• Main Page
  • Related Pages
  • Modules
  • Data Structures
  • Files
  • File List
  • Globals

libavcodec/flacenc.c

Go to the documentation of this file.
00001 
00022 #include "libavutil/crc.h"
00023 #include "libavutil/md5.h"
00024 #include "avcodec.h"
00025 #include "get_bits.h"
00026 #include "dsputil.h"
00027 #include "golomb.h"
00028 #include "lpc.h"
00029 #include "flac.h"
00030 #include "flacdata.h"
00031 
00032 #define FLAC_SUBFRAME_CONSTANT  0
00033 #define FLAC_SUBFRAME_VERBATIM  1
00034 #define FLAC_SUBFRAME_FIXED     8
00035 #define FLAC_SUBFRAME_LPC      32
00036 
00037 #define MAX_FIXED_ORDER     4
00038 #define MAX_PARTITION_ORDER 8
00039 #define MAX_PARTITIONS     (1 << MAX_PARTITION_ORDER)
00040 #define MAX_LPC_PRECISION  15
00041 #define MAX_LPC_SHIFT      15
00042 #define MAX_RICE_PARAM     14
00043 
00044 typedef struct CompressionOptions {
00045     int compression_level;
00046     int block_time_ms;
00047     int use_lpc;
00048     int lpc_coeff_precision;
00049     int min_prediction_order;
00050     int max_prediction_order;
00051     int prediction_order_method;
00052     int min_partition_order;
00053     int max_partition_order;
00054 } CompressionOptions;
00055 
00056 typedef struct RiceContext {
00057     int porder;
00058     int params[MAX_PARTITIONS];
00059 } RiceContext;
00060 
00061 typedef struct FlacSubframe {
00062     int type;
00063     int type_code;
00064     int obits;
00065     int order;
00066     int32_t coefs[MAX_LPC_ORDER];
00067     int shift;
00068     RiceContext rc;
00069     int32_t samples[FLAC_MAX_BLOCKSIZE];
00070     int32_t residual[FLAC_MAX_BLOCKSIZE+1];
00071 } FlacSubframe;
00072 
00073 typedef struct FlacFrame {
00074     FlacSubframe subframes[FLAC_MAX_CHANNELS];
00075     int blocksize;
00076     int bs_code[2];
00077     uint8_t crc8;
00078     int ch_mode;
00079 } FlacFrame;
00080 
00081 typedef struct FlacEncodeContext {
00082     PutBitContext pb;
00083     int channels;
00084     int samplerate;
00085     int sr_code[2];
00086     int max_blocksize;
00087     int min_framesize;
00088     int max_framesize;
00089     int max_encoded_framesize;
00090     uint32_t frame_count;
00091     uint64_t sample_count;
00092     uint8_t md5sum[16];
00093     FlacFrame frame;
00094     CompressionOptions options;
00095     AVCodecContext *avctx;
00096     DSPContext dsp;
00097     struct AVMD5 *md5ctx;
00098 } FlacEncodeContext;
00099 
00103 static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
00104 {
00105     PutBitContext pb;
00106 
00107     memset(header, 0, FLAC_STREAMINFO_SIZE);
00108     init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
00109 
00110     /* streaminfo metadata block */
00111     put_bits(&pb, 16, s->max_blocksize);
00112     put_bits(&pb, 16, s->max_blocksize);
00113     put_bits(&pb, 24, s->min_framesize);
00114     put_bits(&pb, 24, s->max_framesize);
00115     put_bits(&pb, 20, s->samplerate);
00116     put_bits(&pb, 3, s->channels-1);
00117     put_bits(&pb, 5, 15);       /* bits per sample - 1 */
00118     /* write 36-bit sample count in 2 put_bits() calls */
00119     put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12);
00120     put_bits(&pb, 12,  s->sample_count & 0x000000FFFLL);
00121     flush_put_bits(&pb);
00122     memcpy(&header[18], s->md5sum, 16);
00123 }
00124 
00129 static int select_blocksize(int samplerate, int block_time_ms)
00130 {
00131     int i;
00132     int target;
00133     int blocksize;
00134 
00135     assert(samplerate > 0);
00136     blocksize = ff_flac_blocksize_table[1];
00137     target = (samplerate * block_time_ms) / 1000;
00138     for(i=0; i<16; i++) {
00139         if(target >= ff_flac_blocksize_table[i] && ff_flac_blocksize_table[i] > blocksize) {
00140             blocksize = ff_flac_blocksize_table[i];
00141         }
00142     }
00143     return blocksize;
00144 }
00145 
00146 static av_cold int flac_encode_init(AVCodecContext *avctx)
00147 {
00148     int freq = avctx->sample_rate;
00149     int channels = avctx->channels;
00150     FlacEncodeContext *s = avctx->priv_data;
00151     int i, level;
00152     uint8_t *streaminfo;
00153 
00154     s->avctx = avctx;
00155 
00156     dsputil_init(&s->dsp, avctx);
00157 
00158     if(avctx->sample_fmt != SAMPLE_FMT_S16) {
00159         return -1;
00160     }
00161 
00162     if(channels < 1 || channels > FLAC_MAX_CHANNELS) {
00163         return -1;
00164     }
00165     s->channels = channels;
00166 
00167     /* find samplerate in table */
00168     if(freq < 1)
00169         return -1;
00170     for(i=4; i<12; i++) {
00171         if(freq == ff_flac_sample_rate_table[i]) {
00172             s->samplerate = ff_flac_sample_rate_table[i];
00173             s->sr_code[0] = i;
00174             s->sr_code[1] = 0;
00175             break;
00176         }
00177     }
00178     /* if not in table, samplerate is non-standard */
00179     if(i == 12) {
00180         if(freq % 1000 == 0 && freq < 255000) {
00181             s->sr_code[0] = 12;
00182             s->sr_code[1] = freq / 1000;
00183         } else if(freq % 10 == 0 && freq < 655350) {
00184             s->sr_code[0] = 14;
00185             s->sr_code[1] = freq / 10;
00186         } else if(freq < 65535) {
00187             s->sr_code[0] = 13;
00188             s->sr_code[1] = freq;
00189         } else {
00190             return -1;
00191         }
00192         s->samplerate = freq;
00193     }
00194 
00195     /* set compression option defaults based on avctx->compression_level */
00196     if(avctx->compression_level < 0) {
00197         s->options.compression_level = 5;
00198     } else {
00199         s->options.compression_level = avctx->compression_level;
00200     }
00201     av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level);
00202 
00203     level= s->options.compression_level;
00204     if(level > 12) {
00205         av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
00206                s->options.compression_level);
00207         return -1;
00208     }
00209 
00210     s->options.block_time_ms       = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
00211     s->options.use_lpc             = ((int[]){  0,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1})[level];
00212     s->options.min_prediction_order= ((int[]){  2,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1})[level];
00213     s->options.max_prediction_order= ((int[]){  3,  4,  4,  6,  8,  8,  8,  8, 12, 12, 12, 32, 32})[level];
00214     s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
00215                                                    ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
00216                                                    ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG,    ORDER_METHOD_4LEVEL,
00217                                                    ORDER_METHOD_LOG,    ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
00218                                                    ORDER_METHOD_SEARCH})[level];
00219     s->options.min_partition_order = ((int[]){  2,  2,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0})[level];
00220     s->options.max_partition_order = ((int[]){  2,  2,  3,  3,  3,  8,  8,  8,  8,  8,  8,  8,  8})[level];
00221 
00222     /* set compression option overrides from AVCodecContext */
00223     if(avctx->use_lpc >= 0) {
00224         s->options.use_lpc = av_clip(avctx->use_lpc, 0, 11);
00225     }
00226     if(s->options.use_lpc == 1)
00227         av_log(avctx, AV_LOG_DEBUG, " use lpc: Levinson-Durbin recursion with Welch window\n");
00228     else if(s->options.use_lpc > 1)
00229         av_log(avctx, AV_LOG_DEBUG, " use lpc: Cholesky factorization\n");
00230 
00231     if(avctx->min_prediction_order >= 0) {
00232         if(s->options.use_lpc) {
00233             if(avctx->min_prediction_order < MIN_LPC_ORDER ||
00234                     avctx->min_prediction_order > MAX_LPC_ORDER) {
00235                 av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
00236                        avctx->min_prediction_order);
00237                 return -1;
00238             }
00239         } else {
00240             if(avctx->min_prediction_order > MAX_FIXED_ORDER) {
00241                 av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
00242                        avctx->min_prediction_order);
00243                 return -1;
00244             }
00245         }
00246         s->options.min_prediction_order = avctx->min_prediction_order;
00247     }
00248     if(avctx->max_prediction_order >= 0) {
00249         if(s->options.use_lpc) {
00250             if(avctx->max_prediction_order < MIN_LPC_ORDER ||
00251                     avctx->max_prediction_order > MAX_LPC_ORDER) {
00252                 av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
00253                        avctx->max_prediction_order);
00254                 return -1;
00255             }
00256         } else {
00257             if(avctx->max_prediction_order > MAX_FIXED_ORDER) {
00258                 av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
00259                        avctx->max_prediction_order);
00260                 return -1;
00261             }
00262         }
00263         s->options.max_prediction_order = avctx->max_prediction_order;
00264     }
00265     if(s->options.max_prediction_order < s->options.min_prediction_order) {
00266         av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
00267                s->options.min_prediction_order, s->options.max_prediction_order);
00268         return -1;
00269     }
00270     av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
00271            s->options.min_prediction_order, s->options.max_prediction_order);
00272 
00273     if(avctx->prediction_order_method >= 0) {
00274         if(avctx->prediction_order_method > ORDER_METHOD_LOG) {
00275             av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
00276                    avctx->prediction_order_method);
00277             return -1;
00278         }
00279         s->options.prediction_order_method = avctx->prediction_order_method;
00280     }
00281     switch(s->options.prediction_order_method) {
00282         case ORDER_METHOD_EST:    av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
00283                                          "estimate"); break;
00284         case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
00285                                          "2-level"); break;
00286         case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
00287                                          "4-level"); break;
00288         case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
00289                                          "8-level"); break;
00290         case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
00291                                          "full search"); break;
00292         case ORDER_METHOD_LOG:    av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
00293                                          "log search"); break;
00294     }
00295 
00296     if(avctx->min_partition_order >= 0) {
00297         if(avctx->min_partition_order > MAX_PARTITION_ORDER) {
00298             av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
00299                    avctx->min_partition_order);
00300             return -1;
00301         }
00302         s->options.min_partition_order = avctx->min_partition_order;
00303     }
00304     if(avctx->max_partition_order >= 0) {
00305         if(avctx->max_partition_order > MAX_PARTITION_ORDER) {
00306             av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
00307                    avctx->max_partition_order);
00308             return -1;
00309         }
00310         s->options.max_partition_order = avctx->max_partition_order;
00311     }
00312     if(s->options.max_partition_order < s->options.min_partition_order) {
00313         av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
00314                s->options.min_partition_order, s->options.max_partition_order);
00315         return -1;
00316     }
00317     av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
00318            s->options.min_partition_order, s->options.max_partition_order);
00319 
00320     if(avctx->frame_size > 0) {
00321         if(avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
00322                 avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
00323             av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
00324                    avctx->frame_size);
00325             return -1;
00326         }
00327     } else {
00328         s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms);
00329     }
00330     s->max_blocksize = s->avctx->frame_size;
00331     av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->avctx->frame_size);
00332 
00333     /* set LPC precision */
00334     if(avctx->lpc_coeff_precision > 0) {
00335         if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
00336             av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
00337                    avctx->lpc_coeff_precision);
00338             return -1;
00339         }
00340         s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
00341     } else {
00342         /* default LPC precision */
00343         s->options.lpc_coeff_precision = 15;
00344     }
00345     av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
00346            s->options.lpc_coeff_precision);
00347 
00348     /* set maximum encoded frame size in verbatim mode */
00349     s->max_framesize = ff_flac_get_max_frame_size(s->avctx->frame_size,
00350                                                   s->channels, 16);
00351 
00352     /* initialize MD5 context */
00353     s->md5ctx = av_malloc(av_md5_size);
00354     if(!s->md5ctx)
00355         return AVERROR(ENOMEM);
00356     av_md5_init(s->md5ctx);
00357 
00358     streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
00359     write_streaminfo(s, streaminfo);
00360     avctx->extradata = streaminfo;
00361     avctx->extradata_size = FLAC_STREAMINFO_SIZE;
00362 
00363     s->frame_count = 0;
00364     s->min_framesize = s->max_framesize;
00365 
00366     avctx->coded_frame = avcodec_alloc_frame();
00367     avctx->coded_frame->key_frame = 1;
00368 
00369     return 0;
00370 }
00371 
00372 static void init_frame(FlacEncodeContext *s)
00373 {
00374     int i, ch;
00375     FlacFrame *frame;
00376 
00377     frame = &s->frame;
00378 
00379     for(i=0; i<16; i++) {
00380         if(s->avctx->frame_size == ff_flac_blocksize_table[i]) {
00381             frame->blocksize = ff_flac_blocksize_table[i];
00382             frame->bs_code[0] = i;
00383             frame->bs_code[1] = 0;
00384             break;
00385         }
00386     }
00387     if(i == 16) {
00388         frame->blocksize = s->avctx->frame_size;
00389         if(frame->blocksize <= 256) {
00390             frame->bs_code[0] = 6;
00391             frame->bs_code[1] = frame->blocksize-1;
00392         } else {
00393             frame->bs_code[0] = 7;
00394             frame->bs_code[1] = frame->blocksize-1;
00395         }
00396     }
00397 
00398     for(ch=0; ch<s->channels; ch++) {
00399         frame->subframes[ch].obits = 16;
00400     }
00401 }
00402 
00406 static void copy_samples(FlacEncodeContext *s, int16_t *samples)
00407 {
00408     int i, j, ch;
00409     FlacFrame *frame;
00410 
00411     frame = &s->frame;
00412     for(i=0,j=0; i<frame->blocksize; i++) {
00413         for(ch=0; ch<s->channels; ch++,j++) {
00414             frame->subframes[ch].samples[i] = samples[j];
00415         }
00416     }
00417 }
00418 
00419 
00420 #define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
00421 
00425 static int find_optimal_param(uint32_t sum, int n)
00426 {
00427     int k;
00428     uint32_t sum2;
00429 
00430     if(sum <= n>>1)
00431         return 0;
00432     sum2 = sum-(n>>1);
00433     k = av_log2(n<256 ? FASTDIV(sum2,n) : sum2/n);
00434     return FFMIN(k, MAX_RICE_PARAM);
00435 }
00436 
00437 static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
00438                                          uint32_t *sums, int n, int pred_order)
00439 {
00440     int i;
00441     int k, cnt, part;
00442     uint32_t all_bits;
00443 
00444     part = (1 << porder);
00445     all_bits = 4 * part;
00446 
00447     cnt = (n >> porder) - pred_order;
00448     for(i=0; i<part; i++) {
00449         k = find_optimal_param(sums[i], cnt);
00450         rc->params[i] = k;
00451         all_bits += rice_encode_count(sums[i], cnt, k);
00452         cnt = n >> porder;
00453     }
00454 
00455     rc->porder = porder;
00456 
00457     return all_bits;
00458 }
00459 
00460 static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
00461                       uint32_t sums[][MAX_PARTITIONS])
00462 {
00463     int i, j;
00464     int parts;
00465     uint32_t *res, *res_end;
00466 
00467     /* sums for highest level */
00468     parts = (1 << pmax);
00469     res = &data[pred_order];
00470     res_end = &data[n >> pmax];
00471     for(i=0; i<parts; i++) {
00472         uint32_t sum = 0;
00473         while(res < res_end){
00474             sum += *(res++);
00475         }
00476         sums[pmax][i] = sum;
00477         res_end+= n >> pmax;
00478     }
00479     /* sums for lower levels */
00480     for(i=pmax-1; i>=pmin; i--) {
00481         parts = (1 << i);
00482         for(j=0; j<parts; j++) {
00483             sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
00484         }
00485     }
00486 }
00487 
00488 static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
00489                                  int32_t *data, int n, int pred_order)
00490 {
00491     int i;
00492     uint32_t bits[MAX_PARTITION_ORDER+1];
00493     int opt_porder;
00494     RiceContext tmp_rc;
00495     uint32_t *udata;
00496     uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
00497 
00498     assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
00499     assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
00500     assert(pmin <= pmax);
00501 
00502     udata = av_malloc(n * sizeof(uint32_t));
00503     for(i=0; i<n; i++) {
00504         udata[i] = (2*data[i]) ^ (data[i]>>31);
00505     }
00506 
00507     calc_sums(pmin, pmax, udata, n, pred_order, sums);
00508 
00509     opt_porder = pmin;
00510     bits[pmin] = UINT32_MAX;
00511     for(i=pmin; i<=pmax; i++) {
00512         bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
00513         if(bits[i] <= bits[opt_porder]) {
00514             opt_porder = i;
00515             *rc= tmp_rc;
00516         }
00517     }
00518 
00519     av_freep(&udata);
00520     return bits[opt_porder];
00521 }
00522 
00523 static int get_max_p_order(int max_porder, int n, int order)
00524 {
00525     int porder = FFMIN(max_porder, av_log2(n^(n-1)));
00526     if(order > 0)
00527         porder = FFMIN(porder, av_log2(n/order));
00528     return porder;
00529 }
00530 
00531 static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax,
00532                                        int32_t *data, int n, int pred_order,
00533                                        int bps)
00534 {
00535     uint32_t bits;
00536     pmin = get_max_p_order(pmin, n, pred_order);
00537     pmax = get_max_p_order(pmax, n, pred_order);
00538     bits = pred_order*bps + 6;
00539     bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
00540     return bits;
00541 }
00542 
00543 static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax,
00544                                      int32_t *data, int n, int pred_order,
00545                                      int bps, int precision)
00546 {
00547     uint32_t bits;
00548     pmin = get_max_p_order(pmin, n, pred_order);
00549     pmax = get_max_p_order(pmax, n, pred_order);
00550     bits = pred_order*bps + 4 + 5 + pred_order*precision + 6;
00551     bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
00552     return bits;
00553 }
00554 
00555 static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n)
00556 {
00557     assert(n > 0);
00558     memcpy(res, smp, n * sizeof(int32_t));
00559 }
00560 
00561 static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
00562                                   int order)
00563 {
00564     int i;
00565 
00566     for(i=0; i<order; i++) {
00567         res[i] = smp[i];
00568     }
00569 
00570     if(order==0){
00571         for(i=order; i<n; i++)
00572             res[i]= smp[i];
00573     }else if(order==1){
00574         for(i=order; i<n; i++)
00575             res[i]= smp[i] - smp[i-1];
00576     }else if(order==2){
00577         int a = smp[order-1] - smp[order-2];
00578         for(i=order; i<n; i+=2) {
00579             int b = smp[i] - smp[i-1];
00580             res[i]= b - a;
00581             a = smp[i+1] - smp[i];
00582             res[i+1]= a - b;
00583         }
00584     }else if(order==3){
00585         int a = smp[order-1] - smp[order-2];
00586         int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
00587         for(i=order; i<n; i+=2) {
00588             int b = smp[i] - smp[i-1];
00589             int d = b - a;
00590             res[i]= d - c;
00591             a = smp[i+1] - smp[i];
00592             c = a - b;
00593             res[i+1]= c - d;
00594         }
00595     }else{
00596         int a = smp[order-1] - smp[order-2];
00597         int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
00598         int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
00599         for(i=order; i<n; i+=2) {
00600             int b = smp[i] - smp[i-1];
00601             int d = b - a;
00602             int f = d - c;
00603             res[i]= f - e;
00604             a = smp[i+1] - smp[i];
00605             c = a - b;
00606             e = c - d;
00607             res[i+1]= e - f;
00608         }
00609     }
00610 }
00611 
00612 #define LPC1(x) {\
00613     int c = coefs[(x)-1];\
00614     p0 += c*s;\
00615     s = smp[i-(x)+1];\
00616     p1 += c*s;\
00617 }
00618 
00619 static av_always_inline void encode_residual_lpc_unrolled(
00620     int32_t *res, const int32_t *smp, int n,
00621     int order, const int32_t *coefs, int shift, int big)
00622 {
00623     int i;
00624     for(i=order; i<n; i+=2) {
00625         int s = smp[i-order];
00626         int p0 = 0, p1 = 0;
00627         if(big) {
00628             switch(order) {
00629                 case 32: LPC1(32)
00630                 case 31: LPC1(31)
00631                 case 30: LPC1(30)
00632                 case 29: LPC1(29)
00633                 case 28: LPC1(28)
00634                 case 27: LPC1(27)
00635                 case 26: LPC1(26)
00636                 case 25: LPC1(25)
00637                 case 24: LPC1(24)
00638                 case 23: LPC1(23)
00639                 case 22: LPC1(22)
00640                 case 21: LPC1(21)
00641                 case 20: LPC1(20)
00642                 case 19: LPC1(19)
00643                 case 18: LPC1(18)
00644                 case 17: LPC1(17)
00645                 case 16: LPC1(16)
00646                 case 15: LPC1(15)
00647                 case 14: LPC1(14)
00648                 case 13: LPC1(13)
00649                 case 12: LPC1(12)
00650                 case 11: LPC1(11)
00651                 case 10: LPC1(10)
00652                 case  9: LPC1( 9)
00653                          LPC1( 8)
00654                          LPC1( 7)
00655                          LPC1( 6)
00656                          LPC1( 5)
00657                          LPC1( 4)
00658                          LPC1( 3)
00659                          LPC1( 2)
00660                          LPC1( 1)
00661             }
00662         } else {
00663             switch(order) {
00664                 case  8: LPC1( 8)
00665                 case  7: LPC1( 7)
00666                 case  6: LPC1( 6)
00667                 case  5: LPC1( 5)
00668                 case  4: LPC1( 4)
00669                 case  3: LPC1( 3)
00670                 case  2: LPC1( 2)
00671                 case  1: LPC1( 1)
00672             }
00673         }
00674         res[i  ] = smp[i  ] - (p0 >> shift);
00675         res[i+1] = smp[i+1] - (p1 >> shift);
00676     }
00677 }
00678 
00679 static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
00680                                 int order, const int32_t *coefs, int shift)
00681 {
00682     int i;
00683     for(i=0; i<order; i++) {
00684         res[i] = smp[i];
00685     }
00686 #if CONFIG_SMALL
00687     for(i=order; i<n; i+=2) {
00688         int j;
00689         int s = smp[i];
00690         int p0 = 0, p1 = 0;
00691         for(j=0; j<order; j++) {
00692             int c = coefs[j];
00693             p1 += c*s;
00694             s = smp[i-j-1];
00695             p0 += c*s;
00696         }
00697         res[i  ] = smp[i  ] - (p0 >> shift);
00698         res[i+1] = smp[i+1] - (p1 >> shift);
00699     }
00700 #else
00701     switch(order) {
00702         case  1: encode_residual_lpc_unrolled(res, smp, n, 1, coefs, shift, 0); break;
00703         case  2: encode_residual_lpc_unrolled(res, smp, n, 2, coefs, shift, 0); break;
00704         case  3: encode_residual_lpc_unrolled(res, smp, n, 3, coefs, shift, 0); break;
00705         case  4: encode_residual_lpc_unrolled(res, smp, n, 4, coefs, shift, 0); break;
00706         case  5: encode_residual_lpc_unrolled(res, smp, n, 5, coefs, shift, 0); break;
00707         case  6: encode_residual_lpc_unrolled(res, smp, n, 6, coefs, shift, 0); break;
00708         case  7: encode_residual_lpc_unrolled(res, smp, n, 7, coefs, shift, 0); break;
00709         case  8: encode_residual_lpc_unrolled(res, smp, n, 8, coefs, shift, 0); break;
00710         default: encode_residual_lpc_unrolled(res, smp, n, order, coefs, shift, 1); break;
00711     }
00712 #endif
00713 }
00714 
00715 static int encode_residual(FlacEncodeContext *ctx, int ch)
00716 {
00717     int i, n;
00718     int min_order, max_order, opt_order, precision, omethod;
00719     int min_porder, max_porder;
00720     FlacFrame *frame;
00721     FlacSubframe *sub;
00722     int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
00723     int shift[MAX_LPC_ORDER];
00724     int32_t *res, *smp;
00725 
00726     frame = &ctx->frame;
00727     sub = &frame->subframes[ch];
00728     res = sub->residual;
00729     smp = sub->samples;
00730     n = frame->blocksize;
00731 
00732     /* CONSTANT */
00733     for(i=1; i<n; i++) {
00734         if(smp[i] != smp[0]) break;
00735     }
00736     if(i == n) {
00737         sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
00738         res[0] = smp[0];
00739         return sub->obits;
00740     }
00741 
00742     /* VERBATIM */
00743     if(n < 5) {
00744         sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
00745         encode_residual_verbatim(res, smp, n);
00746         return sub->obits * n;
00747     }
00748 
00749     min_order = ctx->options.min_prediction_order;
00750     max_order = ctx->options.max_prediction_order;
00751     min_porder = ctx->options.min_partition_order;
00752     max_porder = ctx->options.max_partition_order;
00753     precision = ctx->options.lpc_coeff_precision;
00754     omethod = ctx->options.prediction_order_method;
00755 
00756     /* FIXED */
00757     if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) {
00758         uint32_t bits[MAX_FIXED_ORDER+1];
00759         if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER;
00760         opt_order = 0;
00761         bits[0] = UINT32_MAX;
00762         for(i=min_order; i<=max_order; i++) {
00763             encode_residual_fixed(res, smp, n, i);
00764             bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res,
00765                                              n, i, sub->obits);
00766             if(bits[i] < bits[opt_order]) {
00767                 opt_order = i;
00768             }
00769         }
00770         sub->order = opt_order;
00771         sub->type = FLAC_SUBFRAME_FIXED;
00772         sub->type_code = sub->type | sub->order;
00773         if(sub->order != max_order) {
00774             encode_residual_fixed(res, smp, n, sub->order);
00775             return calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n,
00776                                           sub->order, sub->obits);
00777         }
00778         return bits[sub->order];
00779     }
00780 
00781     /* LPC */
00782     opt_order = ff_lpc_calc_coefs(&ctx->dsp, smp, n, min_order, max_order,
00783                                   precision, coefs, shift, ctx->options.use_lpc,
00784                                   omethod, MAX_LPC_SHIFT, 0);
00785 
00786     if(omethod == ORDER_METHOD_2LEVEL ||
00787        omethod == ORDER_METHOD_4LEVEL ||
00788        omethod == ORDER_METHOD_8LEVEL) {
00789         int levels = 1 << omethod;
00790         uint32_t bits[levels];
00791         int order;
00792         int opt_index = levels-1;
00793         opt_order = max_order-1;
00794         bits[opt_index] = UINT32_MAX;
00795         for(i=levels-1; i>=0; i--) {
00796             order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
00797             if(order < 0) order = 0;
00798             encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]);
00799             bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
00800                                            res, n, order+1, sub->obits, precision);
00801             if(bits[i] < bits[opt_index]) {
00802                 opt_index = i;
00803                 opt_order = order;
00804             }
00805         }
00806         opt_order++;
00807     } else if(omethod == ORDER_METHOD_SEARCH) {
00808         // brute-force optimal order search
00809         uint32_t bits[MAX_LPC_ORDER];
00810         opt_order = 0;
00811         bits[0] = UINT32_MAX;
00812         for(i=min_order-1; i<max_order; i++) {
00813             encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
00814             bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
00815                                            res, n, i+1, sub->obits, precision);
00816             if(bits[i] < bits[opt_order]) {
00817                 opt_order = i;
00818             }
00819         }
00820         opt_order++;
00821     } else if(omethod == ORDER_METHOD_LOG) {
00822         uint32_t bits[MAX_LPC_ORDER];
00823         int step;
00824 
00825         opt_order= min_order - 1 + (max_order-min_order)/3;
00826         memset(bits, -1, sizeof(bits));
00827 
00828         for(step=16 ;step; step>>=1){
00829             int last= opt_order;
00830             for(i=last-step; i<=last+step; i+= step){
00831                 if(i<min_order-1 || i>=max_order || bits[i] < UINT32_MAX)
00832                     continue;
00833                 encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
00834                 bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
00835                                             res, n, i+1, sub->obits, precision);
00836                 if(bits[i] < bits[opt_order])
00837                     opt_order= i;
00838             }
00839         }
00840         opt_order++;
00841     }
00842 
00843     sub->order = opt_order;
00844     sub->type = FLAC_SUBFRAME_LPC;
00845     sub->type_code = sub->type | (sub->order-1);
00846     sub->shift = shift[sub->order-1];
00847     for(i=0; i<sub->order; i++) {
00848         sub->coefs[i] = coefs[sub->order-1][i];
00849     }
00850     encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
00851     return calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, sub->order,
00852                                 sub->obits, precision);
00853 }
00854 
00855 static int encode_residual_v(FlacEncodeContext *ctx, int ch)
00856 {
00857     int i, n;
00858     FlacFrame *frame;
00859     FlacSubframe *sub;
00860     int32_t *res, *smp;
00861 
00862     frame = &ctx->frame;
00863     sub = &frame->subframes[ch];
00864     res = sub->residual;
00865     smp = sub->samples;
00866     n = frame->blocksize;
00867 
00868     /* CONSTANT */
00869     for(i=1; i<n; i++) {
00870         if(smp[i] != smp[0]) break;
00871     }
00872     if(i == n) {
00873         sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
00874         res[0] = smp[0];
00875         return sub->obits;
00876     }
00877 
00878     /* VERBATIM */
00879     sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
00880     encode_residual_verbatim(res, smp, n);
00881     return sub->obits * n;
00882 }
00883 
00884 static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
00885 {
00886     int i, best;
00887     int32_t lt, rt;
00888     uint64_t sum[4];
00889     uint64_t score[4];
00890     int k;
00891 
00892     /* calculate sum of 2nd order residual for each channel */
00893     sum[0] = sum[1] = sum[2] = sum[3] = 0;
00894     for(i=2; i<n; i++) {
00895         lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
00896         rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
00897         sum[2] += FFABS((lt + rt) >> 1);
00898         sum[3] += FFABS(lt - rt);
00899         sum[0] += FFABS(lt);
00900         sum[1] += FFABS(rt);
00901     }
00902     /* estimate bit counts */
00903     for(i=0; i<4; i++) {
00904         k = find_optimal_param(2*sum[i], n);
00905         sum[i] = rice_encode_count(2*sum[i], n, k);
00906     }
00907 
00908     /* calculate score for each mode */
00909     score[0] = sum[0] + sum[1];
00910     score[1] = sum[0] + sum[3];
00911     score[2] = sum[1] + sum[3];
00912     score[3] = sum[2] + sum[3];
00913 
00914     /* return mode with lowest score */
00915     best = 0;
00916     for(i=1; i<4; i++) {
00917         if(score[i] < score[best]) {
00918             best = i;
00919         }
00920     }
00921     if(best == 0) {
00922         return FLAC_CHMODE_INDEPENDENT;
00923     } else if(best == 1) {
00924         return FLAC_CHMODE_LEFT_SIDE;
00925     } else if(best == 2) {
00926         return FLAC_CHMODE_RIGHT_SIDE;
00927     } else {
00928         return FLAC_CHMODE_MID_SIDE;
00929     }
00930 }
00931 
00935 static void channel_decorrelation(FlacEncodeContext *ctx)
00936 {
00937     FlacFrame *frame;
00938     int32_t *left, *right;
00939     int i, n;
00940 
00941     frame = &ctx->frame;
00942     n = frame->blocksize;
00943     left  = frame->subframes[0].samples;
00944     right = frame->subframes[1].samples;
00945 
00946     if(ctx->channels != 2) {
00947         frame->ch_mode = FLAC_CHMODE_INDEPENDENT;
00948         return;
00949     }
00950 
00951     frame->ch_mode = estimate_stereo_mode(left, right, n);
00952 
00953     /* perform decorrelation and adjust bits-per-sample */
00954     if(frame->ch_mode == FLAC_CHMODE_INDEPENDENT) {
00955         return;
00956     }
00957     if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
00958         int32_t tmp;
00959         for(i=0; i<n; i++) {
00960             tmp = left[i];
00961             left[i] = (tmp + right[i]) >> 1;
00962             right[i] = tmp - right[i];
00963         }
00964         frame->subframes[1].obits++;
00965     } else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
00966         for(i=0; i<n; i++) {
00967             right[i] = left[i] - right[i];
00968         }
00969         frame->subframes[1].obits++;
00970     } else {
00971         for(i=0; i<n; i++) {
00972             left[i] -= right[i];
00973         }
00974         frame->subframes[0].obits++;
00975     }
00976 }
00977 
00978 static void write_utf8(PutBitContext *pb, uint32_t val)
00979 {
00980     uint8_t tmp;
00981     PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
00982 }
00983 
00984 static void output_frame_header(FlacEncodeContext *s)
00985 {
00986     FlacFrame *frame;
00987     int crc;
00988 
00989     frame = &s->frame;
00990 
00991     put_bits(&s->pb, 16, 0xFFF8);
00992     put_bits(&s->pb, 4, frame->bs_code[0]);
00993     put_bits(&s->pb, 4, s->sr_code[0]);
00994     if(frame->ch_mode == FLAC_CHMODE_INDEPENDENT) {
00995         put_bits(&s->pb, 4, s->channels-1);
00996     } else {
00997         put_bits(&s->pb, 4, frame->ch_mode);
00998     }
00999     put_bits(&s->pb, 3, 4); /* bits-per-sample code */
01000     put_bits(&s->pb, 1, 0);
01001     write_utf8(&s->pb, s->frame_count);
01002     if(frame->bs_code[0] == 6) {
01003         put_bits(&s->pb, 8, frame->bs_code[1]);
01004     } else if(frame->bs_code[0] == 7) {
01005         put_bits(&s->pb, 16, frame->bs_code[1]);
01006     }
01007     if(s->sr_code[0] == 12) {
01008         put_bits(&s->pb, 8, s->sr_code[1]);
01009     } else if(s->sr_code[0] > 12) {
01010         put_bits(&s->pb, 16, s->sr_code[1]);
01011     }
01012     flush_put_bits(&s->pb);
01013     crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0,
01014                  s->pb.buf, put_bits_count(&s->pb)>>3);
01015     put_bits(&s->pb, 8, crc);
01016 }
01017 
01018 static void output_subframe_constant(FlacEncodeContext *s, int ch)
01019 {
01020     FlacSubframe *sub;
01021     int32_t res;
01022 
01023     sub = &s->frame.subframes[ch];
01024     res = sub->residual[0];
01025     put_sbits(&s->pb, sub->obits, res);
01026 }
01027 
01028 static void output_subframe_verbatim(FlacEncodeContext *s, int ch)
01029 {
01030     int i;
01031     FlacFrame *frame;
01032     FlacSubframe *sub;
01033     int32_t res;
01034 
01035     frame = &s->frame;
01036     sub = &frame->subframes[ch];
01037 
01038     for(i=0; i<frame->blocksize; i++) {
01039         res = sub->residual[i];
01040         put_sbits(&s->pb, sub->obits, res);
01041     }
01042 }
01043 
01044 static void output_residual(FlacEncodeContext *ctx, int ch)
01045 {
01046     int i, j, p, n, parts;
01047     int k, porder, psize, res_cnt;
01048     FlacFrame *frame;
01049     FlacSubframe *sub;
01050     int32_t *res;
01051 
01052     frame = &ctx->frame;
01053     sub = &frame->subframes[ch];
01054     res = sub->residual;
01055     n = frame->blocksize;
01056 
01057     /* rice-encoded block */
01058     put_bits(&ctx->pb, 2, 0);
01059 
01060     /* partition order */
01061     porder = sub->rc.porder;
01062     psize = n >> porder;
01063     parts = (1 << porder);
01064     put_bits(&ctx->pb, 4, porder);
01065     res_cnt = psize - sub->order;
01066 
01067     /* residual */
01068     j = sub->order;
01069     for(p=0; p<parts; p++) {
01070         k = sub->rc.params[p];
01071         put_bits(&ctx->pb, 4, k);
01072         if(p == 1) res_cnt = psize;
01073         for(i=0; i<res_cnt && j<n; i++, j++) {
01074             set_sr_golomb_flac(&ctx->pb, res[j], k, INT32_MAX, 0);
01075         }
01076     }
01077 }
01078 
01079 static void output_subframe_fixed(FlacEncodeContext *ctx, int ch)
01080 {
01081     int i;
01082     FlacFrame *frame;
01083     FlacSubframe *sub;
01084 
01085     frame = &ctx->frame;
01086     sub = &frame->subframes[ch];
01087 
01088     /* warm-up samples */
01089     for(i=0; i<sub->order; i++) {
01090         put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
01091     }
01092 
01093     /* residual */
01094     output_residual(ctx, ch);
01095 }
01096 
01097 static void output_subframe_lpc(FlacEncodeContext *ctx, int ch)
01098 {
01099     int i, cbits;
01100     FlacFrame *frame;
01101     FlacSubframe *sub;
01102 
01103     frame = &ctx->frame;
01104     sub = &frame->subframes[ch];
01105 
01106     /* warm-up samples */
01107     for(i=0; i<sub->order; i++) {
01108         put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
01109     }
01110 
01111     /* LPC coefficients */
01112     cbits = ctx->options.lpc_coeff_precision;
01113     put_bits(&ctx->pb, 4, cbits-1);
01114     put_sbits(&ctx->pb, 5, sub->shift);
01115     for(i=0; i<sub->order; i++) {
01116         put_sbits(&ctx->pb, cbits, sub->coefs[i]);
01117     }
01118 
01119     /* residual */
01120     output_residual(ctx, ch);
01121 }
01122 
01123 static void output_subframes(FlacEncodeContext *s)
01124 {
01125     FlacFrame *frame;
01126     FlacSubframe *sub;
01127     int ch;
01128 
01129     frame = &s->frame;
01130 
01131     for(ch=0; ch<s->channels; ch++) {
01132         sub = &frame->subframes[ch];
01133 
01134         /* subframe header */
01135         put_bits(&s->pb, 1, 0);
01136         put_bits(&s->pb, 6, sub->type_code);
01137         put_bits(&s->pb, 1, 0); /* no wasted bits */
01138 
01139         /* subframe */
01140         if(sub->type == FLAC_SUBFRAME_CONSTANT) {
01141             output_subframe_constant(s, ch);
01142         } else if(sub->type == FLAC_SUBFRAME_VERBATIM) {
01143             output_subframe_verbatim(s, ch);
01144         } else if(sub->type == FLAC_SUBFRAME_FIXED) {
01145             output_subframe_fixed(s, ch);
01146         } else if(sub->type == FLAC_SUBFRAME_LPC) {
01147             output_subframe_lpc(s, ch);
01148         }
01149     }
01150 }
01151 
01152 static void output_frame_footer(FlacEncodeContext *s)
01153 {
01154     int crc;
01155     flush_put_bits(&s->pb);
01156     crc = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
01157                           s->pb.buf, put_bits_count(&s->pb)>>3));
01158     put_bits(&s->pb, 16, crc);
01159     flush_put_bits(&s->pb);
01160 }
01161 
01162 static void update_md5_sum(FlacEncodeContext *s, int16_t *samples)
01163 {
01164 #if HAVE_BIGENDIAN
01165     int i;
01166     for(i = 0; i < s->frame.blocksize*s->channels; i++) {
01167         int16_t smp = le2me_16(samples[i]);
01168         av_md5_update(s->md5ctx, (uint8_t *)&smp, 2);
01169     }
01170 #else
01171     av_md5_update(s->md5ctx, (uint8_t *)samples, s->frame.blocksize*s->channels*2);
01172 #endif
01173 }
01174 
01175 static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
01176                              int buf_size, void *data)
01177 {
01178     int ch;
01179     FlacEncodeContext *s;
01180     int16_t *samples = data;
01181     int out_bytes;
01182     int reencoded=0;
01183 
01184     s = avctx->priv_data;
01185 
01186     if(buf_size < s->max_framesize*2) {
01187         av_log(avctx, AV_LOG_ERROR, "output buffer too small\n");
01188         return 0;
01189     }
01190 
01191     /* when the last block is reached, update the header in extradata */
01192     if (!data) {
01193         s->max_framesize = s->max_encoded_framesize;
01194         av_md5_final(s->md5ctx, s->md5sum);
01195         write_streaminfo(s, avctx->extradata);
01196         return 0;
01197     }
01198 
01199     init_frame(s);
01200 
01201     copy_samples(s, samples);
01202 
01203     channel_decorrelation(s);
01204 
01205     for(ch=0; ch<s->channels; ch++) {
01206         encode_residual(s, ch);
01207     }
01208 
01209 write_frame:
01210     init_put_bits(&s->pb, frame, buf_size);
01211     output_frame_header(s);
01212     output_subframes(s);
01213     output_frame_footer(s);
01214     out_bytes = put_bits_count(&s->pb) >> 3;
01215 
01216     if(out_bytes > s->max_framesize) {
01217         if(reencoded) {
01218             /* still too large. must be an error. */
01219             av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
01220             return -1;
01221         }
01222 
01223         /* frame too large. use verbatim mode */
01224         for(ch=0; ch<s->channels; ch++) {
01225             encode_residual_v(s, ch);
01226         }
01227         reencoded = 1;
01228         goto write_frame;
01229     }
01230 
01231     s->frame_count++;
01232     s->sample_count += avctx->frame_size;
01233     update_md5_sum(s, samples);
01234     if (out_bytes > s->max_encoded_framesize)
01235         s->max_encoded_framesize = out_bytes;
01236     if (out_bytes < s->min_framesize)
01237         s->min_framesize = out_bytes;
01238 
01239     return out_bytes;
01240 }
01241 
01242 static av_cold int flac_encode_close(AVCodecContext *avctx)
01243 {
01244     if (avctx->priv_data) {
01245         FlacEncodeContext *s = avctx->priv_data;
01246         av_freep(&s->md5ctx);
01247     }
01248     av_freep(&avctx->extradata);
01249     avctx->extradata_size = 0;
01250     av_freep(&avctx->coded_frame);
01251     return 0;
01252 }
01253 
01254 AVCodec flac_encoder = {
01255     "flac",
01256     AVMEDIA_TYPE_AUDIO,
01257     CODEC_ID_FLAC,
01258     sizeof(FlacEncodeContext),
01259     flac_encode_init,
01260     flac_encode_frame,
01261     flac_encode_close,
01262     NULL,
01263     .capabilities = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY,
01264     .sample_fmts = (const enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
01265     .long_name = NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"),
01266 };

Generated on Fri Sep 16 2011 17:17:36 for FFmpeg by  doxygen 1.7.1