00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00035 #include <math.h>
00036 #include <stddef.h>
00037 #include <stdio.h>
00038
00039 #include "avcodec.h"
00040 #include "get_bits.h"
00041 #include "dsputil.h"
00042 #include "bytestream.h"
00043 #include "fft.h"
00044
00045 #include "atrac.h"
00046 #include "atrac3data.h"
00047
00048 #define JOINT_STEREO 0x12
00049 #define STEREO 0x2
00050
00051
00052
00053 typedef struct {
00054 int num_gain_data;
00055 int levcode[8];
00056 int loccode[8];
00057 } gain_info;
00058
00059 typedef struct {
00060 gain_info gBlock[4];
00061 } gain_block;
00062
00063 typedef struct {
00064 int pos;
00065 int numCoefs;
00066 float coef[8];
00067 } tonal_component;
00068
00069 typedef struct {
00070 int bandsCoded;
00071 int numComponents;
00072 tonal_component components[64];
00073 float prevFrame[1024];
00074 int gcBlkSwitch;
00075 gain_block gainBlock[2];
00076
00077 DECLARE_ALIGNED(16, float, spectrum)[1024];
00078 DECLARE_ALIGNED(16, float, IMDCT_buf)[1024];
00079
00080 float delayBuf1[46];
00081 float delayBuf2[46];
00082 float delayBuf3[46];
00083 } channel_unit;
00084
00085 typedef struct {
00086 GetBitContext gb;
00088
00089 int channels;
00090 int codingMode;
00091 int bit_rate;
00092 int sample_rate;
00093 int samples_per_channel;
00094 int samples_per_frame;
00095
00096 int bits_per_frame;
00097 int bytes_per_frame;
00098 int pBs;
00099 channel_unit* pUnits;
00101
00102
00103 int matrix_coeff_index_prev[4];
00104 int matrix_coeff_index_now[4];
00105 int matrix_coeff_index_next[4];
00106 int weighting_delay[6];
00108
00109
00110 float outSamples[2048];
00111 uint8_t* decoded_bytes_buffer;
00112 float tempBuf[1070];
00114
00115
00116 int atrac3version;
00117 int delay;
00118 int scrambled_stream;
00119 int frame_factor;
00121 } ATRAC3Context;
00122
00123 static DECLARE_ALIGNED(16, float,mdct_window)[512];
00124 static VLC spectral_coeff_tab[7];
00125 static float gain_tab1[16];
00126 static float gain_tab2[31];
00127 static FFTContext mdct_ctx;
00128 static DSPContext dsp;
00129
00130
00140 static void IMLT(float *pInput, float *pOutput, int odd_band)
00141 {
00142 int i;
00143
00144 if (odd_band) {
00154 for (i=0; i<128; i++)
00155 FFSWAP(float, pInput[i], pInput[255-i]);
00156 }
00157
00158 ff_imdct_calc(&mdct_ctx,pOutput,pInput);
00159
00160
00161 dsp.vector_fmul(pOutput,mdct_window,512);
00162
00163 }
00164
00165
00174 static int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
00175 int i, off;
00176 uint32_t c;
00177 const uint32_t* buf;
00178 uint32_t* obuf = (uint32_t*) out;
00179
00180 off = (intptr_t)inbuffer & 3;
00181 buf = (const uint32_t*) (inbuffer - off);
00182 c = be2me_32((0x537F6103 >> (off*8)) | (0x537F6103 << (32-(off*8))));
00183 bytes += 3 + off;
00184 for (i = 0; i < bytes/4; i++)
00185 obuf[i] = c ^ buf[i];
00186
00187 if (off)
00188 av_log(NULL,AV_LOG_DEBUG,"Offset of %d not handled, post sample on ffmpeg-dev.\n",off);
00189
00190 return off;
00191 }
00192
00193
00194 static av_cold void init_atrac3_transforms(ATRAC3Context *q) {
00195 float enc_window[256];
00196 int i;
00197
00198
00199
00200 for (i=0 ; i<256; i++)
00201 enc_window[i] = (sin(((i + 0.5) / 256.0 - 0.5) * M_PI) + 1.0) * 0.5;
00202
00203 if (!mdct_window[0])
00204 for (i=0 ; i<256; i++) {
00205 mdct_window[i] = enc_window[i]/(enc_window[i]*enc_window[i] + enc_window[255-i]*enc_window[255-i]);
00206 mdct_window[511-i] = mdct_window[i];
00207 }
00208
00209
00210 ff_mdct_init(&mdct_ctx, 9, 1, 1.0);
00211 }
00212
00217 static av_cold int atrac3_decode_close(AVCodecContext *avctx)
00218 {
00219 ATRAC3Context *q = avctx->priv_data;
00220
00221 av_free(q->pUnits);
00222 av_free(q->decoded_bytes_buffer);
00223
00224 return 0;
00225 }
00226
00237 static void readQuantSpectralCoeffs (GetBitContext *gb, int selector, int codingFlag, int* mantissas, int numCodes)
00238 {
00239 int numBits, cnt, code, huffSymb;
00240
00241 if (selector == 1)
00242 numCodes /= 2;
00243
00244 if (codingFlag != 0) {
00245
00246 numBits = CLCLengthTab[selector];
00247
00248 if (selector > 1) {
00249 for (cnt = 0; cnt < numCodes; cnt++) {
00250 if (numBits)
00251 code = get_sbits(gb, numBits);
00252 else
00253 code = 0;
00254 mantissas[cnt] = code;
00255 }
00256 } else {
00257 for (cnt = 0; cnt < numCodes; cnt++) {
00258 if (numBits)
00259 code = get_bits(gb, numBits);
00260 else
00261 code = 0;
00262 mantissas[cnt*2] = seTab_0[code >> 2];
00263 mantissas[cnt*2+1] = seTab_0[code & 3];
00264 }
00265 }
00266 } else {
00267
00268 if (selector != 1) {
00269 for (cnt = 0; cnt < numCodes; cnt++) {
00270 huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
00271 huffSymb += 1;
00272 code = huffSymb >> 1;
00273 if (huffSymb & 1)
00274 code = -code;
00275 mantissas[cnt] = code;
00276 }
00277 } else {
00278 for (cnt = 0; cnt < numCodes; cnt++) {
00279 huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
00280 mantissas[cnt*2] = decTable1[huffSymb*2];
00281 mantissas[cnt*2+1] = decTable1[huffSymb*2+1];
00282 }
00283 }
00284 }
00285 }
00286
00295 static int decodeSpectrum (GetBitContext *gb, float *pOut)
00296 {
00297 int numSubbands, codingMode, cnt, first, last, subbWidth, *pIn;
00298 int subband_vlc_index[32], SF_idxs[32];
00299 int mantissas[128];
00300 float SF;
00301
00302 numSubbands = get_bits(gb, 5);
00303 codingMode = get_bits1(gb);
00304
00305
00306 for (cnt = 0; cnt <= numSubbands; cnt++)
00307 subband_vlc_index[cnt] = get_bits(gb, 3);
00308
00309
00310 for (cnt = 0; cnt <= numSubbands; cnt++) {
00311 if (subband_vlc_index[cnt] != 0)
00312 SF_idxs[cnt] = get_bits(gb, 6);
00313 }
00314
00315 for (cnt = 0; cnt <= numSubbands; cnt++) {
00316 first = subbandTab[cnt];
00317 last = subbandTab[cnt+1];
00318
00319 subbWidth = last - first;
00320
00321 if (subband_vlc_index[cnt] != 0) {
00322
00323
00324
00325 readQuantSpectralCoeffs (gb, subband_vlc_index[cnt], codingMode, mantissas, subbWidth);
00326
00327
00328 SF = sf_table[SF_idxs[cnt]] * iMaxQuant[subband_vlc_index[cnt]];
00329
00330
00331 for (pIn=mantissas ; first<last; first++, pIn++)
00332 pOut[first] = *pIn * SF;
00333 } else {
00334
00335 memset(pOut+first, 0, subbWidth*sizeof(float));
00336 }
00337 }
00338
00339
00340 first = subbandTab[cnt];
00341 memset(pOut+first, 0, (1024 - first) * sizeof(float));
00342 return numSubbands;
00343 }
00344
00353 static int decodeTonalComponents (GetBitContext *gb, tonal_component *pComponent, int numBands)
00354 {
00355 int i,j,k,cnt;
00356 int components, coding_mode_selector, coding_mode, coded_values_per_component;
00357 int sfIndx, coded_values, max_coded_values, quant_step_index, coded_components;
00358 int band_flags[4], mantissa[8];
00359 float *pCoef;
00360 float scalefactor;
00361 int component_count = 0;
00362
00363 components = get_bits(gb,5);
00364
00365
00366 if (components == 0)
00367 return 0;
00368
00369 coding_mode_selector = get_bits(gb,2);
00370 if (coding_mode_selector == 2)
00371 return -1;
00372
00373 coding_mode = coding_mode_selector & 1;
00374
00375 for (i = 0; i < components; i++) {
00376 for (cnt = 0; cnt <= numBands; cnt++)
00377 band_flags[cnt] = get_bits1(gb);
00378
00379 coded_values_per_component = get_bits(gb,3);
00380
00381 quant_step_index = get_bits(gb,3);
00382 if (quant_step_index <= 1)
00383 return -1;
00384
00385 if (coding_mode_selector == 3)
00386 coding_mode = get_bits1(gb);
00387
00388 for (j = 0; j < (numBands + 1) * 4; j++) {
00389 if (band_flags[j >> 2] == 0)
00390 continue;
00391
00392 coded_components = get_bits(gb,3);
00393
00394 for (k=0; k<coded_components; k++) {
00395 sfIndx = get_bits(gb,6);
00396 pComponent[component_count].pos = j * 64 + (get_bits(gb,6));
00397 max_coded_values = 1024 - pComponent[component_count].pos;
00398 coded_values = coded_values_per_component + 1;
00399 coded_values = FFMIN(max_coded_values,coded_values);
00400
00401 scalefactor = sf_table[sfIndx] * iMaxQuant[quant_step_index];
00402
00403 readQuantSpectralCoeffs(gb, quant_step_index, coding_mode, mantissa, coded_values);
00404
00405 pComponent[component_count].numCoefs = coded_values;
00406
00407
00408 pCoef = pComponent[component_count].coef;
00409 for (cnt = 0; cnt < coded_values; cnt++)
00410 pCoef[cnt] = mantissa[cnt] * scalefactor;
00411
00412 component_count++;
00413 }
00414 }
00415 }
00416
00417 return component_count;
00418 }
00419
00428 static int decodeGainControl (GetBitContext *gb, gain_block *pGb, int numBands)
00429 {
00430 int i, cf, numData;
00431 int *pLevel, *pLoc;
00432
00433 gain_info *pGain = pGb->gBlock;
00434
00435 for (i=0 ; i<=numBands; i++)
00436 {
00437 numData = get_bits(gb,3);
00438 pGain[i].num_gain_data = numData;
00439 pLevel = pGain[i].levcode;
00440 pLoc = pGain[i].loccode;
00441
00442 for (cf = 0; cf < numData; cf++){
00443 pLevel[cf]= get_bits(gb,4);
00444 pLoc [cf]= get_bits(gb,5);
00445 if(cf && pLoc[cf] <= pLoc[cf-1])
00446 return -1;
00447 }
00448 }
00449
00450
00451 for (; i<4 ; i++)
00452 pGain[i].num_gain_data = 0;
00453
00454 return 0;
00455 }
00456
00467 static void gainCompensateAndOverlap (float *pIn, float *pPrev, float *pOut, gain_info *pGain1, gain_info *pGain2)
00468 {
00469
00470 float gain1, gain2, gain_inc;
00471 int cnt, numdata, nsample, startLoc, endLoc;
00472
00473
00474 if (pGain2->num_gain_data == 0)
00475 gain1 = 1.0;
00476 else
00477 gain1 = gain_tab1[pGain2->levcode[0]];
00478
00479 if (pGain1->num_gain_data == 0) {
00480 for (cnt = 0; cnt < 256; cnt++)
00481 pOut[cnt] = pIn[cnt] * gain1 + pPrev[cnt];
00482 } else {
00483 numdata = pGain1->num_gain_data;
00484 pGain1->loccode[numdata] = 32;
00485 pGain1->levcode[numdata] = 4;
00486
00487 nsample = 0;
00488
00489 for (cnt = 0; cnt < numdata; cnt++) {
00490 startLoc = pGain1->loccode[cnt] * 8;
00491 endLoc = startLoc + 8;
00492
00493 gain2 = gain_tab1[pGain1->levcode[cnt]];
00494 gain_inc = gain_tab2[(pGain1->levcode[cnt+1] - pGain1->levcode[cnt])+15];
00495
00496
00497 for (; nsample < startLoc; nsample++)
00498 pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
00499
00500
00501 for (; nsample < endLoc; nsample++) {
00502 pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
00503 gain2 *= gain_inc;
00504 }
00505 }
00506
00507 for (; nsample < 256; nsample++)
00508 pOut[nsample] = (pIn[nsample] * gain1) + pPrev[nsample];
00509 }
00510
00511
00512 memcpy(pPrev, &pIn[256], 256*sizeof(float));
00513 }
00514
00524 static int addTonalComponents (float *pSpectrum, int numComponents, tonal_component *pComponent)
00525 {
00526 int cnt, i, lastPos = -1;
00527 float *pIn, *pOut;
00528
00529 for (cnt = 0; cnt < numComponents; cnt++){
00530 lastPos = FFMAX(pComponent[cnt].pos + pComponent[cnt].numCoefs, lastPos);
00531 pIn = pComponent[cnt].coef;
00532 pOut = &(pSpectrum[pComponent[cnt].pos]);
00533
00534 for (i=0 ; i<pComponent[cnt].numCoefs ; i++)
00535 pOut[i] += pIn[i];
00536 }
00537
00538 return lastPos;
00539 }
00540
00541
00542 #define INTERPOLATE(old,new,nsample) ((old) + (nsample)*0.125*((new)-(old)))
00543
00544 static void reverseMatrixing(float *su1, float *su2, int *pPrevCode, int *pCurrCode)
00545 {
00546 int i, band, nsample, s1, s2;
00547 float c1, c2;
00548 float mc1_l, mc1_r, mc2_l, mc2_r;
00549
00550 for (i=0,band = 0; band < 4*256; band+=256,i++) {
00551 s1 = pPrevCode[i];
00552 s2 = pCurrCode[i];
00553 nsample = 0;
00554
00555 if (s1 != s2) {
00556
00557 mc1_l = matrixCoeffs[s1*2];
00558 mc1_r = matrixCoeffs[s1*2+1];
00559 mc2_l = matrixCoeffs[s2*2];
00560 mc2_r = matrixCoeffs[s2*2+1];
00561
00562
00563 for(; nsample < 8; nsample++) {
00564 c1 = su1[band+nsample];
00565 c2 = su2[band+nsample];
00566 c2 = c1 * INTERPOLATE(mc1_l,mc2_l,nsample) + c2 * INTERPOLATE(mc1_r,mc2_r,nsample);
00567 su1[band+nsample] = c2;
00568 su2[band+nsample] = c1 * 2.0 - c2;
00569 }
00570 }
00571
00572
00573 switch (s2) {
00574 case 0:
00575 for (; nsample < 256; nsample++) {
00576 c1 = su1[band+nsample];
00577 c2 = su2[band+nsample];
00578 su1[band+nsample] = c2 * 2.0;
00579 su2[band+nsample] = (c1 - c2) * 2.0;
00580 }
00581 break;
00582
00583 case 1:
00584 for (; nsample < 256; nsample++) {
00585 c1 = su1[band+nsample];
00586 c2 = su2[band+nsample];
00587 su1[band+nsample] = (c1 + c2) * 2.0;
00588 su2[band+nsample] = c2 * -2.0;
00589 }
00590 break;
00591 case 2:
00592 case 3:
00593 for (; nsample < 256; nsample++) {
00594 c1 = su1[band+nsample];
00595 c2 = su2[band+nsample];
00596 su1[band+nsample] = c1 + c2;
00597 su2[band+nsample] = c1 - c2;
00598 }
00599 break;
00600 default:
00601 assert(0);
00602 }
00603 }
00604 }
00605
00606 static void getChannelWeights (int indx, int flag, float ch[2]){
00607
00608 if (indx == 7) {
00609 ch[0] = 1.0;
00610 ch[1] = 1.0;
00611 } else {
00612 ch[0] = (float)(indx & 7) / 7.0;
00613 ch[1] = sqrt(2 - ch[0]*ch[0]);
00614 if(flag)
00615 FFSWAP(float, ch[0], ch[1]);
00616 }
00617 }
00618
00619 static void channelWeighting (float *su1, float *su2, int *p3)
00620 {
00621 int band, nsample;
00622
00623 float w[2][2];
00624
00625 if (p3[1] != 7 || p3[3] != 7){
00626 getChannelWeights(p3[1], p3[0], w[0]);
00627 getChannelWeights(p3[3], p3[2], w[1]);
00628
00629 for(band = 1; band < 4; band++) {
00630
00631 for(nsample = 0; nsample < 8; nsample++) {
00632 su1[band*256+nsample] *= INTERPOLATE(w[0][0], w[0][1], nsample);
00633 su2[band*256+nsample] *= INTERPOLATE(w[1][0], w[1][1], nsample);
00634 }
00635
00636 for(; nsample < 256; nsample++) {
00637 su1[band*256+nsample] *= w[1][0];
00638 su2[band*256+nsample] *= w[1][1];
00639 }
00640 }
00641 }
00642 }
00643
00644
00656 static int decodeChannelSoundUnit (ATRAC3Context *q, GetBitContext *gb, channel_unit *pSnd, float *pOut, int channelNum, int codingMode)
00657 {
00658 int band, result=0, numSubbands, lastTonal, numBands;
00659
00660 if (codingMode == JOINT_STEREO && channelNum == 1) {
00661 if (get_bits(gb,2) != 3) {
00662 av_log(NULL,AV_LOG_ERROR,"JS mono Sound Unit id != 3.\n");
00663 return -1;
00664 }
00665 } else {
00666 if (get_bits(gb,6) != 0x28) {
00667 av_log(NULL,AV_LOG_ERROR,"Sound Unit id != 0x28.\n");
00668 return -1;
00669 }
00670 }
00671
00672
00673 pSnd->bandsCoded = get_bits(gb,2);
00674
00675 result = decodeGainControl (gb, &(pSnd->gainBlock[pSnd->gcBlkSwitch]), pSnd->bandsCoded);
00676 if (result) return result;
00677
00678 pSnd->numComponents = decodeTonalComponents (gb, pSnd->components, pSnd->bandsCoded);
00679 if (pSnd->numComponents == -1) return -1;
00680
00681 numSubbands = decodeSpectrum (gb, pSnd->spectrum);
00682
00683
00684 lastTonal = addTonalComponents (pSnd->spectrum, pSnd->numComponents, pSnd->components);
00685
00686
00687
00688 numBands = (subbandTab[numSubbands] - 1) >> 8;
00689 if (lastTonal >= 0)
00690 numBands = FFMAX((lastTonal + 256) >> 8, numBands);
00691
00692
00693
00694 for (band=0; band<4; band++) {
00695
00696 if (band <= numBands) {
00697 IMLT(&(pSnd->spectrum[band*256]), pSnd->IMDCT_buf, band&1);
00698 } else
00699 memset(pSnd->IMDCT_buf, 0, 512 * sizeof(float));
00700
00701
00702 gainCompensateAndOverlap (pSnd->IMDCT_buf, &(pSnd->prevFrame[band*256]), &(pOut[band*256]),
00703 &((pSnd->gainBlock[1 - (pSnd->gcBlkSwitch)]).gBlock[band]),
00704 &((pSnd->gainBlock[pSnd->gcBlkSwitch]).gBlock[band]));
00705 }
00706
00707
00708 pSnd->gcBlkSwitch ^= 1;
00709
00710 return 0;
00711 }
00712
00720 static int decodeFrame(ATRAC3Context *q, const uint8_t* databuf)
00721 {
00722 int result, i;
00723 float *p1, *p2, *p3, *p4;
00724 uint8_t *ptr1;
00725
00726 if (q->codingMode == JOINT_STEREO) {
00727
00728
00729
00730 init_get_bits(&q->gb,databuf,q->bits_per_frame);
00731
00732 result = decodeChannelSoundUnit(q,&q->gb, q->pUnits, q->outSamples, 0, JOINT_STEREO);
00733 if (result != 0)
00734 return (result);
00735
00736
00737
00738 if (databuf == q->decoded_bytes_buffer) {
00739 uint8_t *ptr2 = q->decoded_bytes_buffer+q->bytes_per_frame-1;
00740 ptr1 = q->decoded_bytes_buffer;
00741 for (i = 0; i < (q->bytes_per_frame/2); i++, ptr1++, ptr2--) {
00742 FFSWAP(uint8_t,*ptr1,*ptr2);
00743 }
00744 } else {
00745 const uint8_t *ptr2 = databuf+q->bytes_per_frame-1;
00746 for (i = 0; i < q->bytes_per_frame; i++)
00747 q->decoded_bytes_buffer[i] = *ptr2--;
00748 }
00749
00750
00751 ptr1 = q->decoded_bytes_buffer;
00752 for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
00753 if (i >= q->bytes_per_frame)
00754 return -1;
00755 }
00756
00757
00758
00759 init_get_bits(&q->gb,ptr1,q->bits_per_frame);
00760
00761
00762 memmove(q->weighting_delay,&(q->weighting_delay[2]),4*sizeof(int));
00763 q->weighting_delay[4] = get_bits1(&q->gb);
00764 q->weighting_delay[5] = get_bits(&q->gb,3);
00765
00766 for (i = 0; i < 4; i++) {
00767 q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i];
00768 q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i];
00769 q->matrix_coeff_index_next[i] = get_bits(&q->gb,2);
00770 }
00771
00772
00773 result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[1], &q->outSamples[1024], 1, JOINT_STEREO);
00774 if (result != 0)
00775 return (result);
00776
00777
00778 reverseMatrixing(q->outSamples, &q->outSamples[1024], q->matrix_coeff_index_prev, q->matrix_coeff_index_now);
00779
00780 channelWeighting(q->outSamples, &q->outSamples[1024], q->weighting_delay);
00781
00782 } else {
00783
00784
00785 for (i=0 ; i<q->channels ; i++) {
00786
00787
00788 init_get_bits(&q->gb, databuf+((i*q->bytes_per_frame)/q->channels), (q->bits_per_frame)/q->channels);
00789
00790 result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[i], &q->outSamples[i*1024], i, q->codingMode);
00791 if (result != 0)
00792 return (result);
00793 }
00794 }
00795
00796
00797 p1= q->outSamples;
00798 for (i=0 ; i<q->channels ; i++) {
00799 p2= p1+256;
00800 p3= p2+256;
00801 p4= p3+256;
00802 atrac_iqmf (p1, p2, 256, p1, q->pUnits[i].delayBuf1, q->tempBuf);
00803 atrac_iqmf (p4, p3, 256, p3, q->pUnits[i].delayBuf2, q->tempBuf);
00804 atrac_iqmf (p1, p3, 512, p1, q->pUnits[i].delayBuf3, q->tempBuf);
00805 p1 +=1024;
00806 }
00807
00808 return 0;
00809 }
00810
00811
00818 static int atrac3_decode_frame(AVCodecContext *avctx,
00819 void *data, int *data_size,
00820 AVPacket *avpkt) {
00821 const uint8_t *buf = avpkt->data;
00822 int buf_size = avpkt->size;
00823 ATRAC3Context *q = avctx->priv_data;
00824 int result = 0, i;
00825 const uint8_t* databuf;
00826 int16_t* samples = data;
00827
00828 if (buf_size < avctx->block_align)
00829 return buf_size;
00830
00831
00832 if (q->scrambled_stream) {
00833 decode_bytes(buf, q->decoded_bytes_buffer, avctx->block_align);
00834 databuf = q->decoded_bytes_buffer;
00835 } else {
00836 databuf = buf;
00837 }
00838
00839 result = decodeFrame(q, databuf);
00840
00841 if (result != 0) {
00842 av_log(NULL,AV_LOG_ERROR,"Frame decoding error!\n");
00843 return -1;
00844 }
00845
00846 if (q->channels == 1) {
00847
00848 for (i = 0; i<1024; i++)
00849 samples[i] = av_clip_int16(round(q->outSamples[i]));
00850 *data_size = 1024 * sizeof(int16_t);
00851 } else {
00852
00853 for (i = 0; i < 1024; i++) {
00854 samples[i*2] = av_clip_int16(round(q->outSamples[i]));
00855 samples[i*2+1] = av_clip_int16(round(q->outSamples[1024+i]));
00856 }
00857 *data_size = 2048 * sizeof(int16_t);
00858 }
00859
00860 return avctx->block_align;
00861 }
00862
00863
00870 static av_cold int atrac3_decode_init(AVCodecContext *avctx)
00871 {
00872 int i;
00873 const uint8_t *edata_ptr = avctx->extradata;
00874 ATRAC3Context *q = avctx->priv_data;
00875 static VLC_TYPE atrac3_vlc_table[4096][2];
00876 static int vlcs_initialized = 0;
00877
00878
00879 q->sample_rate = avctx->sample_rate;
00880 q->channels = avctx->channels;
00881 q->bit_rate = avctx->bit_rate;
00882 q->bits_per_frame = avctx->block_align * 8;
00883 q->bytes_per_frame = avctx->block_align;
00884
00885
00886 if (avctx->extradata_size == 14) {
00887
00888 av_log(avctx,AV_LOG_DEBUG,"[0-1] %d\n",bytestream_get_le16(&edata_ptr));
00889 q->samples_per_channel = bytestream_get_le32(&edata_ptr);
00890 q->codingMode = bytestream_get_le16(&edata_ptr);
00891 av_log(avctx,AV_LOG_DEBUG,"[8-9] %d\n",bytestream_get_le16(&edata_ptr));
00892 q->frame_factor = bytestream_get_le16(&edata_ptr);
00893 av_log(avctx,AV_LOG_DEBUG,"[12-13] %d\n",bytestream_get_le16(&edata_ptr));
00894
00895
00896 q->samples_per_frame = 1024 * q->channels;
00897 q->atrac3version = 4;
00898 q->delay = 0x88E;
00899 if (q->codingMode)
00900 q->codingMode = JOINT_STEREO;
00901 else
00902 q->codingMode = STEREO;
00903
00904 q->scrambled_stream = 0;
00905
00906 if ((q->bytes_per_frame == 96*q->channels*q->frame_factor) || (q->bytes_per_frame == 152*q->channels*q->frame_factor) || (q->bytes_per_frame == 192*q->channels*q->frame_factor)) {
00907 } else {
00908 av_log(avctx,AV_LOG_ERROR,"Unknown frame/channel/frame_factor configuration %d/%d/%d\n", q->bytes_per_frame, q->channels, q->frame_factor);
00909 return -1;
00910 }
00911
00912 } else if (avctx->extradata_size == 10) {
00913
00914 q->atrac3version = bytestream_get_be32(&edata_ptr);
00915 q->samples_per_frame = bytestream_get_be16(&edata_ptr);
00916 q->delay = bytestream_get_be16(&edata_ptr);
00917 q->codingMode = bytestream_get_be16(&edata_ptr);
00918
00919 q->samples_per_channel = q->samples_per_frame / q->channels;
00920 q->scrambled_stream = 1;
00921
00922 } else {
00923 av_log(NULL,AV_LOG_ERROR,"Unknown extradata size %d.\n",avctx->extradata_size);
00924 }
00925
00926
00927 if (q->atrac3version != 4) {
00928 av_log(avctx,AV_LOG_ERROR,"Version %d != 4.\n",q->atrac3version);
00929 return -1;
00930 }
00931
00932 if (q->samples_per_frame != 1024 && q->samples_per_frame != 2048) {
00933 av_log(avctx,AV_LOG_ERROR,"Unknown amount of samples per frame %d.\n",q->samples_per_frame);
00934 return -1;
00935 }
00936
00937 if (q->delay != 0x88E) {
00938 av_log(avctx,AV_LOG_ERROR,"Unknown amount of delay %x != 0x88E.\n",q->delay);
00939 return -1;
00940 }
00941
00942 if (q->codingMode == STEREO) {
00943 av_log(avctx,AV_LOG_DEBUG,"Normal stereo detected.\n");
00944 } else if (q->codingMode == JOINT_STEREO) {
00945 av_log(avctx,AV_LOG_DEBUG,"Joint stereo detected.\n");
00946 } else {
00947 av_log(avctx,AV_LOG_ERROR,"Unknown channel coding mode %x!\n",q->codingMode);
00948 return -1;
00949 }
00950
00951 if (avctx->channels <= 0 || avctx->channels > 2 ) {
00952 av_log(avctx,AV_LOG_ERROR,"Channel configuration error!\n");
00953 return -1;
00954 }
00955
00956
00957 if(avctx->block_align >= UINT_MAX/2)
00958 return -1;
00959
00960
00961
00962 if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE))) == NULL)
00963 return AVERROR(ENOMEM);
00964
00965
00966
00967 if (!vlcs_initialized) {
00968 for (i=0 ; i<7 ; i++) {
00969 spectral_coeff_tab[i].table = &atrac3_vlc_table[atrac3_vlc_offs[i]];
00970 spectral_coeff_tab[i].table_allocated = atrac3_vlc_offs[i + 1] - atrac3_vlc_offs[i];
00971 init_vlc (&spectral_coeff_tab[i], 9, huff_tab_sizes[i],
00972 huff_bits[i], 1, 1,
00973 huff_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
00974 }
00975 vlcs_initialized = 1;
00976 }
00977
00978 init_atrac3_transforms(q);
00979
00980 atrac_generate_tables();
00981
00982
00983 for (i=0 ; i<16 ; i++)
00984 gain_tab1[i] = powf (2.0, (4 - i));
00985
00986 for (i=-15 ; i<16 ; i++)
00987 gain_tab2[i+15] = powf (2.0, i * -0.125);
00988
00989
00990 q->weighting_delay[0] = 0;
00991 q->weighting_delay[1] = 7;
00992 q->weighting_delay[2] = 0;
00993 q->weighting_delay[3] = 7;
00994 q->weighting_delay[4] = 0;
00995 q->weighting_delay[5] = 7;
00996
00997 for (i=0; i<4; i++) {
00998 q->matrix_coeff_index_prev[i] = 3;
00999 q->matrix_coeff_index_now[i] = 3;
01000 q->matrix_coeff_index_next[i] = 3;
01001 }
01002
01003 dsputil_init(&dsp, avctx);
01004
01005 q->pUnits = av_mallocz(sizeof(channel_unit)*q->channels);
01006 if (!q->pUnits) {
01007 av_free(q->decoded_bytes_buffer);
01008 return AVERROR(ENOMEM);
01009 }
01010
01011 avctx->sample_fmt = SAMPLE_FMT_S16;
01012 return 0;
01013 }
01014
01015
01016 AVCodec atrac3_decoder =
01017 {
01018 .name = "atrac3",
01019 .type = AVMEDIA_TYPE_AUDIO,
01020 .id = CODEC_ID_ATRAC3,
01021 .priv_data_size = sizeof(ATRAC3Context),
01022 .init = atrac3_decode_init,
01023 .close = atrac3_decode_close,
01024 .decode = atrac3_decode_frame,
01025 .long_name = NULL_IF_CONFIG_SMALL("Atrac 3 (Adaptive TRansform Acoustic Coding 3)"),
01026 };