MODES
00604                     }
00605                 }
00606             }
00607             }
00608         }
00609     }
00610 
00611     return 0;
00612 }
00613 
00614 /*
00615  * This function unpacks all the motion vectors for the individual
00616  * macroblocks from the bitstream.
00617  */
00618 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
00619 {
00620     int j, k, sb_x, sb_y;
00621     int coding_mode;
00622     int motion_x[4];
00623     int motion_y[4];
00624     int last_motion_x = 0;
00625     int last_motion_y = 0;
00626     int prior_last_motion_x = 0;
00627     int prior_last_motion_y = 0;
00628     int current_macroblock;
00629     int current_fragment;
00630     int frag;
00631 
00632     if (s->keyframe)
00633         return 0;
00634 
00635     /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
00636     coding_mode = get_bits1(gb);
00637 
00638     /* iterate through all of the macroblocks that contain 1 or more
00639      * coded fragments */
00640     for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
00641         for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
00642             if (get_bits_left(gb) <= 0)
00643                 return -1;
00644 
00645         for (j = 0; j < 4; j++) {
00646             int mb_x = 2*sb_x +   (j>>1);
00647             int mb_y = 2*sb_y + (((j>>1)+j)&1);
00648             current_macroblock = mb_y * s->macroblock_width + mb_x;
00649 
00650             if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
00651                 (s->macroblock_coding[current_macroblock] == MODE_COPY))
00652                 continue;
00653 
00654             switch (s->macroblock_coding[current_macroblock]) {
00655 
00656             case MODE_INTER_PLUS_MV:
00657             case MODE_GOLDEN_MV:
00658                 /* all 6 fragments use the same motion vector */
00659                 if (coding_mode == 0) {
00660                     motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
00661                     motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
00662                 } else {
00663                     motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
00664                     motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
00665                 }
00666 
00667                 /* vector maintenance, only on MODE_INTER_PLUS_MV */
00668                 if (s->macroblock_coding[current_macroblock] ==
00669                     MODE_INTER_PLUS_MV) {
00670                     prior_last_motion_x = last_motion_x;
00671                     prior_last_motion_y = last_motion_y;
00672                     last_motion_x = motion_x[0];
00673                     last_motion_y = motion_y[0];
00674                 }
00675                 break;
00676 
00677             case MODE_INTER_FOURMV:
00678                 /* vector maintenance */
00679                 prior_last_motion_x = last_motion_x;
00680                 prior_last_motion_y = last_motion_y;
00681 
00682                 /* fetch 4 vectors from the bitstream, one for each
00683                  * Y fragment, then average for the C fragment vectors */
00684                 for (k = 0; k < 4; k++) {
00685                     current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
00686                     if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
00687                         if (coding_mode == 0) {
00688                             motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
00689                             motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
00690                         } else {
00691                             motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
00692                             motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
00693                         }
00694                         last_motion_x = motion_x[k];
00695                         last_motion_y = motion_y[k];
00696                     } else {
00697                         motion_x[k] = 0;
00698                         motion_y[k] = 0;
00699                     }
00700                 }
00701                 break;
00702 
00703             case MODE_INTER_LAST_MV:
00704                 /* all 6 fragments use the last motion vector */
00705                 motion_x[0] = last_motion_x;
00706                 motion_y[0] = last_motion_y;
00707 
00708                 /* no vector maintenance (last vector remains the
00709                  * last vector) */
00710                 break;
00711 
00712             case MODE_INTER_PRIOR_LAST:
00713                 /* all 6 fragments use the motion vector prior to the
00714                  * last motion vector */
00715                 motion_x[0] = prior_last_motion_x;
00716                 motion_y[0] = prior_last_motion_y;
00717 
00718                 /* vector maintenance */
00719                 prior_last_motion_x = last_motion_x;
00720                 prior_last_motion_y = last_motion_y;
00721                 last_motion_x = motion_x[0];
00722                 last_motion_y = motion_y[0];
00723                 break;
00724 
00725             default:
00726                 /* covers intra, inter without MV, golden without MV */
00727                 motion_x[0] = 0;
00728                 motion_y[0] = 0;
00729 
00730                 /* no vector maintenance */
00731                 break;
00732             }
00733 
00734             /* assign the motion vectors to the correct fragments */
00735             for (k = 0; k < 4; k++) {
00736                 current_fragment =
00737                     BLOCK_Y*s->fragment_width[0] + BLOCK_X;
00738                 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
00739                     s->motion_val[0][current_fragment][0] = motion_x[k];
00740                     s->motion_val[0][current_fragment][1] = motion_y[k];
00741                 } else {
00742                     s->motion_val[0][current_fragment][0] = motion_x[0];
00743                     s->motion_val[0][current_fragment][1] = motion_y[0];
00744                 }
00745             }
00746 
00747             if (s->chroma_y_shift) {
00748                 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
00749                     motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2);
00750                     motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2);
00751                 }
00752                 motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
00753                 motion_y[0] = (motion_y[0]>>1) | (motion_y[0]&1);
00754                 frag = mb_y*s->fragment_width[1] + mb_x;
00755                 s->motion_val[1][frag][0] = motion_x[0];
00756                 s->motion_val[1][frag][1] = motion_y[0];
00757             } else if (s->chroma_x_shift) {
00758                 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
00759                     motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
00760                     motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
00761                     motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
00762                     motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
00763                 } else {
00764                     motion_x[1] = motion_x[0];
00765                     motion_y[1] = motion_y[0];
00766                 }
00767                 motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
00768                 motion_x[1] = (motion_x[1]>>1) | (motion_x[1]&1);
00769 
00770                 frag = 2*mb_y*s->fragment_width[1] + mb_x;
00771                 for (k = 0; k < 2; k++) {
00772                     s->motion_val[1][frag][0] = motion_x[k];
00773                     s->motion_val[1][frag][1] = motion_y[k];
00774                     frag += s->fragment_width[1];
00775                 }
00776             } else {
00777                 for (k = 0; k < 4; k++) {
00778                     frag = BLOCK_Y*s->fragment_width[1] + BLOCK_X;
00779                     if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
00780                         s->motion_val[1][frag][0] = motion_x[k];
00781                         s->motion_val[1][frag][1] = motion_y[k];
00782                     } else {
00783                         s->motion_val[1][frag][0] = motion_x[0];
00784                         s->motion_val[1][frag][1] = motion_y[0];
00785                     }
00786                 }
00787             }
00788         }
00789         }
00790     }
00791 
00792     return 0;
00793 }
00794 
00795 static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
00796 {
00797     int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
00798     int num_blocks = s->total_num_coded_frags;
00799 
00800     for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
00801         i = blocks_decoded = num_blocks_at_qpi = 0;
00802 
00803         bit = get_bits1(gb);
00804 
00805         do {
00806             run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
00807             if (run_length == 34)
00808                 run_length += get_bits(gb, 12);
00809             blocks_decoded += run_length;
00810 
00811             if (!bit)
00812                 num_blocks_at_qpi += run_length;
00813 
00814             for (j = 0; j < run_length; i++) {
00815                 if (i >= s->total_num_coded_frags)
00816                     return -1;
00817 
00818                 if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
00819                     s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
00820                     j++;
00821                 }
00822             }
00823 
00824             if (run_length == MAXIMUM_LONG_BIT_RUN)
00825                 bit = get_bits1(gb);
00826             else
00827                 bit ^= 1;
00828         } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
00829 
00830         num_blocks -= num_blocks_at_qpi;
00831     }
00832 
00833     return 0;
00834 }
00835 
00836 /*
00837  * This function is called by unpack_dct_coeffs() to extract the VLCs from
00838  * the bitstream. The VLCs encode tokens which are used to unpack DCT
00839  * data. This function unpacks all the VLCs for either the Y plane or both
00840  * C planes, and is called for DC coefficients or different AC coefficient
00841  * levels (since different coefficient types require different VLC tables.
00842  *
00843  * This function returns a residual eob run. E.g, if a particular token gave
00844  * instructions to EOB the next 5 fragments and there were only 2 fragments
00845  * left in the current fragment range, 3 would be returned so that it could
00846  * be passed into the next call to this same function.
00847  */
00848 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
00849                         VLC *table, int coeff_index,
00850                         int plane,
00851                         int eob_run)
00852 {
00853     int i, j = 0;
00854     int token;
00855     int zero_run = 0;
00856     DCTELEM coeff = 0;
00857     int bits_to_get;
00858     int blocks_ended;
00859     int coeff_i = 0;
00860     int num_coeffs = s->num_coded_frags[plane][coeff_index];
00861     int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
00862 
00863     /* local references to structure members to avoid repeated deferences */
00864     int *coded_fragment_list = s->coded_fragment_list[plane];
00865     Vp3Fragment *all_fragments = s->all_fragments;
00866     VLC_TYPE (*vlc_table)[2] = table->table;
00867 
00868     if (num_coeffs < 0)
00869         av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index);
00870 
00871     if (eob_run > num_coeffs) {
00872         coeff_i = blocks_ended = num_coeffs;
00873         eob_run -= num_coeffs;
00874     } else {
00875         coeff_i = blocks_ended = eob_run;
00876         eob_run = 0;
00877     }
00878 
00879     // insert fake EOB token to cover the split between planes or zzi
00880     if (blocks_ended)
00881         dct_tokens[j++] = blocks_ended << 2;
00882 
00883     while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
00884             /* decode a VLC into a token */
00885             token = get_vlc2(gb, vlc_table, 11, 3);
00886             /* use the token to get a zero run, a coefficient, and an eob run */
00887             if (token <= 6) {
00888                 eob_run = eob_run_base[token];
00889                 if (eob_run_get_bits[token])
00890                     eob_run += get_bits(gb, eob_run_get_bits[token]);
00891 
00892                 // record only the number of blocks ended in this plane,
00893                 // any spill will be recorded in the next plane.
00894                 if (eob_run > num_coeffs - coeff_i) {
00895                     dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
00896                     blocks_ended   += num_coeffs - coeff_i;
00897                     eob_run        -= num_coeffs - coeff_i;
00898                     coeff_i         = num_coeffs;
00899                 } else {
00900                     dct_tokens[j++] = TOKEN_EOB(eob_run);
00901                     blocks_ended   += eob_run;
00902                     coeff_i        += eob_run;
00903                     eob_run = 0;
00904                 }
00905             } else {
00906                 bits_to_get = coeff_get_bits[token];
00907                 if (bits_to_get)
00908                     bits_to_get = get_bits(gb, bits_to_get);
00909                 coeff = coeff_tables[token][bits_to_get];
00910 
00911                 zero_run = zero_run_base[token];
00912                 if (zero_run_get_bits[token])
00913                     zero_run += get_bits(gb, zero_run_get_bits[token]);
00914 
00915                 if (zero_run) {
00916                     dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
00917                 } else {
00918                     // Save DC into the fragment structure. DC prediction is
00919                     // done in raster order, so the actual DC can't be in with
00920                     // other tokens. We still need the token in dct_tokens[]
00921                     // however, or else the structure collapses on itself.
00922                     if (!coeff_index)
00923                         all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
00924 
00925                     dct_tokens[j++] = TOKEN_COEFF(coeff);
00926                 }
00927 
00928                 if (coeff_index + zero_run > 64) {
00929                     av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with"
00930                            " %d coeffs left\n", zero_run, 64-coeff_index);
00931                     zero_run = 64 - coeff_index;
00932                 }
00933 
00934                 // zero runs code multiple coefficients,
00935                 // so don't try to decode coeffs for those higher levels
00936                 for (i = coeff_index+1; i <= coeff_index+zero_run; i++)
00937                     s->num_coded_frags[plane][i]--;
00938                 coeff_i++;
00939             }
00940     }
00941 
00942     if (blocks_ended > s->num_coded_frags[plane][coeff_index])
00943         av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
00944 
00945     // decrement the number of blocks that have higher coeffecients for each
00946     // EOB run at this level
00947     if (blocks_ended)
00948         for (i = coeff_index+1; i < 64; i++)
00949             s->num_coded_frags[plane][i] -= blocks_ended;
00950 
00951     // setup the next buffer
00952     if (plane < 2)
00953         s->dct_tokens[plane+1][coeff_index] = dct_tokens + j;
00954     else if (coeff_index < 63)
00955         s->dct_tokens[0][coeff_index+1] = dct_tokens + j;
00956 
00957     return eob_run;
00958 }
00959 
00960 static void reverse_dc_prediction(Vp3DecodeContext *s,
00961                                   int first_fragment,
00962                                   int fragment_width,
00963                                   int fragment_height);
00964 /*
00965  * This function unpacks all of the DCT coefficient data from the
00966  * bitstream.
00967  */
00968 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
00969 {
00970     int i;
00971     int dc_y_table;
00972     int dc_c_table;
00973     int ac_y_table;
00974     int ac_c_table;
00975     int residual_eob_run = 0;
00976     VLC *y_tables[64];
00977     VLC *c_tables[64];
00978 
00979     s->dct_tokens[0][0] = s->dct_tokens_base;
00980 
00981     /* fetch the DC table indexes */
00982     dc_y_table = get_bits(gb, 4);
00983     dc_c_table = get_bits(gb, 4);
00984 
00985     /* unpack the Y plane DC coefficients */
00986     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
00987         0, residual_eob_run);
00988 
00989     /* reverse prediction of the Y-plane DC coefficients */
00990     reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
00991 
00992     /* unpack the C plane DC coefficients */
00993     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
00994         1, residual_eob_run);
00995     residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
00996         2, residual_eob_run);
00997 
00998     /* reverse prediction of the C-plane DC coefficients */
00999     if (!(s->avctx->flags & CODEC_FLAG_GRAY))
01000     {
01001         reverse_dc_prediction(s, s->fragment_start[1],
01002             s->fragment_width[1], s->fragment_height[1]);
01003         reverse_dc_prediction(s, s->fragment_start[2],
01004             s->fragment_width[1], s->fragment_height[1]);
01005     }
01006 
01007     /* fetch the AC table indexes */
01008     ac_y_table = get_bits(gb, 4);
01009     ac_c_table = get_bits(gb, 4);
01010 
01011     /* build tables of AC VLC tables */
01012     for (i = 1; i <= 5; i++) {
01013         y_tables[i] = &s->ac_vlc_1[ac_y_table];
01014         c_tables[i] = &s->ac_vlc_1[ac_c_table];
01015     }
01016     for (i = 6; i <= 14; i++) {
01017         y_tables[i] = &s->ac_vlc_2[ac_y_table];
01018         c_tables[i] = &s->ac_vlc_2[ac_c_table];
01019     }
01020     for (i = 15; i <= 27; i++) {
01021         y_tables[i] = &s->ac_vlc_3[ac_y_table];
01022         c_tables[i] = &s->ac_vlc_3[ac_c_table];
01023     }
01024     for (i = 28; i <= 63; i++) {
01025         y_tables[i] = &s->ac_vlc_4[ac_y_table];
01026         c_tables[i] = &s->ac_vlc_4[ac_c_table];
01027     }
01028 
01029     /* decode all AC coefficents */
01030     for (i = 1; i <= 63; i++) {
01031             residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
01032                 0, residual_eob_run);
01033 
01034             residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
01035                 1, residual_eob_run);
01036             residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
01037                 2, residual_eob_run);
01038     }
01039 
01040     return 0;
01041 }
01042 
01043 /*
01044  * This function reverses the DC prediction for each coded fragment in
01045  * the frame. Much of this function is adapted directly from the original
01046  * VP3 source code.
01047  */
01048 #define COMPATIBLE_FRAME(x) \
01049   (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
01050 #define DC_COEFF(u) s->all_fragments[u].dc
01051 
01052 static void reverse_dc_prediction(Vp3DecodeContext *s,
01053                                   int first_fragment,
01054                                   int fragment_width,
01055                                   int fragment_height)
01056 {
01057 
01058 #define PUL 8
01059 #define PU 4
01060 #define PUR 2
01061 #define PL 1
01062 
01063     int x, y;
01064     int i = first_fragment;
01065 
01066     int predicted_dc;
01067 
01068     /* DC values for the left, up-left, up, and up-right fragments */
01069     int vl, vul, vu, vur;
01070 
01071     /* indexes for the left, up-left, up, and up-right fragments */
01072     int l, ul, u, ur;
01073 
01074     /*
01075      * The 6 fields mean:
01076      *   0: up-left multiplier
01077      *   1: up multiplier
01078      *   2: up-right multiplier
01079      *   3: left multiplier
01080      */
01081     static const int predictor_transform[16][4] = {
01082         {  0,  0,  0,  0},
01083         {  0,  0,  0,128},        // PL
01084         {  0,  0,128,  0},        // PUR
01085         {  0,  0, 53, 75},        // PUR|PL
01086         {  0,128,  0,  0},        // PU
01087         {  0, 64,  0, 64},        // PU|PL
01088         {  0,128,  0,  0},        // PU|PUR
01089         {  0,  0, 53, 75},        // PU|PUR|PL
01090         {128,  0,  0,  0},        // PUL
01091         {  0,  0,  0,128},        // PUL|PL
01092         { 64,  0, 64,  0},        // PUL|PUR
01093         {  0,  0, 53, 75},        // PUL|PUR|PL
01094         {  0,128,  0,  0},        // PUL|PU
01095        {-104,116,  0,116},        // PUL|PU|PL
01096         { 24, 80, 24,  0},        // PUL|PU|PUR
01097        {-104,116,  0,116}         // PUL|PU|PUR|PL
01098     };
01099 
01100     /* This table shows which types of blocks can use other blocks for
01101      * prediction. For example, INTRA is the only mode in this table to
01102      * have a frame number of 0. That means INTRA blocks can only predict
01103      * from other INTRA blocks. There are 2 golden frame coding types;
01104      * blocks encoding in these modes can only predict from other blocks
01105      * that were encoded with these 1 of these 2 modes. */
01106     static const unsigned char compatible_frame[9] = {
01107         1,    /* MODE_INTER_NO_MV */
01108         0,    /* MODE_INTRA */
01109         1,    /* MODE_INTER_PLUS_MV */
01110         1,    /* MODE_INTER_LAST_MV */
01111         1,    /* MODE_INTER_PRIOR_MV */
01112         2,    /* MODE_USING_GOLDEN */
01113         2,    /* MODE_GOLDEN_MV */
01114         1,    /* MODE_INTER_FOUR_MV */
01115         3     /* MODE_COPY */
01116     };
01117     int current_frame_type;
01118 
01119     /* there is a last DC predictor for each of the 3 frame types */
01120     short last_dc[3];
01121 
01122     int transform = 0;
01123 
01124     vul = vu = vur = vl = 0;
01125     last_dc[0] = last_dc[1] = last_dc[2] = 0;
01126 
01127     /* for each fragment row... */
01128     for (y = 0; y < fragment_height; y++) {
01129 
01130         /* for each fragment in a row... */
01131         for (x = 0; x < fragment_width; x++, i++) {
01132 
01133             /* reverse prediction if this block was coded */
01134             if (s->all_fragments[i].coding_method != MODE_COPY) {
01135 
01136                 current_frame_type =
01137                     compatible_frame[s->all_fragments[i].coding_method];
01138 
01139                 transform= 0;
01140                 if(x){
01141                     l= i-1;
01142                     vl = DC_COEFF(l);
01143                     if(COMPATIBLE_FRAME(l))
01144                         transform |= PL;
01145                 }
01146                 if(y){
01147                     u= i-fragment_width;
01148                     vu = DC_COEFF(u);
01149                     if(COMPATIBLE_FRAME(u))
01150                         transform |= PU;
01151                     if(x){
01152                         ul= i-fragment_width-1;
01153                         vul = DC_COEFF(ul);
01154                         if(COMPATIBLE_FRAME(ul))
01155                             transform |= PUL;
01156                     }
01157                     if(x + 1 < fragment_width){
01158                         ur= i-fragment_width+1;
01159                         vur = DC_COEFF(ur);
01160                         if(COMPATIBLE_FRAME(ur))
01161                             transform |= PUR;
01162                     }
01163                 }
01164 
01165                 if (transform == 0) {
01166 
01167                     /* if there were no fragments to predict from, use last
01168                      * DC saved */
01169                     predicted_dc = last_dc[current_frame_type];
01170                 } else {
01171 
01172                     /* apply the appropriate predictor transform */
01173                     predicted_dc =
01174                         (predictor_transform[transform][0] * vul) +
01175                         (predictor_transform[transform][1] * vu) +
01176                         (predictor_transform[transform][2] * vur) +
01177                         (predictor_transform[transform][3] * vl);
01178 
01179                     predicted_dc /= 128;
01180 
01181                     /* check for outranging on the [ul u l] and
01182                      * [ul u ur l] predictors */
01183                     if ((transform == 15) || (transform == 13)) {
01184                         if (FFABS(predicted_dc - vu) > 128)
01185                             predicted_dc = vu;
01186                         else if (FFABS(predicted_dc - vl) > 128)
01187                             predicted_dc = vl;
01188                         else if (FFABS(predicted_dc - vul) > 128)
01189                             predicted_dc = vul;
01190                     }
01191                 }
01192 
01193                 /* at long last, apply the predictor */
01194                 DC_COEFF(i) += predicted_dc;
01195                 /* save the DC */
01196                 last_dc[current_frame_type] = DC_COEFF(i);
01197             }
01198         }
01199     }
01200 }
01201 
01202 static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
01203 {
01204     int x, y;
01205     int *bounding_values= s->bounding_values_array+127;
01206 
01207     int width           = s->fragment_width[!!plane];
01208     int height          = s->fragment_height[!!plane];
01209     int fragment        = s->fragment_start        [plane] + ystart * width;
01210     int stride          = s->current_frame.linesize[plane];
01211     uint8_t *plane_data = s->current_frame.data    [plane];
01212     if (!s->flipped_image) stride = -stride;
01213     plane_data += s->data_offset[plane] + 8*ystart*stride;
01214 
01215     for (y = ystart; y < yend; y++) {
01216 
01217         for (x = 0; x < width; x++) {
01218             /* This code basically just deblocks on the edges of coded blocks.
01219              * However, it has to be much more complicated because of the
01220              * braindamaged deblock ordering used in VP3/Theora. Order matters
01221              * because some pixels get filtered twice. */
01222             if( s->all_fragments[fragment].coding_method != MODE_COPY )
01223             {
01224                 /* do not perform left edge filter for left columns frags */
01225                 if (x > 0) {
01226                     s->dsp.vp3_h_loop_filter(
01227                         plane_data + 8*x,
01228                         stride, bounding_values);
01229                 }
01230 
01231                 /* do not perform top edge filter for top row fragments */
01232                 if (y > 0) {
01233                     s->dsp.vp3_v_loop_filter(
01234                         plane_data + 8*x,
01235                         stride, bounding_values);
01236                 }
01237 
01238                 /* do not perform right edge filter for right column
01239                  * fragments or if right fragment neighbor is also coded
01240                  * in this frame (it will be filtered in next iteration) */
01241                 if ((x < width - 1) &&
01242                     (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
01243                     s->dsp.vp3_h_loop_filter(
01244                         plane_data + 8*x + 8,
01245                         stride, bounding_values);
01246                 }
01247 
01248                 /* do not perform bottom edge filter for bottom row
01249                  * fragments or if bottom fragment neighbor is also coded
01250                  * in this frame (it will be filtered in the next row) */
01251                 if ((y < height - 1) &&
01252                     (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
01253                     s->dsp.vp3_v_loop_filter(
01254                         plane_data + 8*x + 8*stride,
01255                         stride, bounding_values);
01256                 }
01257             }
01258 
01259             fragment++;
01260         }
01261         plane_data += 8*stride;
01262     }
01263 }
01264 
01269 static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
01270                               int plane, int inter, DCTELEM block[64])
01271 {
01272     int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
01273     uint8_t *perm = s->scantable.permutated;
01274     int i = 0;
01275 
01276     do {
01277         int token = *s->dct_tokens[plane][i];
01278         switch (token & 3) {
01279         case 0: // EOB
01280             if (--token < 4) // 0-3 are token types, so the EOB run must now be 0
01281                 s->dct_tokens[plane][i]++;
01282             else
01283                 *s->dct_tokens[plane][i] = token & ~3;
01284             goto end;
01285         case 1: // zero run
01286             s->dct_tokens[plane][i]++;
01287             i += (token >> 2) & 0x7f;
01288             block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
01289             i++;
01290             break;
01291         case 2: // coeff
01292             block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
01293             s->dct_tokens[plane][i++]++;
01294             break;
01295         default: // shouldn't happen
01296             return i;
01297         }
01298     } while (i < 64);
01299 end:
01300     // the actual DC+prediction is in the fragment structure
01301     block[0] = frag->dc * s->qmat[0][inter][plane][0];
01302     return i;
01303 }
01304 
01308 static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
01309 {
01310     int h, cy;
01311     int offset[4];
01312 
01313     if(s->avctx->draw_horiz_band==NULL)
01314         return;
01315 
01316     h= y - s->last_slice_end;
01317     y -= h;
01318 
01319     if (!s->flipped_image) {
01320         if (y == 0)
01321             h -= s->height - s->avctx->height;  // account for non-mod16
01322         y = s->height - y - h;
01323     }
01324 
01325     cy = y >> 1;
01326     offset[0] = s->current_frame.linesize[0]*y;
01327     offset[1] = s->current_frame.linesize[1]*cy;
01328     offset[2] = s->current_frame.linesize[2]*cy;
01329     offset[3] = 0;
01330 
01331     emms_c();
01332     s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h);
01333     s->last_slice_end= y + h;
01334 }
01335 
01336 /*
01337  * Perform the final rendering for a particular slice of data.
01338  * The slice number ranges from 0..(c_superblock_height - 1).
01339  */
01340 static void render_slice(Vp3DecodeContext *s, int slice)
01341 {
01342     int x, y, i, j;
01343     LOCAL_ALIGNED_16(DCTELEM, block, [64]);
01344     int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
01345     int motion_halfpel_index;
01346     uint8_t *motion_source;
01347     int plane, first_pixel;
01348 
01349     if (slice >= s->c_superblock_height)
01350         return;
01351 
01352     for (plane = 0; plane < 3; plane++) {
01353         uint8_t *output_plane = s->current_frame.data    [plane] + s->data_offset[plane];
01354         uint8_t *  last_plane = s->   last_frame.data    [plane] + s->data_offset[plane];
01355         uint8_t *golden_plane = s-> golden_frame.data    [plane] + s->data_offset[plane];
01356         int stride            = s->current_frame.linesize[plane];
01357         int plane_width       = s->width  >> (plane && s->chroma_x_shift);
01358         int plane_height      = s->height >> (plane && s->chroma_y_shift);
01359         int8_t (*motion_val)[2] = s->motion_val[!!plane];
01360 
01361         int sb_x, sb_y        = slice << (!plane && s->chroma_y_shift);
01362         int slice_height      = sb_y + 1 + (!plane && s->chroma_y_shift);
01363         int slice_width       = plane ? s->c_superblock_width : s->y_superblock_width;
01364 
01365         int fragment_width    = s->fragment_width[!!plane];
01366         int fragment_height   = s->fragment_height[!!plane];
01367         int fragment_start    = s->fragment_start[plane];
01368 
01369         if (!s->flipped_image) stride = -stride;
01370         if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
01371             continue;
01372 
01373 
01374         if(FFABS(stride) > 2048)
01375             return; //various tables are fixed size
01376 
01377         /* for each superblock row in the slice (both of them)... */
01378         for (; sb_y < slice_height; sb_y++) {
01379 
01380             /* for each superblock in a row... */
01381             for (sb_x = 0; sb_x < slice_width; sb_x++) {
01382 
01383                 /* for each block in a superblock... */
01384                 for (j = 0; j < 16; j++) {
01385                     x = 4*sb_x + hilbert_offset[j][0];
01386                     y = 4*sb_y + hilbert_offset[j][1];
01387 
01388                     i = fragment_start + y*fragment_width + x;
01389 
01390                     // bounds check
01391                     if (x >= fragment_width || y >= fragment_height)
01392                         continue;
01393 
01394                 first_pixel = 8*y*stride + 8*x;
01395 
01396                 /* transform if this block was coded */
01397                 if (s->all_fragments[i].coding_method != MODE_COPY) {
01398                     if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
01399                         (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
01400                         motion_source= golden_plane;
01401                     else
01402                         motion_source= last_plane;
01403 
01404                     motion_source += first_pixel;
01405                     motion_halfpel_index = 0;
01406 
01407                     /* sort out the motion vector if this fragment is coded
01408                      * using a motion vector method */
01409                     if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
01410                         (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
01411                         int src_x, src_y;
01412                         motion_x = motion_val[y*fragment_width + x][0];
01413                         motion_y = motion_val[y*fragment_width + x][1];
01414 
01415                         src_x= (motion_x>>1) + 8*x;
01416                         src_y= (motion_y>>1) + 8*y;
01417 
01418                         motion_halfpel_index = motion_x & 0x01;
01419                         motion_source += (motion_x >> 1);
01420 
01421                         motion_halfpel_index |= (motion_y & 0x01) << 1;
01422                         motion_source += ((motion_y >> 1) * stride);
01423 
01424                         if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
01425                             uint8_t *temp= s->edge_emu_buffer;
01426                             if(stride<0) temp -= 9*stride;
01427                             else temp += 9*stride;
01428 
01429                             ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
01430                             motion_source= temp;
01431                         }
01432                     }
01433 
01434 
01435                     /* first, take care of copying a block from either the
01436                      * previous or the golden frame */
01437                     if (s->all_fragments[i].coding_method != MODE_INTRA) {
01438                         /* Note, it is possible to implement all MC cases with
01439                            put_no_rnd_pixels_l2 which would look more like the
01440                            VP3 source but this would be slower as
01441                            put_no_rnd_pixels_tab is better optimzed */
01442                         if(motion_halfpel_index != 3){
01443                             s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
01444                                 output_plane + first_pixel,
01445                                 motion_source, stride, 8);
01446                         }else{
01447                             int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
01448                             s->dsp.put_no_rnd_pixels_l2[1](
01449                                 output_plane + first_pixel,
01450                                 motion_source - d,
01451                                 motion_source + stride + 1 + d,
01452                                 stride, 8);
01453                         }
01454                     }
01455 
01456                         s->dsp.clear_block(block);
01457 
01458                     /* invert DCT and place (or add) in final output */
01459 
01460                     if (s->all_fragments[i].coding_method == MODE_INTRA) {
01461                         vp3_dequant(s, s->all_fragments + i, plane, 0, block);
01462                         if(s->avctx->idct_algo!=FF_IDCT_VP3)
01463                             block[0] += 128<<3;
01464                         s->dsp.idct_put(
01465                             output_plane + first_pixel,
01466                             stride,
01467                             block);
01468                     } else {
01469                         if (vp3_dequant(s, s->all_fragments + i, plane, 1, block)) {
01470                         s->dsp.idct_add(
01471                             output_plane + first_pixel,
01472                             stride,
01473                             block);
01474                         } else {
01475                             s->dsp.vp3_idct_dc_add(output_plane + first_pixel, stride, block);
01476                         }
01477                     }
01478                 } else {
01479 
01480                     /* copy directly from the previous frame */
01481                     s->dsp.put_pixels_tab[1][0](
01482                         output_plane + first_pixel,
01483                         last_plane + first_pixel,
01484                         stride, 8);
01485 
01486                 }
01487                 }
01488             }
01489 
01490             // Filter up to the last row in the superblock row
01491             apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1));
01492         }
01493     }
01494 
01495      /* this looks like a good place for slice dispatch... */
01496      /* algorithm:
01497       *   if (slice == s->macroblock_height - 1)
01498       *     dispatch (both last slice & 2nd-to-last slice);
01499       *   else if (slice > 0)
01500       *     dispatch (slice - 1);
01501       */
01502 
01503     vp3_draw_horiz_band(s, FFMIN(64*slice + 64-16, s->height-16));
01504 }
01505 
01506 /*
01507  * This is the ffmpeg/libavcodec API init function.
01508  */
01509 static av_cold int vp3_decode_init(AVCodecContext *avctx)
01510 {
01511     Vp3DecodeContext *s = avctx->priv_data;
01512     int i, inter, plane;
01513     int c_width;
01514     int c_height;
01515     int y_fragment_count, c_fragment_count;
01516 
01517     if (avctx->codec_tag == MKTAG('V','P','3','0'))
01518         s->version = 0;
01519     else
01520         s->version = 1;
01521 
01522     s->avctx = avctx;
01523     s->width = FFALIGN(avctx->width, 16);
01524     s->height = FFALIGN(avctx->height, 16);
01525     if (avctx->pix_fmt == PIX_FMT_NONE)
01526         avctx->pix_fmt = PIX_FMT_YUV420P;
01527     avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
01528     if(avctx->idct_algo==FF_IDCT_AUTO)
01529         avctx->idct_algo=FF_IDCT_VP3;
01530     dsputil_init(&s->dsp, avctx);
01531 
01532     ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
01533 
01534     /* initialize to an impossible value which will force a recalculation
01535      * in the first frame decode */
01536     for (i = 0; i < 3; i++)
01537         s->qps[i] = -1;
01538 
01539     avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
01540 
01541     s->y_superblock_width = (s->width + 31) / 32;
01542     s->y_superblock_height = (s->height + 31) / 32;
01543     s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
01544 
01545     /* work out the dimensions for the C planes */
01546     c_width = s->width >> s->chroma_x_shift;
01547     c_height = s->height >> s->chroma_y_shift;
01548     s->c_superblock_width = (c_width + 31) / 32;
01549     s->c_superblock_height = (c_height + 31) / 32;
01550     s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
01551 
01552     s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
01553     s->u_superblock_start = s->y_superblock_count;
01554     s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
01555     s->superblock_coding = av_malloc(s->superblock_count);
01556 
01557     s->macroblock_width = (s->width + 15) / 16;
01558     s->macroblock_height = (s->height + 15) / 16;
01559     s->macroblock_count = s->macroblock_width * s->macroblock_height;
01560 
01561     s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
01562     s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
01563     s->fragment_width[1]  = s->fragment_width[0]  >> s->chroma_x_shift;
01564     s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
01565 
01566     /* fragment count covers all 8x8 blocks for all 3 planes */
01567     y_fragment_count     = s->fragment_width[0] * s->fragment_height[0];
01568     c_fragment_count     = s->fragment_width[1] * s->fragment_height[1];
01569     s->fragment_count    = y_fragment_count + 2*c_fragment_count;
01570     s->fragment_start[1] = y_fragment_count;
01571     s->fragment_start[2] = y_fragment_count + c_fragment_count;
01572 
01573     s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
01574     s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int));
01575     s->dct_tokens_base = av_malloc(64*s->fragment_count * sizeof(*s->dct_tokens_base));
01576     s->motion_val[0] = av_malloc(y_fragment_count * sizeof(*s->motion_val[0]));
01577     s->motion_val[1] = av_malloc(c_fragment_count * sizeof(*s->motion_val[1]));
01578 
01579     if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base ||
01580         !s->coded_fragment_list[0] || !s->motion_val[0] || !s->motion_val[1]) {
01581         vp3_decode_end(avctx);
01582         return -1;
01583     }
01584 
01585     if (!s->theora_tables)
01586     {
01587         for (i = 0; i < 64; i++) {
01588             s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
01589             s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
01590             s->base_matrix[0][i] = vp31_intra_y_dequant[i];
01591             s->base_matrix[1][i] = vp31_intra_c_dequant[i];
01592             s->base_matrix[2][i] = vp31_inter_dequant[i];
01593             s->filter_limit_values[i] = vp31_filter_limit_values[i];
01594         }
01595 
01596         for(inter=0; inter<2; inter++){
01597             for(plane=0; plane<3; plane++){
01598                 s->qr_count[inter][plane]= 1;
01599                 s->qr_size [inter][plane][0]= 63;
01600                 s->qr_base [inter][plane][0]=
01601                 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
01602             }
01603         }
01604 
01605         /* init VLC tables */
01606         for (i = 0; i < 16; i++) {
01607 
01608             /* DC histograms */
01609             init_vlc(&s->dc_vlc[i], 11, 32,
01610                 &dc_bias[i][0][1], 4, 2,
01611                 &dc_bias[i][0][0], 4, 2, 0);
01612 
01613             /* group 1 AC histograms */
01614             init_vlc(&s->ac_vlc_1[i], 11, 32,
01615                 &ac_bias_0[i][0][1], 4, 2,
01616                 &ac_bias_0[i][0][0], 4, 2, 0);
01617 
01618             /* group 2 AC histograms */
01619             init_vlc(&s->ac_vlc_2[i], 11, 32,
01620                 &ac_bias_1[i][0][1], 4, 2,
01621                 &ac_bias_1[i][0][0], 4, 2, 0);
01622 
01623             /* group 3 AC histograms */
01624             init_vlc(&s->ac_vlc_3[i], 11, 32,
01625                 &ac_bias_2[i][0][1], 4, 2,
01626                 &ac_bias_2[i][0][0], 4, 2, 0);
01627 
01628             /* group 4 AC histograms */
01629             init_vlc(&s->ac_vlc_4[i], 11, 32,
01630                 &ac_bias_3[i][0][1], 4, 2,
01631                 &ac_bias_3[i][0][0], 4, 2, 0);
01632         }
01633     } else {
01634 
01635         for (i = 0; i < 16; i++) {
01636             /* DC histograms */
01637             if (init_vlc(&s->dc_vlc[i], 11, 32,
01638                 &s->huffman_table[i][0][1], 8, 4,
01639                 &s->huffman_table[i][0][0], 8, 4, 0) < 0)
01640                 goto vlc_fail;
01641 
01642             /* group 1 AC histograms */
01643             if (init_vlc(&s->ac_vlc_1[i], 11, 32,
01644                 &s->huffman_table[i+16][0][1], 8, 4,
01645                 &s->huffman_table[i+16][0][0], 8, 4, 0) < 0)
01646                 goto vlc_fail;
01647 
01648             /* group 2 AC histograms */
01649             if (init_vlc(&s->ac_vlc_2[i], 11, 32,
01650                 &s->huffman_table[i+16*2][0][1], 8, 4,
01651                 &s->huffman_table[i+16*2][0][0], 8, 4, 0) < 0)
01652                 goto vlc_fail;
01653 
01654             /* group 3 AC histograms */
01655             if (init_vlc(&s->ac_vlc_3[i], 11, 32,
01656                 &s->huffman_table[i+16*3][0][1], 8, 4,
01657                 &s->huffman_table[i+16*3][0][0], 8, 4, 0) < 0)
01658                 goto vlc_fail;
01659 
01660             /* group 4 AC histograms */
01661             if (init_vlc(&s->ac_vlc_4[i], 11, 32,
01662                 &s->huffman_table[i+16*4][0][1], 8, 4,
01663                 &s->huffman_table[i+16*4][0][0], 8, 4, 0) < 0)
01664                 goto vlc_fail;
01665         }
01666     }
01667 
01668     init_vlc(&s->superblock_run_length_vlc, 6, 34,
01669         &superblock_run_length_vlc_table[0][1], 4, 2,
01670         &superblock_run_length_vlc_table[0][0], 4, 2, 0);
01671 
01672     init_vlc(&s->fragment_run_length_vlc, 5, 30,
01673         &fragment_run_length_vlc_table[0][1], 4, 2,
01674         &fragment_run_length_vlc_table[0][0], 4, 2, 0);
01675 
01676     init_vlc(&s->mode_code_vlc, 3, 8,
01677         &mode_code_vlc_table[0][1], 2, 1,
01678         &mode_code_vlc_table[0][0], 2, 1, 0);
01679 
01680     init_vlc(&s->motion_vector_vlc, 6, 63,
01681         &motion_vector_vlc_table[0][1], 2, 1,
01682         &motion_vector_vlc_table[0][0], 2, 1, 0);
01683 
01684     /* work out the block mapping tables */
01685     s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
01686     s->macroblock_coding = av_malloc(s->macroblock_count + 1);
01687     if (!s->superblock_fragments || !s->macroblock_coding) {
01688         vp3_decode_end(avctx);
01689         return -1;
01690     }
01691     init_block_mapping(s);
01692 
01693     for (i = 0; i < 3; i++) {
01694         s->current_frame.data[i] = NULL;
01695         s->last_frame.data[i] = NULL;
01696         s->golden_frame.data[i] = NULL;
01697     }
01698 
01699     return 0;
01700 
01701 vlc_fail:
01702     av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
01703     return -1;
01704 }
01705 
01706 /*
01707  * This is the ffmpeg/libavcodec API frame decode function.
01708  */
01709 static int vp3_decode_frame(AVCodecContext *avctx,
01710                             void *data, int *data_size,
01711                             AVPacket *avpkt)
01712 {
01713     const uint8_t *buf = avpkt->data;
01714     int buf_size = avpkt->size;
01715     Vp3DecodeContext *s = avctx->priv_data;
01716     GetBitContext gb;
01717     static int counter = 0;
01718     int i;
01719 
01720     init_get_bits(&gb, buf, buf_size * 8);
01721 
01722     if (s->theora && get_bits1(&gb))
01723     {
01724         av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
01725         return -1;
01726     }
01727 
01728     s->keyframe = !get_bits1(&gb);
01729     if (!s->theora)
01730         skip_bits(&gb, 1);
01731     for (i = 0; i < 3; i++)
01732         s->last_qps[i] = s->qps[i];
01733 
01734     s->nqps=0;
01735     do{
01736         s->qps[s->nqps++]= get_bits(&gb, 6);
01737     } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
01738     for (i = s->nqps; i < 3; i++)
01739         s->qps[i] = -1;
01740 
01741     if (s->avctx->debug & FF_DEBUG_PICT_INFO)
01742         av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
01743             s->keyframe?"key":"", counter, s->qps[0]);
01744     counter++;
01745 
01746     if (s->qps[0] != s->last_qps[0])
01747         init_loop_filter(s);
01748 
01749     for (i = 0; i < s->nqps; i++)
01750         // reinit all dequantizers if the first one changed, because
01751         // the DC of the first quantizer must be used for all matrices
01752         if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
01753             init_dequantizer(s, i);
01754 
01755     if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
01756         return buf_size;
01757 
01758     s->current_frame.reference = 3;
01759     s->current_frame.pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE;
01760     if (avctx->get_buffer(avctx, &s->current_frame) < 0) {
01761         av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
01762         goto error;
01763     }
01764 
01765     if (s->keyframe) {
01766         if (!s->theora)
01767         {
01768             skip_bits(&gb, 4); /* width code */
01769             skip_bits(&gb, 4); /* height code */
01770             if (s->version)
01771             {
01772                 s->version = get_bits(&gb, 5);
01773                 if (counter == 1)
01774                     av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
01775             }
01776         }
01777         if (s->version || s->theora)
01778         {
01779                 if (get_bits1(&gb))
01780                     av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
01781             skip_bits(&gb, 2); /* reserved? */
01782         }
01783     } else {
01784         if (!s->golden_frame.data[0]) {
01785             av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n");
01786 
01787             s->golden_frame.reference = 3;
01788             s->golden_frame.pict_type = FF_I_TYPE;
01789             if (avctx->get_buffer(avctx, &s->golden_frame) < 0) {
01790                 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
01791                 goto error;
01792             }
01793             s->last_frame = s->golden_frame;
01794             s->last_frame.type = FF_BUFFER_TYPE_COPY;
01795         }
01796     }
01797 
01798     s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
01799     s->current_frame.qstride= 0;
01800 
01801     memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
01802 
01803     if (unpack_superblocks(s, &gb)){
01804         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
01805         goto error;
01806     }
01807     if (unpack_modes(s, &gb)){
01808         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
01809         goto error;
01810     }
01811     if (unpack_vectors(s, &gb)){
01812         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
01813         goto error;
01814     }
01815     if (unpack_block_qpis(s, &gb)){
01816         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
01817         goto error;
01818     }
01819     if (unpack_dct_coeffs(s, &gb)){
01820         av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
01821         goto error;
01822     }
01823 
01824     for (i = 0; i < 3; i++) {
01825         int height = s->height >> (i && s->chroma_y_shift);
01826         if (s->flipped_image)
01827             s->data_offset[i] = 0;
01828         else
01829             s->data_offset[i] = (height-1) * s->current_frame.linesize[i];
01830     }
01831 
01832     s->last_slice_end = 0;
01833     for (i = 0; i < s->c_superblock_height; i++)
01834         render_slice(s, i);
01835 
01836     // filter the last row
01837     for (i = 0; i < 3; i++) {
01838         int row = (s->height >> (3+(i && s->chroma_y_shift))) - 1;
01839         apply_loop_filter(s, i, row, row+1);
01840     }
01841     vp3_draw_horiz_band(s, s->height);
01842 
01843     *data_size=sizeof(AVFrame);
01844     *(AVFrame*)data= s->current_frame;
01845 
01846     /* release the last frame, if it is allocated and if it is not the
01847      * golden frame */
01848     if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
01849         avctx->release_buffer(avctx, &s->last_frame);
01850 
01851     /* shuffle frames (last = current) */
01852     s->last_frame= s->current_frame;
01853 
01854     if (s->keyframe) {
01855         if (s->golden_frame.data[0])
01856             avctx->release_buffer(avctx, &s->golden_frame);
01857         s->golden_frame = s->current_frame;
01858         s->last_frame.type = FF_BUFFER_TYPE_COPY;
01859     }
01860 
01861     s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
01862 
01863     return buf_size;
01864 
01865 error:
01866     if (s->current_frame.data[0])
01867         avctx->release_buffer(avctx, &s->current_frame);
01868     return -1;
01869 }
01870 
01871 /*
01872  * This is the ffmpeg/libavcodec API module cleanup function.
01873  */
01874 static av_cold int vp3_decode_end(AVCodecContext *avctx)
01875 {
01876     Vp3DecodeContext *s = avctx->priv_data;
01877     int i;
01878 
01879     av_free(s->superblock_coding);
01880     av_free(s->all_fragments);
01881     av_free(s->coded_fragment_list[0]);
01882     av_free(s->dct_tokens_base);
01883     av_free(s->superblock_fragments);
01884     av_free(s->macroblock_coding);
01885     av_free(s->motion_val[0]);
01886     av_free(s->motion_val[1]);
01887 
01888     for (i = 0; i < 16; i++) {
01889         free_vlc(&s->dc_vlc[i]);
01890         free_vlc(&s->ac_vlc_1[i]);
01891         free_vlc(&s->ac_vlc_2[i]);
01892         free_vlc(&s->ac_vlc_3[i]);
01893         free_vlc(&s->ac_vlc_4[i]);
01894     }
01895 
01896     free_vlc(&s->superblock_run_length_vlc);
01897     free_vlc(&s->fragment_run_length_vlc);
01898     free_vlc(&s->mode_code_vlc);
01899     free_vlc(&s->motion_vector_vlc);
01900 
01901     /* release all frames */
01902     if (s->golden_frame.data[0])
01903         avctx->release_buffer(avctx, &s->golden_frame);
01904     if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
01905         avctx->release_buffer(avctx, &s->last_frame);
01906     /* no need to release the current_frame since it will always be pointing
01907      * to the same frame as either the golden or last frame */
01908 
01909     return 0;
01910 }
01911 
01912 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
01913 {
01914     Vp3DecodeContext *s = avctx->priv_data;
01915 
01916     if (get_bits1(gb)) {
01917         int token;
01918         if (s->entries >= 32) { /* overflow */
01919             av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
01920             return -1;
01921         }
01922         token = get_bits(gb, 5);
01923         //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
01924         s->huffman_table[s->hti][token][0] = s->hbits;
01925         s->huffman_table[s->hti][token][1] = s->huff_code_size;
01926         s->entries++;
01927     }
01928     else {
01929         if (s->huff_code_size >= 32) {/* overflow */
01930             av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
01931             return -1;
01932         }
01933         s->huff_code_size++;
01934         s->hbits <<= 1;
01935         if (read_huffman_tree(avctx, gb))
01936             return -1;
01937         s->hbits |= 1;
01938         if (read_huffman_tree(avctx, gb))
01939             return -1;
01940         s->hbits >>= 1;
01941         s->huff_code_size--;
01942     }
01943     return 0;
01944 }
01945 
01946 #if CONFIG_THEORA_DECODER
01947 static const enum PixelFormat theora_pix_fmts[4] = {
01948     PIX_FMT_YUV420P, PIX_FMT_NONE, PIX_FMT_YUV422P, PIX_FMT_YUV444P
01949 };
01950 
01951 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
01952 {
01953     Vp3DecodeContext *s = avctx->priv_data;
01954     int visible_width, visible_height, colorspace;
01955     int offset_x = 0, offset_y = 0;
01956     AVRational fps;
01957 
01958     s->theora = get_bits_long(gb, 24);
01959     av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
01960 
01961     /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
01962     /* but previous versions have the image flipped relative to vp3 */
01963     if (s->theora < 0x030200)
01964     {
01965         s->flipped_image = 1;
01966         av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
01967     }
01968 
01969     visible_width  = s->width  = get_bits(gb, 16) << 4;
01970     visible_height = s->height = get_bits(gb, 16) << 4;
01971 
01972     if(avcodec_check_dimensions(avctx, s->width, s->height)){
01973         av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
01974         s->width= s->height= 0;
01975         return -1;
01976     }
01977 
01978     if (s->theora >= 0x030200) {
01979         visible_width  = get_bits_long(gb, 24);
01980         visible_height = get_bits_long(gb, 24);
01981 
01982         offset_x = get_bits(gb, 8); /* offset x */
01983         offset_y = get_bits(gb, 8); /* offset y, from bottom */
01984     }
01985 
01986     fps.num = get_bits_long(gb, 32);
01987     fps.den = get_bits_long(gb, 32);
01988     if (fps.num && fps.den) {
01989         av_reduce(&avctx->time_base.num, &avctx->time_base.den,
01990                   fps.den, fps.num, 1<<30);
01991     }
01992 
01993     avctx->sample_aspect_ratio.num = get_bits_long(gb, 24);
01994     avctx->sample_aspect_ratio.den = get_bits_long(gb, 24);
01995 
01996     if (s->theora < 0x030200)
01997         skip_bits(gb, 5); /* keyframe frequency force */
01998     colorspace = get_bits(gb, 8);
01999     skip_bits(gb, 24); /* bitrate */
02000 
02001     skip_bits(gb, 6); /* quality hint */
02002 
02003     if (s->theora >= 0x030200)
02004     {
02005         skip_bits(gb, 5); /* keyframe frequency force */
02006         avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
02007         skip_bits(gb, 3); /* reserved */
02008     }
02009 
02010 //    align_get_bits(gb);
02011 
02012     if (   visible_width  <= s->width  && visible_width  > s->width-16
02013         && visible_height <= s->height && visible_height > s->height-16
02014         && !offset_x && (offset_y == s->height - visible_height))
02015         avcodec_set_dimensions(avctx, visible_width, visible_height);
02016     else
02017         avcodec_set_dimensions(avctx, s->width, s->height);
02018 
02019     if (colorspace == 1) {
02020         avctx->color_primaries = AVCOL_PRI_BT470M;
02021     } else if (colorspace == 2) {
02022         avctx->color_primaries = AVCOL_PRI_BT470BG;
02023     }
02024     if (colorspace == 1 || colorspace == 2) {
02025         avctx->colorspace = AVCOL_SPC_BT470BG;
02026         avctx->color_trc  = AVCOL_TRC_BT709;
02027     }
02028 
02029     return 0;
02030 }
02031 
02032 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
02033 {
02034     Vp3DecodeContext *s = avctx->priv_data;
02035     int i, n, matrices, inter, plane;
02036 
02037     if (s->theora >= 0x030200) {
02038         n = get_bits(gb, 3);
02039         /* loop filter limit values table */
02040         for (i = 0; i < 64; i++) {
02041             s->filter_limit_values[i] = get_bits(gb, n);
02042             if (s->filter_limit_values[i] > 127) {
02043                 av_log(avctx, AV_LOG_ERROR, "filter limit value too large (%i > 127), clamping\n", s->filter_limit_values[i]);
02044                 s->filter_limit_values[i] = 127;
02045             }
02046         }
02047     }
02048 
02049     if (s->theora >= 0x030200)
02050         n = get_bits(gb, 4) + 1;
02051     else
02052         n = 16;
02053     /* quality threshold table */
02054     for (i = 0; i < 64; i++)
02055         s->coded_ac_scale_factor[i] = get_bits(gb, n);
02056 
02057     if (s->theora >= 0x030200)
02058         n = get_bits(gb, 4) + 1;
02059     else
02060         n = 16;
02061     /* dc scale factor table */
02062     for (i = 0; i < 64; i++)
02063         s->coded_dc_scale_factor[i] = get_bits(gb, n);
02064 
02065     if (s->theora >= 0x030200)
02066         matrices = get_bits(gb, 9) + 1;
02067     else
02068         matrices = 3;
02069 
02070     if(matrices > 384){
02071         av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
02072         return -1;
02073     }
02074 
02075     for(n=0; n<matrices; n++){
02076         for (i = 0; i < 64; i++)
02077             s->base_matrix[n][i]= get_bits(gb, 8);
02078     }
02079 
02080     for (inter = 0; inter <= 1; inter++) {
02081         for (plane = 0; plane <= 2; plane++) {
02082             int newqr= 1;
02083             if (inter || plane > 0)
02084                 newqr = get_bits1(gb);
02085             if (!newqr) {
02086                 int qtj, plj;
02087                 if(inter && get_bits1(gb)){
02088                     qtj = 0;
02089                     plj = plane;
02090                 }else{
02091                     qtj= (3*inter + plane - 1) / 3;
02092                     plj= (plane + 2) % 3;
02093                 }
02094                 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
02095                 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
02096                 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
02097             } else {
02098                 int qri= 0;
02099                 int qi = 0;
02100 
02101                 for(;;){
02102                     i= get_bits(gb, av_log2(matrices-1)+1);
02103                     if(i>= matrices){
02104                         av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
02105                         return -1;
02106                     }
02107                     s->qr_base[inter][plane][qri]= i;
02108                     if(qi >= 63)
02109                         break;
02110                     i = get_bits(gb, av_log2(63-qi)+1) + 1;
02111                     s->qr_size[inter][plane][qri++]= i;
02112                     qi += i;
02113                 }
02114 
02115                 if (qi > 63) {
02116                     av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
02117                     return -1;
02118                 }
02119                 s->qr_count[inter][plane]= qri;
02120             }
02121         }
02122     }
02123 
02124     /* Huffman tables */
02125     for (s->hti = 0; s->hti < 80; s->hti++) {
02126         s->entries = 0;
02127         s->huff_code_size = 1;
02128         if (!get_bits1(gb)) {
02129             s->hbits = 0;
02130             if(read_huffman_tree(avctx, gb))
02131                 return -1;
02132             s->hbits = 1;
02133             if(read_huffman_tree(avctx, gb))
02134                 return -1;
02135         }
02136     }
02137 
02138     s->theora_tables = 1;
02139 
02140     return 0;
02141 }
02142 
02143 static av_cold int theora_decode_init(AVCodecContext *avctx)
02144 {
02145     Vp3DecodeContext *s = avctx->priv_data;
02146     GetBitContext gb;
02147     int ptype;
02148     uint8_t *header_start[3];
02149     int header_len[3];
02150     int i;
02151 
02152     s->theora = 1;
02153 
02154     if (!avctx->extradata_size)
02155     {
02156         av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
02157         return -1;
02158     }
02159 
02160     if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
02161                               42, header_start, header_len) < 0) {
02162         av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
02163         return -1;
02164     }
02165 
02166   for(i=0;i<3;i++) {
02167     init_get_bits(&gb, header_start[i], header_len[i] * 8);
02168 
02169     ptype = get_bits(&gb, 8);
02170 
02171      if (!(ptype & 0x80))
02172      {
02173         av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
02174 //        return -1;
02175      }
02176 
02177     // FIXME: Check for this as well.
02178     skip_bits_long(&gb, 6*8); /* "theora" */
02179 
02180     switch(ptype)
02181     {
02182         case 0x80:
02183             theora_decode_header(avctx, &gb);
02184                 break;
02185         case 0x81:
02186 // FIXME: is this needed? it breaks sometimes
02187 //            theora_decode_comments(avctx, gb);
02188             break;
02189         case 0x82:
02190             if (theora_decode_tables(avctx, &gb))
02191                 return -1;
02192             break;
02193         default:
02194             av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
02195             break;
02196     }
02197     if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
02198         av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
02199     if (s->theora < 0x030200)
02200         break;
02201   }
02202 
02203     return vp3_decode_init(avctx);
02204 }
02205 
02206 AVCodec theora_decoder = {
02207     "theora",
02208     AVMEDIA_TYPE_VIDEO,
02209     CODEC_ID_THEORA,
02210     sizeof(Vp3DecodeContext),
02211     theora_decode_init,
02212     NULL,
02213     vp3_decode_end,
02214     vp3_decode_frame,
02215     CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
02216     NULL,
02217     .long_name = NULL_IF_CONFIG_SMALL("Theora"),
02218 };
02219 #endif
02220 
02221 AVCodec vp3_decoder = {
02222     "vp3",
02223     AVMEDIA_TYPE_VIDEO,
02224     CODEC_ID_VP3,
02225     sizeof(Vp3DecodeContext),
02226     vp3_decode_init,
02227     NULL,
02228     vp3_decode_end,
02229     vp3_decode_frame,
02230     CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
02231     NULL,
02232     .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
02233 };

Generated on Fri Sep 16 2011 17:17:45 for FFmpeg by  doxygen 1.7.1