00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00029 #include "aac.h"
00030 #include "sbr.h"
00031 #include "aacsbr.h"
00032 #include "aacsbrdata.h"
00033 #include "fft.h"
00034 #include "aacps.h"
00035
00036 #include <stdint.h>
00037 #include <float.h>
00038
00039 #define ENVELOPE_ADJUSTMENT_OFFSET 2
00040 #define NOISE_FLOOR_OFFSET 6.0f
00041
00045 enum {
00046 T_HUFFMAN_ENV_1_5DB,
00047 F_HUFFMAN_ENV_1_5DB,
00048 T_HUFFMAN_ENV_BAL_1_5DB,
00049 F_HUFFMAN_ENV_BAL_1_5DB,
00050 T_HUFFMAN_ENV_3_0DB,
00051 F_HUFFMAN_ENV_3_0DB,
00052 T_HUFFMAN_ENV_BAL_3_0DB,
00053 F_HUFFMAN_ENV_BAL_3_0DB,
00054 T_HUFFMAN_NOISE_3_0DB,
00055 T_HUFFMAN_NOISE_BAL_3_0DB,
00056 };
00057
00061 enum {
00062 FIXFIX,
00063 FIXVAR,
00064 VARFIX,
00065 VARVAR,
00066 };
00067
00068 enum {
00069 EXTENSION_ID_PS = 2,
00070 };
00071
00072 static VLC vlc_sbr[10];
00073 static const int8_t vlc_sbr_lav[10] =
00074 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
00075 static const DECLARE_ALIGNED(16, float, zero64)[64];
00076
00077 #define SBR_INIT_VLC_STATIC(num, size) \
00078 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
00079 sbr_tmp[num].sbr_bits , 1, 1, \
00080 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
00081 size)
00082
00083 #define SBR_VLC_ROW(name) \
00084 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
00085
00086 av_cold void ff_aac_sbr_init(void)
00087 {
00088 int n;
00089 static const struct {
00090 const void *sbr_codes, *sbr_bits;
00091 const unsigned int table_size, elem_size;
00092 } sbr_tmp[] = {
00093 SBR_VLC_ROW(t_huffman_env_1_5dB),
00094 SBR_VLC_ROW(f_huffman_env_1_5dB),
00095 SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
00096 SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
00097 SBR_VLC_ROW(t_huffman_env_3_0dB),
00098 SBR_VLC_ROW(f_huffman_env_3_0dB),
00099 SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
00100 SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
00101 SBR_VLC_ROW(t_huffman_noise_3_0dB),
00102 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
00103 };
00104
00105
00106 SBR_INIT_VLC_STATIC(0, 1098);
00107 SBR_INIT_VLC_STATIC(1, 1092);
00108 SBR_INIT_VLC_STATIC(2, 768);
00109 SBR_INIT_VLC_STATIC(3, 1026);
00110 SBR_INIT_VLC_STATIC(4, 1058);
00111 SBR_INIT_VLC_STATIC(5, 1052);
00112 SBR_INIT_VLC_STATIC(6, 544);
00113 SBR_INIT_VLC_STATIC(7, 544);
00114 SBR_INIT_VLC_STATIC(8, 592);
00115 SBR_INIT_VLC_STATIC(9, 512);
00116
00117 for (n = 1; n < 320; n++)
00118 sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
00119 sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
00120 sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
00121
00122 for (n = 0; n < 320; n++)
00123 sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
00124
00125 ff_ps_init();
00126 }
00127
00128 av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
00129 {
00130 sbr->kx[0] = sbr->kx[1] = 32;
00131 sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
00132 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
00133 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
00134 ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
00135 ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0);
00136 ff_ps_ctx_init(&sbr->ps);
00137 }
00138
00139 av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
00140 {
00141 ff_mdct_end(&sbr->mdct);
00142 ff_mdct_end(&sbr->mdct_ana);
00143 }
00144
00145 static int qsort_comparison_function_int16(const void *a, const void *b)
00146 {
00147 return *(const int16_t *)a - *(const int16_t *)b;
00148 }
00149
00150 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
00151 {
00152 int i;
00153 for (i = 0; i <= last_el; i++)
00154 if (table[i] == needle)
00155 return 1;
00156 return 0;
00157 }
00158
00160 static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
00161 {
00162 int k;
00163 if (sbr->bs_limiter_bands > 0) {
00164 static const float bands_warped[3] = { 1.32715174233856803909f,
00165 1.18509277094158210129f,
00166 1.11987160404675912501f };
00167 const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
00168 int16_t patch_borders[7];
00169 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
00170
00171 patch_borders[0] = sbr->kx[1];
00172 for (k = 1; k <= sbr->num_patches; k++)
00173 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
00174
00175 memcpy(sbr->f_tablelim, sbr->f_tablelow,
00176 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
00177 if (sbr->num_patches > 1)
00178 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
00179 (sbr->num_patches - 1) * sizeof(patch_borders[0]));
00180
00181 qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
00182 sizeof(sbr->f_tablelim[0]),
00183 qsort_comparison_function_int16);
00184
00185 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
00186 while (out < sbr->f_tablelim + sbr->n_lim) {
00187 if (*in >= *out * lim_bands_per_octave_warped) {
00188 *++out = *in++;
00189 } else if (*in == *out ||
00190 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
00191 in++;
00192 sbr->n_lim--;
00193 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
00194 *out = *in++;
00195 sbr->n_lim--;
00196 } else {
00197 *++out = *in++;
00198 }
00199 }
00200 } else {
00201 sbr->f_tablelim[0] = sbr->f_tablelow[0];
00202 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
00203 sbr->n_lim = 1;
00204 }
00205 }
00206
00207 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
00208 {
00209 unsigned int cnt = get_bits_count(gb);
00210 uint8_t bs_header_extra_1;
00211 uint8_t bs_header_extra_2;
00212 int old_bs_limiter_bands = sbr->bs_limiter_bands;
00213 SpectrumParameters old_spectrum_params;
00214
00215 sbr->start = 1;
00216
00217
00218 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
00219
00220 sbr->bs_amp_res_header = get_bits1(gb);
00221 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
00222 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
00223 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
00224 skip_bits(gb, 2);
00225
00226 bs_header_extra_1 = get_bits1(gb);
00227 bs_header_extra_2 = get_bits1(gb);
00228
00229 if (bs_header_extra_1) {
00230 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
00231 sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
00232 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
00233 } else {
00234 sbr->spectrum_params.bs_freq_scale = 2;
00235 sbr->spectrum_params.bs_alter_scale = 1;
00236 sbr->spectrum_params.bs_noise_bands = 2;
00237 }
00238
00239
00240 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
00241 sbr->reset = 1;
00242
00243 if (bs_header_extra_2) {
00244 sbr->bs_limiter_bands = get_bits(gb, 2);
00245 sbr->bs_limiter_gains = get_bits(gb, 2);
00246 sbr->bs_interpol_freq = get_bits1(gb);
00247 sbr->bs_smoothing_mode = get_bits1(gb);
00248 } else {
00249 sbr->bs_limiter_bands = 2;
00250 sbr->bs_limiter_gains = 2;
00251 sbr->bs_interpol_freq = 1;
00252 sbr->bs_smoothing_mode = 1;
00253 }
00254
00255 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
00256 sbr_make_f_tablelim(sbr);
00257
00258 return get_bits_count(gb) - cnt;
00259 }
00260
00261 static int array_min_int16(const int16_t *array, int nel)
00262 {
00263 int i, min = array[0];
00264 for (i = 1; i < nel; i++)
00265 min = FFMIN(array[i], min);
00266 return min;
00267 }
00268
00269 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
00270 {
00271 int k, previous, present;
00272 float base, prod;
00273
00274 base = powf((float)stop / start, 1.0f / num_bands);
00275 prod = start;
00276 previous = start;
00277
00278 for (k = 0; k < num_bands-1; k++) {
00279 prod *= base;
00280 present = lrintf(prod);
00281 bands[k] = present - previous;
00282 previous = present;
00283 }
00284 bands[num_bands-1] = stop - previous;
00285 }
00286
00287 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
00288 {
00289
00290 if (n_master <= 0) {
00291 av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
00292 return -1;
00293 }
00294 if (bs_xover_band >= n_master) {
00295 av_log(avctx, AV_LOG_ERROR,
00296 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
00297 bs_xover_band);
00298 return -1;
00299 }
00300 return 0;
00301 }
00302
00304 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
00305 SpectrumParameters *spectrum)
00306 {
00307 unsigned int temp, max_qmf_subbands;
00308 unsigned int start_min, stop_min;
00309 int k;
00310 const int8_t *sbr_offset_ptr;
00311 int16_t stop_dk[13];
00312
00313 if (sbr->sample_rate < 32000) {
00314 temp = 3000;
00315 } else if (sbr->sample_rate < 64000) {
00316 temp = 4000;
00317 } else
00318 temp = 5000;
00319
00320 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
00321 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
00322
00323 switch (sbr->sample_rate) {
00324 case 16000:
00325 sbr_offset_ptr = sbr_offset[0];
00326 break;
00327 case 22050:
00328 sbr_offset_ptr = sbr_offset[1];
00329 break;
00330 case 24000:
00331 sbr_offset_ptr = sbr_offset[2];
00332 break;
00333 case 32000:
00334 sbr_offset_ptr = sbr_offset[3];
00335 break;
00336 case 44100: case 48000: case 64000:
00337 sbr_offset_ptr = sbr_offset[4];
00338 break;
00339 case 88200: case 96000: case 128000: case 176400: case 192000:
00340 sbr_offset_ptr = sbr_offset[5];
00341 break;
00342 default:
00343 av_log(ac->avctx, AV_LOG_ERROR,
00344 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
00345 return -1;
00346 }
00347
00348 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
00349
00350 if (spectrum->bs_stop_freq < 14) {
00351 sbr->k[2] = stop_min;
00352 make_bands(stop_dk, stop_min, 64, 13);
00353 qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
00354 for (k = 0; k < spectrum->bs_stop_freq; k++)
00355 sbr->k[2] += stop_dk[k];
00356 } else if (spectrum->bs_stop_freq == 14) {
00357 sbr->k[2] = 2*sbr->k[0];
00358 } else if (spectrum->bs_stop_freq == 15) {
00359 sbr->k[2] = 3*sbr->k[0];
00360 } else {
00361 av_log(ac->avctx, AV_LOG_ERROR,
00362 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
00363 return -1;
00364 }
00365 sbr->k[2] = FFMIN(64, sbr->k[2]);
00366
00367
00368 if (sbr->sample_rate <= 32000) {
00369 max_qmf_subbands = 48;
00370 } else if (sbr->sample_rate == 44100) {
00371 max_qmf_subbands = 35;
00372 } else if (sbr->sample_rate >= 48000)
00373 max_qmf_subbands = 32;
00374
00375 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
00376 av_log(ac->avctx, AV_LOG_ERROR,
00377 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
00378 return -1;
00379 }
00380
00381 if (!spectrum->bs_freq_scale) {
00382 int dk, k2diff;
00383
00384 dk = spectrum->bs_alter_scale + 1;
00385 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
00386 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
00387 return -1;
00388
00389 for (k = 1; k <= sbr->n_master; k++)
00390 sbr->f_master[k] = dk;
00391
00392 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
00393 if (k2diff < 0) {
00394 sbr->f_master[1]--;
00395 sbr->f_master[2]-= (k2diff < 1);
00396 } else if (k2diff) {
00397 sbr->f_master[sbr->n_master]++;
00398 }
00399
00400 sbr->f_master[0] = sbr->k[0];
00401 for (k = 1; k <= sbr->n_master; k++)
00402 sbr->f_master[k] += sbr->f_master[k - 1];
00403
00404 } else {
00405 int half_bands = 7 - spectrum->bs_freq_scale;
00406 int two_regions, num_bands_0;
00407 int vdk0_max, vdk1_min;
00408 int16_t vk0[49];
00409
00410 if (49 * sbr->k[2] > 110 * sbr->k[0]) {
00411 two_regions = 1;
00412 sbr->k[1] = 2 * sbr->k[0];
00413 } else {
00414 two_regions = 0;
00415 sbr->k[1] = sbr->k[2];
00416 }
00417
00418 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
00419
00420 if (num_bands_0 <= 0) {
00421 av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
00422 return -1;
00423 }
00424
00425 vk0[0] = 0;
00426
00427 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
00428
00429 qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
00430 vdk0_max = vk0[num_bands_0];
00431
00432 vk0[0] = sbr->k[0];
00433 for (k = 1; k <= num_bands_0; k++) {
00434 if (vk0[k] <= 0) {
00435 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
00436 return -1;
00437 }
00438 vk0[k] += vk0[k-1];
00439 }
00440
00441 if (two_regions) {
00442 int16_t vk1[49];
00443 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
00444 : 1.0f;
00445 int num_bands_1 = lrintf(half_bands * invwarp *
00446 log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
00447
00448 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
00449
00450 vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
00451
00452 if (vdk1_min < vdk0_max) {
00453 int change;
00454 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
00455 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
00456 vk1[1] += change;
00457 vk1[num_bands_1] -= change;
00458 }
00459
00460 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
00461
00462 vk1[0] = sbr->k[1];
00463 for (k = 1; k <= num_bands_1; k++) {
00464 if (vk1[k] <= 0) {
00465 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
00466 return -1;
00467 }
00468 vk1[k] += vk1[k-1];
00469 }
00470
00471 sbr->n_master = num_bands_0 + num_bands_1;
00472 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
00473 return -1;
00474 memcpy(&sbr->f_master[0], vk0,
00475 (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
00476 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
00477 num_bands_1 * sizeof(sbr->f_master[0]));
00478
00479 } else {
00480 sbr->n_master = num_bands_0;
00481 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
00482 return -1;
00483 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
00484 }
00485 }
00486
00487 return 0;
00488 }
00489
00491 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
00492 {
00493 int i, k, sb = 0;
00494 int msb = sbr->k[0];
00495 int usb = sbr->kx[1];
00496 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
00497
00498 sbr->num_patches = 0;
00499
00500 if (goal_sb < sbr->kx[1] + sbr->m[1]) {
00501 for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
00502 } else
00503 k = sbr->n_master;
00504
00505 do {
00506 int odd = 0;
00507 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
00508 sb = sbr->f_master[i];
00509 odd = (sb + sbr->k[0]) & 1;
00510 }
00511
00512
00513
00514
00515
00516 if (sbr->num_patches > 5) {
00517 av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
00518 return -1;
00519 }
00520
00521 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
00522 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
00523
00524 if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
00525 usb = sb;
00526 msb = sb;
00527 sbr->num_patches++;
00528 } else
00529 msb = sbr->kx[1];
00530
00531 if (sbr->f_master[k] - sb < 3)
00532 k = sbr->n_master;
00533 } while (sb != sbr->kx[1] + sbr->m[1]);
00534
00535 if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
00536 sbr->num_patches--;
00537
00538 return 0;
00539 }
00540
00542 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
00543 {
00544 int k, temp;
00545
00546 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
00547 sbr->n[0] = (sbr->n[1] + 1) >> 1;
00548
00549 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
00550 (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
00551 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
00552 sbr->kx[1] = sbr->f_tablehigh[0];
00553
00554
00555 if (sbr->kx[1] + sbr->m[1] > 64) {
00556 av_log(ac->avctx, AV_LOG_ERROR,
00557 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
00558 return -1;
00559 }
00560 if (sbr->kx[1] > 32) {
00561 av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
00562 return -1;
00563 }
00564
00565 sbr->f_tablelow[0] = sbr->f_tablehigh[0];
00566 temp = sbr->n[1] & 1;
00567 for (k = 1; k <= sbr->n[0]; k++)
00568 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
00569
00570 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
00571 log2f(sbr->k[2] / (float)sbr->kx[1])));
00572 if (sbr->n_q > 5) {
00573 av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
00574 return -1;
00575 }
00576
00577 sbr->f_tablenoise[0] = sbr->f_tablelow[0];
00578 temp = 0;
00579 for (k = 1; k <= sbr->n_q; k++) {
00580 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
00581 sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
00582 }
00583
00584 if (sbr_hf_calc_npatches(ac, sbr) < 0)
00585 return -1;
00586
00587 sbr_make_f_tablelim(sbr);
00588
00589 sbr->data[0].f_indexnoise = 0;
00590 sbr->data[1].f_indexnoise = 0;
00591
00592 return 0;
00593 }
00594
00595 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
00596 int elements)
00597 {
00598 int i;
00599 for (i = 0; i < elements; i++) {
00600 vec[i] = get_bits1(gb);
00601 }
00602 }
00603
00605 static const int8_t ceil_log2[] = {
00606 0, 1, 2, 2, 3, 3,
00607 };
00608
00609 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
00610 GetBitContext *gb, SBRData *ch_data)
00611 {
00612 int i;
00613 unsigned bs_pointer = 0;
00614
00615 int abs_bord_trail = 16;
00616 int num_rel_lead, num_rel_trail;
00617 unsigned bs_num_env_old = ch_data->bs_num_env;
00618
00619 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
00620 ch_data->bs_amp_res = sbr->bs_amp_res_header;
00621 ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
00622
00623 switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
00624 case FIXFIX:
00625 ch_data->bs_num_env = 1 << get_bits(gb, 2);
00626 num_rel_lead = ch_data->bs_num_env - 1;
00627 if (ch_data->bs_num_env == 1)
00628 ch_data->bs_amp_res = 0;
00629
00630 if (ch_data->bs_num_env > 4) {
00631 av_log(ac->avctx, AV_LOG_ERROR,
00632 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
00633 ch_data->bs_num_env);
00634 return -1;
00635 }
00636
00637 ch_data->t_env[0] = 0;
00638 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
00639
00640 abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
00641 ch_data->bs_num_env;
00642 for (i = 0; i < num_rel_lead; i++)
00643 ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
00644
00645 ch_data->bs_freq_res[1] = get_bits1(gb);
00646 for (i = 1; i < ch_data->bs_num_env; i++)
00647 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
00648 break;
00649 case FIXVAR:
00650 abs_bord_trail += get_bits(gb, 2);
00651 num_rel_trail = get_bits(gb, 2);
00652 ch_data->bs_num_env = num_rel_trail + 1;
00653 ch_data->t_env[0] = 0;
00654 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
00655
00656 for (i = 0; i < num_rel_trail; i++)
00657 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
00658 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
00659
00660 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
00661
00662 for (i = 0; i < ch_data->bs_num_env; i++)
00663 ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
00664 break;
00665 case VARFIX:
00666 ch_data->t_env[0] = get_bits(gb, 2);
00667 num_rel_lead = get_bits(gb, 2);
00668 ch_data->bs_num_env = num_rel_lead + 1;
00669 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
00670
00671 for (i = 0; i < num_rel_lead; i++)
00672 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
00673
00674 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
00675
00676 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
00677 break;
00678 case VARVAR:
00679 ch_data->t_env[0] = get_bits(gb, 2);
00680 abs_bord_trail += get_bits(gb, 2);
00681 num_rel_lead = get_bits(gb, 2);
00682 num_rel_trail = get_bits(gb, 2);
00683 ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
00684
00685 if (ch_data->bs_num_env > 5) {
00686 av_log(ac->avctx, AV_LOG_ERROR,
00687 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
00688 ch_data->bs_num_env);
00689 return -1;
00690 }
00691
00692 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
00693
00694 for (i = 0; i < num_rel_lead; i++)
00695 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
00696 for (i = 0; i < num_rel_trail; i++)
00697 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
00698 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
00699
00700 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
00701
00702 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
00703 break;
00704 }
00705
00706 if (bs_pointer > ch_data->bs_num_env + 1) {
00707 av_log(ac->avctx, AV_LOG_ERROR,
00708 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
00709 bs_pointer);
00710 return -1;
00711 }
00712
00713 for (i = 1; i <= ch_data->bs_num_env; i++) {
00714 if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
00715 av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
00716 return -1;
00717 }
00718 }
00719
00720 ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
00721
00722 ch_data->t_q[0] = ch_data->t_env[0];
00723 ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
00724 if (ch_data->bs_num_noise > 1) {
00725 unsigned int idx;
00726 if (ch_data->bs_frame_class == FIXFIX) {
00727 idx = ch_data->bs_num_env >> 1;
00728 } else if (ch_data->bs_frame_class & 1) {
00729 idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
00730 } else {
00731 if (!bs_pointer)
00732 idx = 1;
00733 else if (bs_pointer == 1)
00734 idx = ch_data->bs_num_env - 1;
00735 else
00736 idx = bs_pointer - 1;
00737 }
00738 ch_data->t_q[1] = ch_data->t_env[idx];
00739 }
00740
00741 ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old);
00742 ch_data->e_a[1] = -1;
00743 if ((ch_data->bs_frame_class & 1) && bs_pointer) {
00744 ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
00745 } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1))
00746 ch_data->e_a[1] = bs_pointer - 1;
00747
00748 return 0;
00749 }
00750
00751 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
00752
00753 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
00754 dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
00755 dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
00756
00757
00758 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
00759 memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
00760 memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
00761 dst->bs_num_env = src->bs_num_env;
00762 dst->bs_amp_res = src->bs_amp_res;
00763 dst->bs_num_noise = src->bs_num_noise;
00764 dst->bs_frame_class = src->bs_frame_class;
00765 dst->e_a[1] = src->e_a[1];
00766 }
00767
00769 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
00770 SBRData *ch_data)
00771 {
00772 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
00773 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
00774 }
00775
00777 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
00778 SBRData *ch_data)
00779 {
00780 int i;
00781
00782 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
00783 for (i = 0; i < sbr->n_q; i++)
00784 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
00785 }
00786
00787 static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
00788 SBRData *ch_data, int ch)
00789 {
00790 int bits;
00791 int i, j, k;
00792 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
00793 int t_lav, f_lav;
00794 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
00795 const int odd = sbr->n[1] & 1;
00796
00797 if (sbr->bs_coupling && ch) {
00798 if (ch_data->bs_amp_res) {
00799 bits = 5;
00800 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
00801 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
00802 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
00803 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
00804 } else {
00805 bits = 6;
00806 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
00807 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
00808 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
00809 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
00810 }
00811 } else {
00812 if (ch_data->bs_amp_res) {
00813 bits = 6;
00814 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
00815 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
00816 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
00817 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
00818 } else {
00819 bits = 7;
00820 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
00821 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
00822 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
00823 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
00824 }
00825 }
00826
00827 for (i = 0; i < ch_data->bs_num_env; i++) {
00828 if (ch_data->bs_df_env[i]) {
00829
00830 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
00831 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
00832 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
00833 } else if (ch_data->bs_freq_res[i + 1]) {
00834 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
00835 k = (j + odd) >> 1;
00836 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
00837 }
00838 } else {
00839 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
00840 k = j ? 2*j - odd : 0;
00841 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
00842 }
00843 }
00844 } else {
00845 ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits);
00846 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
00847 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
00848 }
00849 }
00850
00851
00852 memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
00853 sizeof(ch_data->env_facs[0]));
00854 }
00855
00856 static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
00857 SBRData *ch_data, int ch)
00858 {
00859 int i, j;
00860 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
00861 int t_lav, f_lav;
00862 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
00863
00864 if (sbr->bs_coupling && ch) {
00865 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
00866 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
00867 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
00868 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
00869 } else {
00870 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
00871 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
00872 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
00873 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
00874 }
00875
00876 for (i = 0; i < ch_data->bs_num_noise; i++) {
00877 if (ch_data->bs_df_noise[i]) {
00878 for (j = 0; j < sbr->n_q; j++)
00879 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
00880 } else {
00881 ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5);
00882 for (j = 1; j < sbr->n_q; j++)
00883 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
00884 }
00885 }
00886
00887
00888 memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
00889 sizeof(ch_data->noise_facs[0]));
00890 }
00891
00892 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
00893 GetBitContext *gb,
00894 int bs_extension_id, int *num_bits_left)
00895 {
00896 switch (bs_extension_id) {
00897 case EXTENSION_ID_PS:
00898 if (!ac->m4ac.ps) {
00899 av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
00900 skip_bits_long(gb, *num_bits_left);
00901 *num_bits_left = 0;
00902 } else {
00903 #if 1
00904 *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
00905 #else
00906 av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0);
00907 skip_bits_long(gb, *num_bits_left);
00908 *num_bits_left = 0;
00909 #endif
00910 }
00911 break;
00912 default:
00913 av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1);
00914 skip_bits_long(gb, *num_bits_left);
00915 *num_bits_left = 0;
00916 break;
00917 }
00918 }
00919
00920 static int read_sbr_single_channel_element(AACContext *ac,
00921 SpectralBandReplication *sbr,
00922 GetBitContext *gb)
00923 {
00924 if (get_bits1(gb))
00925 skip_bits(gb, 4);
00926
00927 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
00928 return -1;
00929 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
00930 read_sbr_invf(sbr, gb, &sbr->data[0]);
00931 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
00932 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
00933
00934 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
00935 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
00936
00937 return 0;
00938 }
00939
00940 static int read_sbr_channel_pair_element(AACContext *ac,
00941 SpectralBandReplication *sbr,
00942 GetBitContext *gb)
00943 {
00944 if (get_bits1(gb))
00945 skip_bits(gb, 8);
00946
00947 if ((sbr->bs_coupling = get_bits1(gb))) {
00948 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
00949 return -1;
00950 copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
00951 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
00952 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
00953 read_sbr_invf(sbr, gb, &sbr->data[0]);
00954 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
00955 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
00956 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
00957 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
00958 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
00959 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
00960 } else {
00961 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
00962 read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
00963 return -1;
00964 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
00965 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
00966 read_sbr_invf(sbr, gb, &sbr->data[0]);
00967 read_sbr_invf(sbr, gb, &sbr->data[1]);
00968 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
00969 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
00970 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
00971 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
00972 }
00973
00974 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
00975 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
00976 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
00977 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
00978
00979 return 0;
00980 }
00981
00982 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
00983 GetBitContext *gb, int id_aac)
00984 {
00985 unsigned int cnt = get_bits_count(gb);
00986
00987 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
00988 if (read_sbr_single_channel_element(ac, sbr, gb)) {
00989 sbr->start = 0;
00990 return get_bits_count(gb) - cnt;
00991 }
00992 } else if (id_aac == TYPE_CPE) {
00993 if (read_sbr_channel_pair_element(ac, sbr, gb)) {
00994 sbr->start = 0;
00995 return get_bits_count(gb) - cnt;
00996 }
00997 } else {
00998 av_log(ac->avctx, AV_LOG_ERROR,
00999 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
01000 sbr->start = 0;
01001 return get_bits_count(gb) - cnt;
01002 }
01003 if (get_bits1(gb)) {
01004 int num_bits_left = get_bits(gb, 4);
01005 if (num_bits_left == 15)
01006 num_bits_left += get_bits(gb, 8);
01007
01008 num_bits_left <<= 3;
01009 while (num_bits_left > 7) {
01010 num_bits_left -= 2;
01011 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left);
01012 }
01013 if (num_bits_left < 0) {
01014 av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
01015 }
01016 if (num_bits_left > 0)
01017 skip_bits(gb, num_bits_left);
01018 }
01019
01020 return get_bits_count(gb) - cnt;
01021 }
01022
01023 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
01024 {
01025 int err;
01026 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
01027 if (err >= 0)
01028 err = sbr_make_f_derived(ac, sbr);
01029 if (err < 0) {
01030 av_log(ac->avctx, AV_LOG_ERROR,
01031 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
01032 sbr->start = 0;
01033 }
01034 }
01035
01044 int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
01045 GetBitContext *gb_host, int crc, int cnt, int id_aac)
01046 {
01047 unsigned int num_sbr_bits = 0, num_align_bits;
01048 unsigned bytes_read;
01049 GetBitContext gbc = *gb_host, *gb = &gbc;
01050 skip_bits_long(gb_host, cnt*8 - 4);
01051
01052 sbr->reset = 0;
01053
01054 if (!sbr->sample_rate)
01055 sbr->sample_rate = 2 * ac->m4ac.sample_rate;
01056 if (!ac->m4ac.ext_sample_rate)
01057 ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
01058
01059 if (crc) {
01060 skip_bits(gb, 10);
01061 num_sbr_bits += 10;
01062 }
01063
01064
01065 sbr->kx[0] = sbr->kx[1];
01066 sbr->m[0] = sbr->m[1];
01067
01068 num_sbr_bits++;
01069 if (get_bits1(gb))
01070 num_sbr_bits += read_sbr_header(sbr, gb);
01071
01072 if (sbr->reset)
01073 sbr_reset(ac, sbr);
01074
01075 if (sbr->start)
01076 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
01077
01078 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
01079 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
01080
01081 if (bytes_read > cnt) {
01082 av_log(ac->avctx, AV_LOG_ERROR,
01083 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
01084 }
01085 return cnt;
01086 }
01087
01089 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
01090 {
01091 int k, e;
01092 int ch;
01093
01094 if (id_aac == TYPE_CPE && sbr->bs_coupling) {
01095 float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
01096 float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
01097 for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
01098 for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
01099 float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
01100 float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
01101 float fac = temp1 / (1.0f + temp2);
01102 sbr->data[0].env_facs[e][k] = fac;
01103 sbr->data[1].env_facs[e][k] = fac * temp2;
01104 }
01105 }
01106 for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
01107 for (k = 0; k < sbr->n_q; k++) {
01108 float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
01109 float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
01110 float fac = temp1 / (1.0f + temp2);
01111 sbr->data[0].noise_facs[e][k] = fac;
01112 sbr->data[1].noise_facs[e][k] = fac * temp2;
01113 }
01114 }
01115 } else {
01116 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
01117 float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
01118 for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
01119 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
01120 sbr->data[ch].env_facs[e][k] =
01121 exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
01122 for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
01123 for (k = 0; k < sbr->n_q; k++)
01124 sbr->data[ch].noise_facs[e][k] =
01125 exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
01126 }
01127 }
01128 }
01129
01136 static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct, const float *in, float *x,
01137 float z[320], float W[2][32][32][2],
01138 float scale)
01139 {
01140 int i, k;
01141 memcpy(W[0], W[1], sizeof(W[0]));
01142 memcpy(x , x+1024, (320-32)*sizeof(x[0]));
01143 if (scale != 1.0f)
01144 dsp->vector_fmul_scalar(x+288, in, scale, 1024);
01145 else
01146 memcpy(x+288, in, 1024*sizeof(*x));
01147 for (i = 0; i < 32; i++) {
01148
01149 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
01150 for (k = 0; k < 64; k++) {
01151 float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
01152 z[k] = f;
01153 }
01154
01155 z[64] = z[0];
01156 for (k = 1; k < 32; k++) {
01157 z[64+2*k-1] = z[ k];
01158 z[64+2*k ] = -z[64-k];
01159 }
01160 z[64+63] = z[32];
01161
01162 ff_imdct_half(mdct, z, z+64);
01163 for (k = 0; k < 32; k++) {
01164 W[1][i][k][0] = -z[63-k];
01165 W[1][i][k][1] = z[k];
01166 }
01167 x += 32;
01168 }
01169 }
01170
01175 static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
01176 float *out, float X[2][38][64],
01177 float mdct_buf[2][64],
01178 float *v0, int *v_off, const unsigned int div,
01179 float bias, float scale)
01180 {
01181 int i, n;
01182 const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
01183 int scale_and_bias = scale != 1.0f || bias != 0.0f;
01184 float *v;
01185 for (i = 0; i < 32; i++) {
01186 if (*v_off == 0) {
01187 int saved_samples = (1280 - 128) >> div;
01188 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
01189 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
01190 } else {
01191 *v_off -= 128 >> div;
01192 }
01193 v = v0 + *v_off;
01194 if (div) {
01195 for (n = 0; n < 32; n++) {
01196 X[0][i][ n] = -X[0][i][n];
01197 X[0][i][32+n] = X[1][i][31-n];
01198 }
01199 ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
01200 for (n = 0; n < 32; n++) {
01201 v[ n] = mdct_buf[0][63 - 2*n];
01202 v[63 - n] = -mdct_buf[0][62 - 2*n];
01203 }
01204 } else {
01205 for (n = 1; n < 64; n+=2) {
01206 X[1][i][n] = -X[1][i][n];
01207 }
01208 ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
01209 ff_imdct_half(mdct, mdct_buf[1], X[1][i]);
01210 for (n = 0; n < 64; n++) {
01211 v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
01212 v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
01213 }
01214 }
01215 dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
01216 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
01217 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
01218 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
01219 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
01220 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
01221 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
01222 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
01223 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
01224 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
01225 if (scale_and_bias)
01226 for (n = 0; n < 64 >> div; n++)
01227 out[n] = out[n] * scale + bias;
01228 out += 64 >> div;
01229 }
01230 }
01231
01232 static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
01233 {
01234 int i;
01235 float real_sum = 0.0f;
01236 float imag_sum = 0.0f;
01237 if (lag) {
01238 for (i = 1; i < 38; i++) {
01239 real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
01240 imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
01241 }
01242 phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
01243 phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
01244 if (lag == 1) {
01245 phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
01246 phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
01247 }
01248 } else {
01249 for (i = 1; i < 38; i++) {
01250 real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
01251 }
01252 phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
01253 phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
01254 }
01255 }
01256
01261 static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
01262 const float X_low[32][40][2], int k0)
01263 {
01264 int k;
01265 for (k = 0; k < k0; k++) {
01266 float phi[3][2][2], dk;
01267
01268 autocorrelate(X_low[k], phi, 0);
01269 autocorrelate(X_low[k], phi, 1);
01270 autocorrelate(X_low[k], phi, 2);
01271
01272 dk = phi[2][1][0] * phi[1][0][0] -
01273 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
01274
01275 if (!dk) {
01276 alpha1[k][0] = 0;
01277 alpha1[k][1] = 0;
01278 } else {
01279 float temp_real, temp_im;
01280 temp_real = phi[0][0][0] * phi[1][1][0] -
01281 phi[0][0][1] * phi[1][1][1] -
01282 phi[0][1][0] * phi[1][0][0];
01283 temp_im = phi[0][0][0] * phi[1][1][1] +
01284 phi[0][0][1] * phi[1][1][0] -
01285 phi[0][1][1] * phi[1][0][0];
01286
01287 alpha1[k][0] = temp_real / dk;
01288 alpha1[k][1] = temp_im / dk;
01289 }
01290
01291 if (!phi[1][0][0]) {
01292 alpha0[k][0] = 0;
01293 alpha0[k][1] = 0;
01294 } else {
01295 float temp_real, temp_im;
01296 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
01297 alpha1[k][1] * phi[1][1][1];
01298 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
01299 alpha1[k][0] * phi[1][1][1];
01300
01301 alpha0[k][0] = -temp_real / phi[1][0][0];
01302 alpha0[k][1] = -temp_im / phi[1][0][0];
01303 }
01304
01305 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
01306 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
01307 alpha1[k][0] = 0;
01308 alpha1[k][1] = 0;
01309 alpha0[k][0] = 0;
01310 alpha0[k][1] = 0;
01311 }
01312 }
01313 }
01314
01316 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
01317 {
01318 int i;
01319 float new_bw;
01320 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
01321
01322 for (i = 0; i < sbr->n_q; i++) {
01323 if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
01324 new_bw = 0.6f;
01325 } else
01326 new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
01327
01328 if (new_bw < ch_data->bw_array[i]) {
01329 new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
01330 } else
01331 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
01332 ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
01333 }
01334 }
01335
01337 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
01338 float X_low[32][40][2], const float W[2][32][32][2])
01339 {
01340 int i, k;
01341 const int t_HFGen = 8;
01342 const int i_f = 32;
01343 memset(X_low, 0, 32*sizeof(*X_low));
01344 for (k = 0; k < sbr->kx[1]; k++) {
01345 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
01346 X_low[k][i][0] = W[1][i - t_HFGen][k][0];
01347 X_low[k][i][1] = W[1][i - t_HFGen][k][1];
01348 }
01349 }
01350 for (k = 0; k < sbr->kx[0]; k++) {
01351 for (i = 0; i < t_HFGen; i++) {
01352 X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
01353 X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
01354 }
01355 }
01356 return 0;
01357 }
01358
01360 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
01361 float X_high[64][40][2], const float X_low[32][40][2],
01362 const float (*alpha0)[2], const float (*alpha1)[2],
01363 const float bw_array[5], const uint8_t *t_env,
01364 int bs_num_env)
01365 {
01366 int i, j, x;
01367 int g = 0;
01368 int k = sbr->kx[1];
01369 for (j = 0; j < sbr->num_patches; j++) {
01370 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
01371 float alpha[4];
01372 const int p = sbr->patch_start_subband[j] + x;
01373 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
01374 g++;
01375 g--;
01376
01377 if (g < 0) {
01378 av_log(ac->avctx, AV_LOG_ERROR,
01379 "ERROR : no subband found for frequency %d\n", k);
01380 return -1;
01381 }
01382
01383 alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
01384 alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
01385 alpha[2] = alpha0[p][0] * bw_array[g];
01386 alpha[3] = alpha0[p][1] * bw_array[g];
01387
01388 for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
01389 const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
01390 X_high[k][idx][0] =
01391 X_low[p][idx - 2][0] * alpha[0] -
01392 X_low[p][idx - 2][1] * alpha[1] +
01393 X_low[p][idx - 1][0] * alpha[2] -
01394 X_low[p][idx - 1][1] * alpha[3] +
01395 X_low[p][idx][0];
01396 X_high[k][idx][1] =
01397 X_low[p][idx - 2][1] * alpha[0] +
01398 X_low[p][idx - 2][0] * alpha[1] +
01399 X_low[p][idx - 1][1] * alpha[2] +
01400 X_low[p][idx - 1][0] * alpha[3] +
01401 X_low[p][idx][1];
01402 }
01403 }
01404 }
01405 if (k < sbr->m[1] + sbr->kx[1])
01406 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
01407
01408 return 0;
01409 }
01410
01412 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
01413 const float X_low[32][40][2], const float Y[2][38][64][2],
01414 int ch)
01415 {
01416 int k, i;
01417 const int i_f = 32;
01418 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
01419 memset(X, 0, 2*sizeof(*X));
01420 for (k = 0; k < sbr->kx[0]; k++) {
01421 for (i = 0; i < i_Temp; i++) {
01422 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
01423 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
01424 }
01425 }
01426 for (; k < sbr->kx[0] + sbr->m[0]; k++) {
01427 for (i = 0; i < i_Temp; i++) {
01428 X[0][i][k] = Y[0][i + i_f][k][0];
01429 X[1][i][k] = Y[0][i + i_f][k][1];
01430 }
01431 }
01432
01433 for (k = 0; k < sbr->kx[1]; k++) {
01434 for (i = i_Temp; i < 38; i++) {
01435 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
01436 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
01437 }
01438 }
01439 for (; k < sbr->kx[1] + sbr->m[1]; k++) {
01440 for (i = i_Temp; i < i_f; i++) {
01441 X[0][i][k] = Y[1][i][k][0];
01442 X[1][i][k] = Y[1][i][k][1];
01443 }
01444 }
01445 return 0;
01446 }
01447
01451 static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
01452 SBRData *ch_data, int e_a[2])
01453 {
01454 int e, i, m;
01455
01456 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
01457 for (e = 0; e < ch_data->bs_num_env; e++) {
01458 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
01459 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
01460 int k;
01461
01462 for (i = 0; i < ilim; i++)
01463 for (m = table[i]; m < table[i + 1]; m++)
01464 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
01465
01466
01467 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
01468 for (i = 0; i < sbr->n_q; i++)
01469 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
01470 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
01471
01472 for (i = 0; i < sbr->n[1]; i++) {
01473 if (ch_data->bs_add_harmonic_flag) {
01474 const unsigned int m_midpoint =
01475 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
01476
01477 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
01478 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
01479 }
01480 }
01481
01482 for (i = 0; i < ilim; i++) {
01483 int additional_sinusoid_present = 0;
01484 for (m = table[i]; m < table[i + 1]; m++) {
01485 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
01486 additional_sinusoid_present = 1;
01487 break;
01488 }
01489 }
01490 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
01491 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
01492 }
01493 }
01494
01495 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
01496 }
01497
01499 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
01500 SpectralBandReplication *sbr, SBRData *ch_data)
01501 {
01502 int e, i, m;
01503
01504 if (sbr->bs_interpol_freq) {
01505 for (e = 0; e < ch_data->bs_num_env; e++) {
01506 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
01507 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
01508 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
01509
01510 for (m = 0; m < sbr->m[1]; m++) {
01511 float sum = 0.0f;
01512
01513 for (i = ilb; i < iub; i++) {
01514 sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
01515 X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
01516 }
01517 e_curr[e][m] = sum * recip_env_size;
01518 }
01519 }
01520 } else {
01521 int k, p;
01522
01523 for (e = 0; e < ch_data->bs_num_env; e++) {
01524 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
01525 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
01526 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
01527 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
01528
01529 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
01530 float sum = 0.0f;
01531 const int den = env_size * (table[p + 1] - table[p]);
01532
01533 for (k = table[p]; k < table[p + 1]; k++) {
01534 for (i = ilb; i < iub; i++) {
01535 sum += X_high[k][i][0] * X_high[k][i][0] +
01536 X_high[k][i][1] * X_high[k][i][1];
01537 }
01538 }
01539 sum /= den;
01540 for (k = table[p]; k < table[p + 1]; k++) {
01541 e_curr[e][k - sbr->kx[1]] = sum;
01542 }
01543 }
01544 }
01545 }
01546 }
01547
01552 static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
01553 SBRData *ch_data, const int e_a[2])
01554 {
01555 int e, k, m;
01556
01557 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
01558
01559 for (e = 0; e < ch_data->bs_num_env; e++) {
01560 int delta = !((e == e_a[1]) || (e == e_a[0]));
01561 for (k = 0; k < sbr->n_lim; k++) {
01562 float gain_boost, gain_max;
01563 float sum[2] = { 0.0f, 0.0f };
01564 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
01565 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
01566 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
01567 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
01568 if (!sbr->s_mapped[e][m]) {
01569 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
01570 ((1.0f + sbr->e_curr[e][m]) *
01571 (1.0f + sbr->q_mapped[e][m] * delta)));
01572 } else {
01573 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
01574 ((1.0f + sbr->e_curr[e][m]) *
01575 (1.0f + sbr->q_mapped[e][m])));
01576 }
01577 }
01578 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
01579 sum[0] += sbr->e_origmapped[e][m];
01580 sum[1] += sbr->e_curr[e][m];
01581 }
01582 gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
01583 gain_max = FFMIN(100000, gain_max);
01584 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
01585 float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
01586 sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
01587 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
01588 }
01589 sum[0] = sum[1] = 0.0f;
01590 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
01591 sum[0] += sbr->e_origmapped[e][m];
01592 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
01593 + sbr->s_m[e][m] * sbr->s_m[e][m]
01594 + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
01595 }
01596 gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
01597 gain_boost = FFMIN(1.584893192, gain_boost);
01598 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
01599 sbr->gain[e][m] *= gain_boost;
01600 sbr->q_m[e][m] *= gain_boost;
01601 sbr->s_m[e][m] *= gain_boost;
01602 }
01603 }
01604 }
01605 }
01606
01608 static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
01609 SpectralBandReplication *sbr, SBRData *ch_data,
01610 const int e_a[2])
01611 {
01612 int e, i, j, m;
01613 const int h_SL = 4 * !sbr->bs_smoothing_mode;
01614 const int kx = sbr->kx[1];
01615 const int m_max = sbr->m[1];
01616 static const float h_smooth[5] = {
01617 0.33333333333333,
01618 0.30150283239582,
01619 0.21816949906249,
01620 0.11516383427084,
01621 0.03183050093751,
01622 };
01623 static const int8_t phi[2][4] = {
01624 { 1, 0, -1, 0},
01625 { 0, 1, 0, -1},
01626 };
01627 float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
01628 int indexnoise = ch_data->f_indexnoise;
01629 int indexsine = ch_data->f_indexsine;
01630 memcpy(Y[0], Y[1], sizeof(Y[0]));
01631
01632 if (sbr->reset) {
01633 for (i = 0; i < h_SL; i++) {
01634 memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
01635 memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
01636 }
01637 } else if (h_SL) {
01638 memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
01639 memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
01640 }
01641
01642 for (e = 0; e < ch_data->bs_num_env; e++) {
01643 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
01644 memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
01645 memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
01646 }
01647 }
01648
01649 for (e = 0; e < ch_data->bs_num_env; e++) {
01650 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
01651 int phi_sign = (1 - 2*(kx & 1));
01652
01653 if (h_SL && e != e_a[0] && e != e_a[1]) {
01654 for (m = 0; m < m_max; m++) {
01655 const int idx1 = i + h_SL;
01656 float g_filt = 0.0f;
01657 for (j = 0; j <= h_SL; j++)
01658 g_filt += g_temp[idx1 - j][m] * h_smooth[j];
01659 Y[1][i][m + kx][0] =
01660 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
01661 Y[1][i][m + kx][1] =
01662 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
01663 }
01664 } else {
01665 for (m = 0; m < m_max; m++) {
01666 const float g_filt = g_temp[i + h_SL][m];
01667 Y[1][i][m + kx][0] =
01668 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
01669 Y[1][i][m + kx][1] =
01670 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
01671 }
01672 }
01673
01674 if (e != e_a[0] && e != e_a[1]) {
01675 for (m = 0; m < m_max; m++) {
01676 indexnoise = (indexnoise + 1) & 0x1ff;
01677 if (sbr->s_m[e][m]) {
01678 Y[1][i][m + kx][0] +=
01679 sbr->s_m[e][m] * phi[0][indexsine];
01680 Y[1][i][m + kx][1] +=
01681 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
01682 } else {
01683 float q_filt;
01684 if (h_SL) {
01685 const int idx1 = i + h_SL;
01686 q_filt = 0.0f;
01687 for (j = 0; j <= h_SL; j++)
01688 q_filt += q_temp[idx1 - j][m] * h_smooth[j];
01689 } else {
01690 q_filt = q_temp[i][m];
01691 }
01692 Y[1][i][m + kx][0] +=
01693 q_filt * sbr_noise_table[indexnoise][0];
01694 Y[1][i][m + kx][1] +=
01695 q_filt * sbr_noise_table[indexnoise][1];
01696 }
01697 phi_sign = -phi_sign;
01698 }
01699 } else {
01700 indexnoise = (indexnoise + m_max) & 0x1ff;
01701 for (m = 0; m < m_max; m++) {
01702 Y[1][i][m + kx][0] +=
01703 sbr->s_m[e][m] * phi[0][indexsine];
01704 Y[1][i][m + kx][1] +=
01705 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
01706 phi_sign = -phi_sign;
01707 }
01708 }
01709 indexsine = (indexsine + 1) & 3;
01710 }
01711 }
01712 ch_data->f_indexnoise = indexnoise;
01713 ch_data->f_indexsine = indexsine;
01714 }
01715
01716 void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
01717 float* L, float* R)
01718 {
01719 int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
01720 int ch;
01721 int nch = (id_aac == TYPE_CPE) ? 2 : 1;
01722
01723 if (sbr->start) {
01724 sbr_dequant(sbr, id_aac);
01725 }
01726 for (ch = 0; ch < nch; ch++) {
01727
01728 sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
01729 (float*)sbr->qmf_filter_scratch,
01730 sbr->data[ch].W, 1/(-1024 * ac->sf_scale));
01731 sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
01732 if (sbr->start) {
01733 sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
01734 sbr_chirp(sbr, &sbr->data[ch]);
01735 sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
01736 sbr->data[ch].bw_array, sbr->data[ch].t_env,
01737 sbr->data[ch].bs_num_env);
01738
01739
01740 sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
01741 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
01742 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
01743 sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
01744 sbr->data[ch].e_a);
01745 }
01746
01747
01748 sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch);
01749 }
01750
01751 if (ac->m4ac.ps == 1) {
01752 if (sbr->ps.start) {
01753 ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
01754 } else {
01755 memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
01756 }
01757 nch = 2;
01758 }
01759
01760 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch,
01761 sbr->data[0].synthesis_filterbank_samples,
01762 &sbr->data[0].synthesis_filterbank_samples_offset,
01763 downsampled,
01764 ac->add_bias, -1024 * ac->sf_scale);
01765 if (nch == 2)
01766 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch,
01767 sbr->data[1].synthesis_filterbank_samples,
01768 &sbr->data[1].synthesis_filterbank_samples_offset,
01769 downsampled,
01770 ac->add_bias, -1024 * ac->sf_scale);
01771 }