• Main Page
  • Related Pages
  • Modules
  • Data Structures
  • Files
  • File List
  • Globals

libavcodec/svq1enc.c

Go to the documentation of this file.
00001 /*
00002  * SVQ1 Encoder
00003  * Copyright (C) 2004 Mike Melanson <melanson@pcisys.net>
00004  *
00005  * This file is part of FFmpeg.
00006  *
00007  * FFmpeg is free software; you can redistribute it and/or
00008  * modify it under the terms of the GNU Lesser General Public
00009  * License as published by the Free Software Foundation; either
00010  * version 2.1 of the License, or (at your option) any later version.
00011  *
00012  * FFmpeg is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00015  * Lesser General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU Lesser General Public
00018  * License along with FFmpeg; if not, write to the Free Software
00019  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
00020  */
00021 
00030 #include "avcodec.h"
00031 #include "dsputil.h"
00032 #include "mpegvideo.h"
00033 #include "h263.h"
00034 #include "internal.h"
00035 
00036 #include "svq1.h"
00037 #include "svq1enc_cb.h"
00038 
00039 #undef NDEBUG
00040 #include <assert.h>
00041 
00042 
00043 typedef struct SVQ1Context {
00044     MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independent of MpegEncContext, so this will be removed then (FIXME/XXX)
00045     AVCodecContext *avctx;
00046     DSPContext dsp;
00047     AVFrame picture;
00048     AVFrame current_picture;
00049     AVFrame last_picture;
00050     PutBitContext pb;
00051     GetBitContext gb;
00052 
00053     PutBitContext reorder_pb[6]; //why ooh why this sick breadth first order, everything is slower and more complex
00054 
00055     int frame_width;
00056     int frame_height;
00057 
00058     /* Y plane block dimensions */
00059     int y_block_width;
00060     int y_block_height;
00061 
00062     /* U & V plane (C planes) block dimensions */
00063     int c_block_width;
00064     int c_block_height;
00065 
00066     uint16_t *mb_type;
00067     uint32_t *dummy;
00068     int16_t (*motion_val8[3])[2];
00069     int16_t (*motion_val16[3])[2];
00070 
00071     int64_t rd_total;
00072 
00073     uint8_t *scratchbuf;
00074 } SVQ1Context;
00075 
00076 static void svq1_write_header(SVQ1Context *s, int frame_type)
00077 {
00078     int i;
00079 
00080     /* frame code */
00081     put_bits(&s->pb, 22, 0x20);
00082 
00083     /* temporal reference (sure hope this is a "don't care") */
00084     put_bits(&s->pb, 8, 0x00);
00085 
00086     /* frame type */
00087     put_bits(&s->pb, 2, frame_type - 1);
00088 
00089     if (frame_type == FF_I_TYPE) {
00090 
00091         /* no checksum since frame code is 0x20 */
00092 
00093         /* no embedded string either */
00094 
00095         /* output 5 unknown bits (2 + 2 + 1) */
00096         put_bits(&s->pb, 5, 2); /* 2 needed by quicktime decoder */
00097 
00098         i= ff_match_2uint16(ff_svq1_frame_size_table, FF_ARRAY_ELEMS(ff_svq1_frame_size_table), s->frame_width, s->frame_height);
00099         put_bits(&s->pb, 3, i);
00100 
00101         if (i == 7)
00102         {
00103                 put_bits(&s->pb, 12, s->frame_width);
00104                 put_bits(&s->pb, 12, s->frame_height);
00105         }
00106     }
00107 
00108     /* no checksum or extra data (next 2 bits get 0) */
00109     put_bits(&s->pb, 2, 0);
00110 }
00111 
00112 
00113 #define QUALITY_THRESHOLD 100
00114 #define THRESHOLD_MULTIPLIER 0.6
00115 
00116 #if HAVE_ALTIVEC
00117 #undef vector
00118 #endif
00119 
00120 static int encode_block(SVQ1Context *s, uint8_t *src, uint8_t *ref, uint8_t *decoded, int stride, int level, int threshold, int lambda, int intra){
00121     int count, y, x, i, j, split, best_mean, best_score, best_count;
00122     int best_vector[6];
00123     int block_sum[7]= {0, 0, 0, 0, 0, 0};
00124     int w= 2<<((level+2)>>1);
00125     int h= 2<<((level+1)>>1);
00126     int size=w*h;
00127     int16_t block[7][256];
00128     const int8_t *codebook_sum, *codebook;
00129     const uint16_t (*mean_vlc)[2];
00130     const uint8_t (*multistage_vlc)[2];
00131 
00132     best_score=0;
00133     //FIXME optimize, this doenst need to be done multiple times
00134     if(intra){
00135         codebook_sum= svq1_intra_codebook_sum[level];
00136         codebook= ff_svq1_intra_codebooks[level];
00137         mean_vlc= ff_svq1_intra_mean_vlc;
00138         multistage_vlc= ff_svq1_intra_multistage_vlc[level];
00139         for(y=0; y<h; y++){
00140             for(x=0; x<w; x++){
00141                 int v= src[x + y*stride];
00142                 block[0][x + w*y]= v;
00143                 best_score += v*v;
00144                 block_sum[0] += v;
00145             }
00146         }
00147     }else{
00148         codebook_sum= svq1_inter_codebook_sum[level];
00149         codebook= ff_svq1_inter_codebooks[level];
00150         mean_vlc= ff_svq1_inter_mean_vlc + 256;
00151         multistage_vlc= ff_svq1_inter_multistage_vlc[level];
00152         for(y=0; y<h; y++){
00153             for(x=0; x<w; x++){
00154                 int v= src[x + y*stride] - ref[x + y*stride];
00155                 block[0][x + w*y]= v;
00156                 best_score += v*v;
00157                 block_sum[0] += v;
00158             }
00159         }
00160     }
00161 
00162     best_count=0;
00163     best_score -= ((block_sum[0]*block_sum[0])>>(level+3));
00164     best_mean= (block_sum[0] + (size>>1)) >> (level+3);
00165 
00166     if(level<4){
00167         for(count=1; count<7; count++){
00168             int best_vector_score= INT_MAX;
00169             int best_vector_sum=-999, best_vector_mean=-999;
00170             const int stage= count-1;
00171             const int8_t *vector;
00172 
00173             for(i=0; i<16; i++){
00174                 int sum= codebook_sum[stage*16 + i];
00175                 int sqr, diff, score;
00176 
00177                 vector = codebook + stage*size*16 + i*size;
00178                 sqr = s->dsp.ssd_int8_vs_int16(vector, block[stage], size);
00179                 diff= block_sum[stage] - sum;
00180                 score= sqr - ((diff*(int64_t)diff)>>(level+3)); //FIXME 64bit slooow
00181                 if(score < best_vector_score){
00182                     int mean= (diff + (size>>1)) >> (level+3);
00183                     assert(mean >-300 && mean<300);
00184                     mean= av_clip(mean, intra?0:-256, 255);
00185                     best_vector_score= score;
00186                     best_vector[stage]= i;
00187                     best_vector_sum= sum;
00188                     best_vector_mean= mean;
00189                 }
00190             }
00191             assert(best_vector_mean != -999);
00192             vector= codebook + stage*size*16 + best_vector[stage]*size;
00193             for(j=0; j<size; j++){
00194                 block[stage+1][j] = block[stage][j] - vector[j];
00195             }
00196             block_sum[stage+1]= block_sum[stage] - best_vector_sum;
00197             best_vector_score +=
00198                 lambda*(+ 1 + 4*count
00199                         + multistage_vlc[1+count][1]
00200                         + mean_vlc[best_vector_mean][1]);
00201 
00202             if(best_vector_score < best_score){
00203                 best_score= best_vector_score;
00204                 best_count= count;
00205                 best_mean= best_vector_mean;
00206             }
00207         }
00208     }
00209 
00210     split=0;
00211     if(best_score > threshold && level){
00212         int score=0;
00213         int offset= (level&1) ? stride*h/2 : w/2;
00214         PutBitContext backup[6];
00215 
00216         for(i=level-1; i>=0; i--){
00217             backup[i]= s->reorder_pb[i];
00218         }
00219         score += encode_block(s, src         , ref         , decoded         , stride, level-1, threshold>>1, lambda, intra);
00220         score += encode_block(s, src + offset, ref + offset, decoded + offset, stride, level-1, threshold>>1, lambda, intra);
00221         score += lambda;
00222 
00223         if(score < best_score){
00224             best_score= score;
00225             split=1;
00226         }else{
00227             for(i=level-1; i>=0; i--){
00228                 s->reorder_pb[i]= backup[i];
00229             }
00230         }
00231     }
00232     if (level > 0)
00233         put_bits(&s->reorder_pb[level], 1, split);
00234 
00235     if(!split){
00236         assert((best_mean >= 0 && best_mean<256) || !intra);
00237         assert(best_mean >= -256 && best_mean<256);
00238         assert(best_count >=0 && best_count<7);
00239         assert(level<4 || best_count==0);
00240 
00241         /* output the encoding */
00242         put_bits(&s->reorder_pb[level],
00243             multistage_vlc[1 + best_count][1],
00244             multistage_vlc[1 + best_count][0]);
00245         put_bits(&s->reorder_pb[level], mean_vlc[best_mean][1],
00246             mean_vlc[best_mean][0]);
00247 
00248         for (i = 0; i < best_count; i++){
00249             assert(best_vector[i]>=0 && best_vector[i]<16);
00250             put_bits(&s->reorder_pb[level], 4, best_vector[i]);
00251         }
00252 
00253         for(y=0; y<h; y++){
00254             for(x=0; x<w; x++){
00255                 decoded[x + y*stride]= src[x + y*stride] - block[best_count][x + w*y] + best_mean;
00256             }
00257         }
00258     }
00259 
00260     return best_score;
00261 }
00262 
00263 
00264 static int svq1_encode_plane(SVQ1Context *s, int plane, unsigned char *src_plane, unsigned char *ref_plane, unsigned char *decoded_plane,
00265     int width, int height, int src_stride, int stride)
00266 {
00267     int x, y;
00268     int i;
00269     int block_width, block_height;
00270     int level;
00271     int threshold[6];
00272     uint8_t *src = s->scratchbuf + stride * 16;
00273     const int lambda= (s->picture.quality*s->picture.quality) >> (2*FF_LAMBDA_SHIFT);
00274 
00275     /* figure out the acceptable level thresholds in advance */
00276     threshold[5] = QUALITY_THRESHOLD;
00277     for (level = 4; level >= 0; level--)
00278         threshold[level] = threshold[level + 1] * THRESHOLD_MULTIPLIER;
00279 
00280     block_width = (width + 15) / 16;
00281     block_height = (height + 15) / 16;
00282 
00283     if(s->picture.pict_type == FF_P_TYPE){
00284         s->m.avctx= s->avctx;
00285         s->m.current_picture_ptr= &s->m.current_picture;
00286         s->m.last_picture_ptr   = &s->m.last_picture;
00287         s->m.last_picture.data[0]= ref_plane;
00288         s->m.linesize=
00289         s->m.last_picture.linesize[0]=
00290         s->m.new_picture.linesize[0]=
00291         s->m.current_picture.linesize[0]= stride;
00292         s->m.width= width;
00293         s->m.height= height;
00294         s->m.mb_width= block_width;
00295         s->m.mb_height= block_height;
00296         s->m.mb_stride= s->m.mb_width+1;
00297         s->m.b8_stride= 2*s->m.mb_width+1;
00298         s->m.f_code=1;
00299         s->m.pict_type= s->picture.pict_type;
00300         s->m.me_method= s->avctx->me_method;
00301         s->m.me.scene_change_score=0;
00302         s->m.flags= s->avctx->flags;
00303 //        s->m.out_format = FMT_H263;
00304 //        s->m.unrestricted_mv= 1;
00305 
00306         s->m.lambda= s->picture.quality;
00307         s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
00308         s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
00309 
00310         if(!s->motion_val8[plane]){
00311             s->motion_val8 [plane]= av_mallocz((s->m.b8_stride*block_height*2 + 2)*2*sizeof(int16_t));
00312             s->motion_val16[plane]= av_mallocz((s->m.mb_stride*(block_height + 2) + 1)*2*sizeof(int16_t));
00313         }
00314 
00315         s->m.mb_type= s->mb_type;
00316 
00317         //dummies, to avoid segfaults
00318         s->m.current_picture.mb_mean=   (uint8_t *)s->dummy;
00319         s->m.current_picture.mb_var=    (uint16_t*)s->dummy;
00320         s->m.current_picture.mc_mb_var= (uint16_t*)s->dummy;
00321         s->m.current_picture.mb_type= s->dummy;
00322 
00323         s->m.current_picture.motion_val[0]= s->motion_val8[plane] + 2;
00324         s->m.p_mv_table= s->motion_val16[plane] + s->m.mb_stride + 1;
00325         s->m.dsp= s->dsp; //move
00326         ff_init_me(&s->m);
00327 
00328         s->m.me.dia_size= s->avctx->dia_size;
00329         s->m.first_slice_line=1;
00330         for (y = 0; y < block_height; y++) {
00331             s->m.new_picture.data[0]= src - y*16*stride; //ugly
00332             s->m.mb_y= y;
00333 
00334             for(i=0; i<16 && i + 16*y<height; i++){
00335                 memcpy(&src[i*stride], &src_plane[(i+16*y)*src_stride], width);
00336                 for(x=width; x<16*block_width; x++)
00337                     src[i*stride+x]= src[i*stride+x-1];
00338             }
00339             for(; i<16 && i + 16*y<16*block_height; i++)
00340                 memcpy(&src[i*stride], &src[(i-1)*stride], 16*block_width);
00341 
00342             for (x = 0; x < block_width; x++) {
00343                 s->m.mb_x= x;
00344                 ff_init_block_index(&s->m);
00345                 ff_update_block_index(&s->m);
00346 
00347                 ff_estimate_p_frame_motion(&s->m, x, y);
00348             }
00349             s->m.first_slice_line=0;
00350         }
00351 
00352         ff_fix_long_p_mvs(&s->m);
00353         ff_fix_long_mvs(&s->m, NULL, 0, s->m.p_mv_table, s->m.f_code, CANDIDATE_MB_TYPE_INTER, 0);
00354     }
00355 
00356     s->m.first_slice_line=1;
00357     for (y = 0; y < block_height; y++) {
00358         for(i=0; i<16 && i + 16*y<height; i++){
00359             memcpy(&src[i*stride], &src_plane[(i+16*y)*src_stride], width);
00360             for(x=width; x<16*block_width; x++)
00361                 src[i*stride+x]= src[i*stride+x-1];
00362         }
00363         for(; i<16 && i + 16*y<16*block_height; i++)
00364             memcpy(&src[i*stride], &src[(i-1)*stride], 16*block_width);
00365 
00366         s->m.mb_y= y;
00367         for (x = 0; x < block_width; x++) {
00368             uint8_t reorder_buffer[3][6][7*32];
00369             int count[3][6];
00370             int offset = y * 16 * stride + x * 16;
00371             uint8_t *decoded= decoded_plane + offset;
00372             uint8_t *ref= ref_plane + offset;
00373             int score[4]={0,0,0,0}, best;
00374             uint8_t *temp = s->scratchbuf;
00375 
00376             if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3000){ //FIXME check size
00377                 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
00378                 return -1;
00379             }
00380 
00381             s->m.mb_x= x;
00382             ff_init_block_index(&s->m);
00383             ff_update_block_index(&s->m);
00384 
00385             if(s->picture.pict_type == FF_I_TYPE || (s->m.mb_type[x + y*s->m.mb_stride]&CANDIDATE_MB_TYPE_INTRA)){
00386                 for(i=0; i<6; i++){
00387                     init_put_bits(&s->reorder_pb[i], reorder_buffer[0][i], 7*32);
00388                 }
00389                 if(s->picture.pict_type == FF_P_TYPE){
00390                     const uint8_t *vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_INTRA];
00391                     put_bits(&s->reorder_pb[5], vlc[1], vlc[0]);
00392                     score[0]= vlc[1]*lambda;
00393                 }
00394                 score[0]+= encode_block(s, src+16*x, NULL, temp, stride, 5, 64, lambda, 1);
00395                 for(i=0; i<6; i++){
00396                     count[0][i]= put_bits_count(&s->reorder_pb[i]);
00397                     flush_put_bits(&s->reorder_pb[i]);
00398                 }
00399             }else
00400                 score[0]= INT_MAX;
00401 
00402             best=0;
00403 
00404             if(s->picture.pict_type == FF_P_TYPE){
00405                 const uint8_t *vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_INTER];
00406                 int mx, my, pred_x, pred_y, dxy;
00407                 int16_t *motion_ptr;
00408 
00409                 motion_ptr= h263_pred_motion(&s->m, 0, 0, &pred_x, &pred_y);
00410                 if(s->m.mb_type[x + y*s->m.mb_stride]&CANDIDATE_MB_TYPE_INTER){
00411                     for(i=0; i<6; i++)
00412                         init_put_bits(&s->reorder_pb[i], reorder_buffer[1][i], 7*32);
00413 
00414                     put_bits(&s->reorder_pb[5], vlc[1], vlc[0]);
00415 
00416                     s->m.pb= s->reorder_pb[5];
00417                     mx= motion_ptr[0];
00418                     my= motion_ptr[1];
00419                     assert(mx>=-32 && mx<=31);
00420                     assert(my>=-32 && my<=31);
00421                     assert(pred_x>=-32 && pred_x<=31);
00422                     assert(pred_y>=-32 && pred_y<=31);
00423                     ff_h263_encode_motion(&s->m, mx - pred_x, 1);
00424                     ff_h263_encode_motion(&s->m, my - pred_y, 1);
00425                     s->reorder_pb[5]= s->m.pb;
00426                     score[1] += lambda*put_bits_count(&s->reorder_pb[5]);
00427 
00428                     dxy= (mx&1) + 2*(my&1);
00429 
00430                     s->dsp.put_pixels_tab[0][dxy](temp+16, ref + (mx>>1) + stride*(my>>1), stride, 16);
00431 
00432                     score[1]+= encode_block(s, src+16*x, temp+16, decoded, stride, 5, 64, lambda, 0);
00433                     best= score[1] <= score[0];
00434 
00435                     vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_SKIP];
00436                     score[2]= s->dsp.sse[0](NULL, src+16*x, ref, stride, 16);
00437                     score[2]+= vlc[1]*lambda;
00438                     if(score[2] < score[best] && mx==0 && my==0){
00439                         best=2;
00440                         s->dsp.put_pixels_tab[0][0](decoded, ref, stride, 16);
00441                         for(i=0; i<6; i++){
00442                             count[2][i]=0;
00443                         }
00444                         put_bits(&s->pb, vlc[1], vlc[0]);
00445                     }
00446                 }
00447 
00448                 if(best==1){
00449                     for(i=0; i<6; i++){
00450                         count[1][i]= put_bits_count(&s->reorder_pb[i]);
00451                         flush_put_bits(&s->reorder_pb[i]);
00452                     }
00453                 }else{
00454                     motion_ptr[0                 ] = motion_ptr[1                 ]=
00455                     motion_ptr[2                 ] = motion_ptr[3                 ]=
00456                     motion_ptr[0+2*s->m.b8_stride] = motion_ptr[1+2*s->m.b8_stride]=
00457                     motion_ptr[2+2*s->m.b8_stride] = motion_ptr[3+2*s->m.b8_stride]=0;
00458                 }
00459             }
00460 
00461             s->rd_total += score[best];
00462 
00463             for(i=5; i>=0; i--){
00464                 ff_copy_bits(&s->pb, reorder_buffer[best][i], count[best][i]);
00465             }
00466             if(best==0){
00467                 s->dsp.put_pixels_tab[0][0](decoded, temp, stride, 16);
00468             }
00469         }
00470         s->m.first_slice_line=0;
00471     }
00472     return 0;
00473 }
00474 
00475 static av_cold int svq1_encode_init(AVCodecContext *avctx)
00476 {
00477     SVQ1Context * const s = avctx->priv_data;
00478 
00479     dsputil_init(&s->dsp, avctx);
00480     avctx->coded_frame= (AVFrame*)&s->picture;
00481 
00482     s->frame_width = avctx->width;
00483     s->frame_height = avctx->height;
00484 
00485     s->y_block_width = (s->frame_width + 15) / 16;
00486     s->y_block_height = (s->frame_height + 15) / 16;
00487 
00488     s->c_block_width = (s->frame_width / 4 + 15) / 16;
00489     s->c_block_height = (s->frame_height / 4 + 15) / 16;
00490 
00491     s->avctx= avctx;
00492     s->m.avctx= avctx;
00493     s->m.me.temp      =
00494     s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
00495     s->m.me.map       = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
00496     s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
00497     s->mb_type        = av_mallocz((s->y_block_width+1)*s->y_block_height*sizeof(int16_t));
00498     s->dummy          = av_mallocz((s->y_block_width+1)*s->y_block_height*sizeof(int32_t));
00499     h263_encode_init(&s->m); //mv_penalty
00500 
00501     return 0;
00502 }
00503 
00504 static int svq1_encode_frame(AVCodecContext *avctx, unsigned char *buf,
00505     int buf_size, void *data)
00506 {
00507     SVQ1Context * const s = avctx->priv_data;
00508     AVFrame *pict = data;
00509     AVFrame * const p= (AVFrame*)&s->picture;
00510     AVFrame temp;
00511     int i;
00512 
00513     if(avctx->pix_fmt != PIX_FMT_YUV410P){
00514         av_log(avctx, AV_LOG_ERROR, "unsupported pixel format\n");
00515         return -1;
00516     }
00517 
00518     if(!s->current_picture.data[0]){
00519         avctx->get_buffer(avctx, &s->current_picture);
00520         avctx->get_buffer(avctx, &s->last_picture);
00521         s->scratchbuf = av_malloc(s->current_picture.linesize[0] * 16 * 2);
00522     }
00523 
00524     temp= s->current_picture;
00525     s->current_picture= s->last_picture;
00526     s->last_picture= temp;
00527 
00528     init_put_bits(&s->pb, buf, buf_size);
00529 
00530     *p = *pict;
00531     p->pict_type = avctx->gop_size && avctx->frame_number % avctx->gop_size ? FF_P_TYPE : FF_I_TYPE;
00532     p->key_frame = p->pict_type == FF_I_TYPE;
00533 
00534     svq1_write_header(s, p->pict_type);
00535     for(i=0; i<3; i++){
00536         if(svq1_encode_plane(s, i,
00537             s->picture.data[i], s->last_picture.data[i], s->current_picture.data[i],
00538             s->frame_width / (i?4:1), s->frame_height / (i?4:1),
00539             s->picture.linesize[i], s->current_picture.linesize[i]) < 0)
00540                 return -1;
00541     }
00542 
00543 //    align_put_bits(&s->pb);
00544     while(put_bits_count(&s->pb) & 31)
00545         put_bits(&s->pb, 1, 0);
00546 
00547     flush_put_bits(&s->pb);
00548 
00549     return put_bits_count(&s->pb) / 8;
00550 }
00551 
00552 static av_cold int svq1_encode_end(AVCodecContext *avctx)
00553 {
00554     SVQ1Context * const s = avctx->priv_data;
00555     int i;
00556 
00557     av_log(avctx, AV_LOG_DEBUG, "RD: %f\n", s->rd_total/(double)(avctx->width*avctx->height*avctx->frame_number));
00558 
00559     av_freep(&s->m.me.scratchpad);
00560     av_freep(&s->m.me.map);
00561     av_freep(&s->m.me.score_map);
00562     av_freep(&s->mb_type);
00563     av_freep(&s->dummy);
00564     av_freep(&s->scratchbuf);
00565 
00566     for(i=0; i<3; i++){
00567         av_freep(&s->motion_val8[i]);
00568         av_freep(&s->motion_val16[i]);
00569     }
00570 
00571     return 0;
00572 }
00573 
00574 
00575 AVCodec svq1_encoder = {
00576     "svq1",
00577     AVMEDIA_TYPE_VIDEO,
00578     CODEC_ID_SVQ1,
00579     sizeof(SVQ1Context),
00580     svq1_encode_init,
00581     svq1_encode_frame,
00582     svq1_encode_end,
00583     .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV410P, PIX_FMT_NONE},
00584     .long_name= NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 1 / Sorenson Video 1 / SVQ1"),
00585 };

Generated on Fri Sep 16 2011 17:17:43 for FFmpeg by  doxygen 1.7.1