• Main Page
  • Related Pages
  • Modules
  • Data Structures
  • Files
  • File List
  • Globals

libavcodec/aacps.c

Go to the documentation of this file.
00001 /*
00002  * MPEG-4 Parametric Stereo decoding functions
00003  * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
00004  *
00005  * This file is part of FFmpeg.
00006  *
00007  * FFmpeg is free software; you can redistribute it and/or
00008  * modify it under the terms of the GNU Lesser General Public
00009  * License as published by the Free Software Foundation; either
00010  * version 2.1 of the License, or (at your option) any later version.
00011  *
00012  * FFmpeg is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00015  * Lesser General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU Lesser General Public
00018  * License along with FFmpeg; if not, write to the Free Software
00019  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
00020  */
00021 
00022 #include <stdint.h>
00023 #include "libavutil/common.h"
00024 #include "libavutil/mathematics.h"
00025 #include "avcodec.h"
00026 #include "get_bits.h"
00027 #include "aacps.h"
00028 #include "aacps_tablegen.h"
00029 #include "aacpsdata.c"
00030 
00031 #define PS_BASELINE 0  //< Operate in Baseline PS mode
00032                        //< Baseline implies 10 or 20 stereo bands,
00033                        //< mixing mode A, and no ipd/opd
00034 
00035 #define numQMFSlots 32 //numTimeSlots * RATE
00036 
00037 static const int8_t num_env_tab[2][4] = {
00038     { 0, 1, 2, 4, },
00039     { 1, 2, 3, 4, },
00040 };
00041 
00042 static const int8_t nr_iidicc_par_tab[] = {
00043     10, 20, 34, 10, 20, 34,
00044 };
00045 
00046 static const int8_t nr_iidopd_par_tab[] = {
00047      5, 11, 17,  5, 11, 17,
00048 };
00049 
00050 enum {
00051     huff_iid_df1,
00052     huff_iid_dt1,
00053     huff_iid_df0,
00054     huff_iid_dt0,
00055     huff_icc_df,
00056     huff_icc_dt,
00057     huff_ipd_df,
00058     huff_ipd_dt,
00059     huff_opd_df,
00060     huff_opd_dt,
00061 };
00062 
00063 static const int huff_iid[] = {
00064     huff_iid_df0,
00065     huff_iid_df1,
00066     huff_iid_dt0,
00067     huff_iid_dt1,
00068 };
00069 
00070 static VLC vlc_ps[10];
00071 
00084 #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
00085 static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
00086                         int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
00087 { \
00088     int b, num = ps->nr_ ## PAR ## _par; \
00089     VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
00090     if (dt) { \
00091         int e_prev = e ? e - 1 : ps->num_env_old - 1; \
00092         e_prev = FFMAX(e_prev, 0); \
00093         for (b = 0; b < num; b++) { \
00094             int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
00095             if (MASK) val &= MASK; \
00096             PAR[e][b] = val; \
00097             if (ERR_CONDITION) \
00098                 goto err; \
00099         } \
00100     } else { \
00101         int val = 0; \
00102         for (b = 0; b < num; b++) { \
00103             val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
00104             if (MASK) val &= MASK; \
00105             PAR[e][b] = val; \
00106             if (ERR_CONDITION) \
00107                 goto err; \
00108         } \
00109     } \
00110     return 0; \
00111 err: \
00112     av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
00113     return -1; \
00114 }
00115 
00116 READ_PAR_DATA(iid,    huff_offset[table_idx],    0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
00117 READ_PAR_DATA(icc,    huff_offset[table_idx],    0, ps->icc_par[e][b] > 7U)
00118 READ_PAR_DATA(ipdopd,                      0, 0x07, 0)
00119 
00120 static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
00121 {
00122     int e;
00123     int count = get_bits_count(gb);
00124 
00125     if (ps_extension_id)
00126         return 0;
00127 
00128     ps->enable_ipdopd = get_bits1(gb);
00129     if (ps->enable_ipdopd) {
00130         for (e = 0; e < ps->num_env; e++) {
00131             int dt = get_bits1(gb);
00132             read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
00133             dt = get_bits1(gb);
00134             read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
00135         }
00136     }
00137     skip_bits1(gb);      //reserved_ps
00138     return get_bits_count(gb) - count;
00139 }
00140 
00141 static void ipdopd_reset(int8_t *opd_hist, int8_t *ipd_hist)
00142 {
00143     int i;
00144     for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
00145         opd_hist[i] = 0;
00146         ipd_hist[i] = 0;
00147     }
00148 }
00149 
00150 int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
00151 {
00152     int e;
00153     int bit_count_start = get_bits_count(gb_host);
00154     int header;
00155     int bits_consumed;
00156     GetBitContext gbc = *gb_host, *gb = &gbc;
00157 
00158     header = get_bits1(gb);
00159     if (header) {     //enable_ps_header
00160         ps->enable_iid = get_bits1(gb);
00161         if (ps->enable_iid) {
00162             int iid_mode = get_bits(gb, 3);
00163             if (iid_mode > 5) {
00164                 av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
00165                        iid_mode);
00166                 goto err;
00167             }
00168             ps->nr_iid_par    = nr_iidicc_par_tab[iid_mode];
00169             ps->iid_quant     = iid_mode > 2;
00170             ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
00171         }
00172         ps->enable_icc = get_bits1(gb);
00173         if (ps->enable_icc) {
00174             ps->icc_mode = get_bits(gb, 3);
00175             if (ps->icc_mode > 5) {
00176                 av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
00177                        ps->icc_mode);
00178                 goto err;
00179             }
00180             ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
00181         }
00182         ps->enable_ext = get_bits1(gb);
00183     }
00184 
00185     ps->frame_class = get_bits1(gb);
00186     ps->num_env_old = ps->num_env;
00187     ps->num_env     = num_env_tab[ps->frame_class][get_bits(gb, 2)];
00188 
00189     ps->border_position[0] = -1;
00190     if (ps->frame_class) {
00191         for (e = 1; e <= ps->num_env; e++)
00192             ps->border_position[e] = get_bits(gb, 5);
00193     } else
00194         for (e = 1; e <= ps->num_env; e++)
00195             ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
00196 
00197     if (ps->enable_iid) {
00198         for (e = 0; e < ps->num_env; e++) {
00199             int dt = get_bits1(gb);
00200             if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
00201                 goto err;
00202         }
00203     } else
00204         memset(ps->iid_par, 0, sizeof(ps->iid_par));
00205 
00206     if (ps->enable_icc)
00207         for (e = 0; e < ps->num_env; e++) {
00208             int dt = get_bits1(gb);
00209             if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
00210                 goto err;
00211         }
00212     else
00213         memset(ps->icc_par, 0, sizeof(ps->icc_par));
00214 
00215     if (ps->enable_ext) {
00216         int cnt = get_bits(gb, 4);
00217         if (cnt == 15) {
00218             cnt += get_bits(gb, 8);
00219         }
00220         cnt *= 8;
00221         while (cnt > 7) {
00222             int ps_extension_id = get_bits(gb, 2);
00223             cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
00224         }
00225         if (cnt < 0) {
00226             av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d", cnt);
00227             goto err;
00228         }
00229         skip_bits(gb, cnt);
00230     }
00231 
00232     ps->enable_ipdopd &= !PS_BASELINE;
00233 
00234     //Fix up envelopes
00235     if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
00236         //Create a fake envelope
00237         int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
00238         if (source >= 0 && source != ps->num_env) {
00239             if (ps->enable_iid) {
00240                 memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
00241             }
00242             if (ps->enable_icc) {
00243                 memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
00244             }
00245             if (ps->enable_ipdopd) {
00246                 memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
00247                 memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
00248             }
00249         }
00250         ps->num_env++;
00251         ps->border_position[ps->num_env] = numQMFSlots - 1;
00252     }
00253 
00254 
00255     ps->is34bands_old = ps->is34bands;
00256     if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
00257         ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
00258                         (ps->enable_icc && ps->nr_icc_par == 34);
00259 
00260     //Baseline
00261     if (!ps->enable_ipdopd) {
00262         memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
00263         memset(ps->opd_par, 0, sizeof(ps->opd_par));
00264     }
00265 
00266     if (header)
00267         ps->start = 1;
00268 
00269     bits_consumed = get_bits_count(gb) - bit_count_start;
00270     if (bits_consumed <= bits_left) {
00271         skip_bits_long(gb_host, bits_consumed);
00272         return bits_consumed;
00273     }
00274     av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
00275 err:
00276     ps->start = 0;
00277     skip_bits_long(gb_host, bits_left);
00278     return bits_left;
00279 }
00280 
00283 static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[7], int len, int reverse)
00284 {
00285     int i, j;
00286     for (i = 0; i < len; i++, in++) {
00287         float re_in = filter[6] * in[6][0];          //real inphase
00288         float re_op = 0.0f;                          //real out of phase
00289         float im_in = filter[6] * in[6][1];          //imag inphase
00290         float im_op = 0.0f;                          //imag out of phase
00291         for (j = 0; j < 6; j += 2) {
00292             re_op += filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
00293             im_op += filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
00294         }
00295         out[ reverse][i][0] = re_in + re_op;
00296         out[ reverse][i][1] = im_in + im_op;
00297         out[!reverse][i][0] = re_in - re_op;
00298         out[!reverse][i][1] = im_in - im_op;
00299     }
00300 }
00301 
00303 static void hybrid6_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int len)
00304 {
00305     int i, j, ssb;
00306     int N = 8;
00307     float temp[8][2];
00308 
00309     for (i = 0; i < len; i++, in++) {
00310         for (ssb = 0; ssb < N; ssb++) {
00311             float sum_re = filter[ssb][6][0] * in[6][0], sum_im = filter[ssb][6][0] * in[6][1];
00312             for (j = 0; j < 6; j++) {
00313                 float in0_re = in[j][0];
00314                 float in0_im = in[j][1];
00315                 float in1_re = in[12-j][0];
00316                 float in1_im = in[12-j][1];
00317                 sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
00318                 sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
00319             }
00320             temp[ssb][0] = sum_re;
00321             temp[ssb][1] = sum_im;
00322         }
00323         out[0][i][0] = temp[6][0];
00324         out[0][i][1] = temp[6][1];
00325         out[1][i][0] = temp[7][0];
00326         out[1][i][1] = temp[7][1];
00327         out[2][i][0] = temp[0][0];
00328         out[2][i][1] = temp[0][1];
00329         out[3][i][0] = temp[1][0];
00330         out[3][i][1] = temp[1][1];
00331         out[4][i][0] = temp[2][0] + temp[5][0];
00332         out[4][i][1] = temp[2][1] + temp[5][1];
00333         out[5][i][0] = temp[3][0] + temp[4][0];
00334         out[5][i][1] = temp[3][1] + temp[4][1];
00335     }
00336 }
00337 
00338 static void hybrid4_8_12_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int N, int len)
00339 {
00340     int i, j, ssb;
00341 
00342     for (i = 0; i < len; i++, in++) {
00343         for (ssb = 0; ssb < N; ssb++) {
00344             float sum_re = filter[ssb][6][0] * in[6][0], sum_im = filter[ssb][6][0] * in[6][1];
00345             for (j = 0; j < 6; j++) {
00346                 float in0_re = in[j][0];
00347                 float in0_im = in[j][1];
00348                 float in1_re = in[12-j][0];
00349                 float in1_im = in[12-j][1];
00350                 sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
00351                 sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
00352             }
00353             out[ssb][i][0] = sum_re;
00354             out[ssb][i][1] = sum_im;
00355         }
00356     }
00357 }
00358 
00359 static void hybrid_analysis(float out[91][32][2], float in[5][44][2], float L[2][38][64], int is34, int len)
00360 {
00361     int i, j;
00362     for (i = 0; i < 5; i++) {
00363         for (j = 0; j < 38; j++) {
00364             in[i][j+6][0] = L[0][j][i];
00365             in[i][j+6][1] = L[1][j][i];
00366         }
00367     }
00368     if (is34) {
00369         hybrid4_8_12_cx(in[0], out,    f34_0_12, 12, len);
00370         hybrid4_8_12_cx(in[1], out+12, f34_1_8,   8, len);
00371         hybrid4_8_12_cx(in[2], out+20, f34_2_4,   4, len);
00372         hybrid4_8_12_cx(in[3], out+24, f34_2_4,   4, len);
00373         hybrid4_8_12_cx(in[4], out+28, f34_2_4,   4, len);
00374         for (i = 0; i < 59; i++) {
00375             for (j = 0; j < len; j++) {
00376                 out[i+32][j][0] = L[0][j][i+5];
00377                 out[i+32][j][1] = L[1][j][i+5];
00378             }
00379         }
00380     } else {
00381         hybrid6_cx(in[0], out, f20_0_8, len);
00382         hybrid2_re(in[1], out+6, g1_Q2, len, 1);
00383         hybrid2_re(in[2], out+8, g1_Q2, len, 0);
00384         for (i = 0; i < 61; i++) {
00385             for (j = 0; j < len; j++) {
00386                 out[i+10][j][0] = L[0][j][i+3];
00387                 out[i+10][j][1] = L[1][j][i+3];
00388             }
00389         }
00390     }
00391     //update in_buf
00392     for (i = 0; i < 5; i++) {
00393         memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
00394     }
00395 }
00396 
00397 static void hybrid_synthesis(float out[2][38][64], float in[91][32][2], int is34, int len)
00398 {
00399     int i, n;
00400     if (is34) {
00401         for (n = 0; n < len; n++) {
00402             memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
00403             memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
00404             for (i = 0; i < 12; i++) {
00405                 out[0][n][0] += in[   i][n][0];
00406                 out[1][n][0] += in[   i][n][1];
00407             }
00408             for (i = 0; i < 8; i++) {
00409                 out[0][n][1] += in[12+i][n][0];
00410                 out[1][n][1] += in[12+i][n][1];
00411             }
00412             for (i = 0; i < 4; i++) {
00413                 out[0][n][2] += in[20+i][n][0];
00414                 out[1][n][2] += in[20+i][n][1];
00415                 out[0][n][3] += in[24+i][n][0];
00416                 out[1][n][3] += in[24+i][n][1];
00417                 out[0][n][4] += in[28+i][n][0];
00418                 out[1][n][4] += in[28+i][n][1];
00419             }
00420         }
00421         for (i = 0; i < 59; i++) {
00422             for (n = 0; n < len; n++) {
00423                 out[0][n][i+5] = in[i+32][n][0];
00424                 out[1][n][i+5] = in[i+32][n][1];
00425             }
00426         }
00427     } else {
00428         for (n = 0; n < len; n++) {
00429             out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
00430                            in[3][n][0] + in[4][n][0] + in[5][n][0];
00431             out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
00432                            in[3][n][1] + in[4][n][1] + in[5][n][1];
00433             out[0][n][1] = in[6][n][0] + in[7][n][0];
00434             out[1][n][1] = in[6][n][1] + in[7][n][1];
00435             out[0][n][2] = in[8][n][0] + in[9][n][0];
00436             out[1][n][2] = in[8][n][1] + in[9][n][1];
00437         }
00438         for (i = 0; i < 61; i++) {
00439             for (n = 0; n < len; n++) {
00440                 out[0][n][i+3] = in[i+10][n][0];
00441                 out[1][n][i+3] = in[i+10][n][1];
00442             }
00443         }
00444     }
00445 }
00446 
00448 #define DECAY_SLOPE      0.05f
00449 
00450 static const int   NR_PAR_BANDS[]      = { 20, 34 };
00452 static const int   NR_BANDS[]          = { 71, 91 };
00454 static const int   DECAY_CUTOFF[]      = { 10, 32 };
00456 static const int   NR_ALLPASS_BANDS[]  = { 30, 50 };
00458 static const int   SHORT_DELAY_BAND[]  = { 42, 62 };
00459 
00461 static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
00462 {
00463     int b;
00464     if (full)
00465         b = 9;
00466     else {
00467         b = 4;
00468         par_mapped[10] = 0;
00469     }
00470     for (; b >= 0; b--) {
00471         par_mapped[2*b+1] = par_mapped[2*b] = par[b];
00472     }
00473 }
00474 
00475 static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
00476 {
00477     par_mapped[ 0] = (2*par[ 0] +   par[ 1]) / 3;
00478     par_mapped[ 1] = (  par[ 1] + 2*par[ 2]) / 3;
00479     par_mapped[ 2] = (2*par[ 3] +   par[ 4]) / 3;
00480     par_mapped[ 3] = (  par[ 4] + 2*par[ 5]) / 3;
00481     par_mapped[ 4] = (  par[ 6] +   par[ 7]) / 2;
00482     par_mapped[ 5] = (  par[ 8] +   par[ 9]) / 2;
00483     par_mapped[ 6] =    par[10];
00484     par_mapped[ 7] =    par[11];
00485     par_mapped[ 8] = (  par[12] +   par[13]) / 2;
00486     par_mapped[ 9] = (  par[14] +   par[15]) / 2;
00487     par_mapped[10] =    par[16];
00488     if (full) {
00489         par_mapped[11] =    par[17];
00490         par_mapped[12] =    par[18];
00491         par_mapped[13] =    par[19];
00492         par_mapped[14] = (  par[20] +   par[21]) / 2;
00493         par_mapped[15] = (  par[22] +   par[23]) / 2;
00494         par_mapped[16] = (  par[24] +   par[25]) / 2;
00495         par_mapped[17] = (  par[26] +   par[27]) / 2;
00496         par_mapped[18] = (  par[28] +   par[29] +   par[30] +   par[31]) / 4;
00497         par_mapped[19] = (  par[32] +   par[33]) / 2;
00498     }
00499 }
00500 
00501 static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
00502 {
00503     par[ 0] = (2*par[ 0] +   par[ 1]) * 0.33333333f;
00504     par[ 1] = (  par[ 1] + 2*par[ 2]) * 0.33333333f;
00505     par[ 2] = (2*par[ 3] +   par[ 4]) * 0.33333333f;
00506     par[ 3] = (  par[ 4] + 2*par[ 5]) * 0.33333333f;
00507     par[ 4] = (  par[ 6] +   par[ 7]) * 0.5f;
00508     par[ 5] = (  par[ 8] +   par[ 9]) * 0.5f;
00509     par[ 6] =    par[10];
00510     par[ 7] =    par[11];
00511     par[ 8] = (  par[12] +   par[13]) * 0.5f;
00512     par[ 9] = (  par[14] +   par[15]) * 0.5f;
00513     par[10] =    par[16];
00514     par[11] =    par[17];
00515     par[12] =    par[18];
00516     par[13] =    par[19];
00517     par[14] = (  par[20] +   par[21]) * 0.5f;
00518     par[15] = (  par[22] +   par[23]) * 0.5f;
00519     par[16] = (  par[24] +   par[25]) * 0.5f;
00520     par[17] = (  par[26] +   par[27]) * 0.5f;
00521     par[18] = (  par[28] +   par[29] +   par[30] +   par[31]) * 0.25f;
00522     par[19] = (  par[32] +   par[33]) * 0.5f;
00523 }
00524 
00525 static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
00526 {
00527     if (full) {
00528         par_mapped[33] = par[9];
00529         par_mapped[32] = par[9];
00530         par_mapped[31] = par[9];
00531         par_mapped[30] = par[9];
00532         par_mapped[29] = par[9];
00533         par_mapped[28] = par[9];
00534         par_mapped[27] = par[8];
00535         par_mapped[26] = par[8];
00536         par_mapped[25] = par[8];
00537         par_mapped[24] = par[8];
00538         par_mapped[23] = par[7];
00539         par_mapped[22] = par[7];
00540         par_mapped[21] = par[7];
00541         par_mapped[20] = par[7];
00542         par_mapped[19] = par[6];
00543         par_mapped[18] = par[6];
00544         par_mapped[17] = par[5];
00545         par_mapped[16] = par[5];
00546     } else {
00547         par_mapped[16] =      0;
00548     }
00549     par_mapped[15] = par[4];
00550     par_mapped[14] = par[4];
00551     par_mapped[13] = par[4];
00552     par_mapped[12] = par[4];
00553     par_mapped[11] = par[3];
00554     par_mapped[10] = par[3];
00555     par_mapped[ 9] = par[2];
00556     par_mapped[ 8] = par[2];
00557     par_mapped[ 7] = par[2];
00558     par_mapped[ 6] = par[2];
00559     par_mapped[ 5] = par[1];
00560     par_mapped[ 4] = par[1];
00561     par_mapped[ 3] = par[1];
00562     par_mapped[ 2] = par[0];
00563     par_mapped[ 1] = par[0];
00564     par_mapped[ 0] = par[0];
00565 }
00566 
00567 static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
00568 {
00569     if (full) {
00570         par_mapped[33] =  par[19];
00571         par_mapped[32] =  par[19];
00572         par_mapped[31] =  par[18];
00573         par_mapped[30] =  par[18];
00574         par_mapped[29] =  par[18];
00575         par_mapped[28] =  par[18];
00576         par_mapped[27] =  par[17];
00577         par_mapped[26] =  par[17];
00578         par_mapped[25] =  par[16];
00579         par_mapped[24] =  par[16];
00580         par_mapped[23] =  par[15];
00581         par_mapped[22] =  par[15];
00582         par_mapped[21] =  par[14];
00583         par_mapped[20] =  par[14];
00584         par_mapped[19] =  par[13];
00585         par_mapped[18] =  par[12];
00586         par_mapped[17] =  par[11];
00587     }
00588     par_mapped[16] =  par[10];
00589     par_mapped[15] =  par[ 9];
00590     par_mapped[14] =  par[ 9];
00591     par_mapped[13] =  par[ 8];
00592     par_mapped[12] =  par[ 8];
00593     par_mapped[11] =  par[ 7];
00594     par_mapped[10] =  par[ 6];
00595     par_mapped[ 9] =  par[ 5];
00596     par_mapped[ 8] =  par[ 5];
00597     par_mapped[ 7] =  par[ 4];
00598     par_mapped[ 6] =  par[ 4];
00599     par_mapped[ 5] =  par[ 3];
00600     par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
00601     par_mapped[ 3] =  par[ 2];
00602     par_mapped[ 2] =  par[ 1];
00603     par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
00604     par_mapped[ 0] =  par[ 0];
00605 }
00606 
00607 static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
00608 {
00609     par[33] =  par[19];
00610     par[32] =  par[19];
00611     par[31] =  par[18];
00612     par[30] =  par[18];
00613     par[29] =  par[18];
00614     par[28] =  par[18];
00615     par[27] =  par[17];
00616     par[26] =  par[17];
00617     par[25] =  par[16];
00618     par[24] =  par[16];
00619     par[23] =  par[15];
00620     par[22] =  par[15];
00621     par[21] =  par[14];
00622     par[20] =  par[14];
00623     par[19] =  par[13];
00624     par[18] =  par[12];
00625     par[17] =  par[11];
00626     par[16] =  par[10];
00627     par[15] =  par[ 9];
00628     par[14] =  par[ 9];
00629     par[13] =  par[ 8];
00630     par[12] =  par[ 8];
00631     par[11] =  par[ 7];
00632     par[10] =  par[ 6];
00633     par[ 9] =  par[ 5];
00634     par[ 8] =  par[ 5];
00635     par[ 7] =  par[ 4];
00636     par[ 6] =  par[ 4];
00637     par[ 5] =  par[ 3];
00638     par[ 4] = (par[ 2] + par[ 3]) * 0.5f;
00639     par[ 3] =  par[ 2];
00640     par[ 2] =  par[ 1];
00641     par[ 1] = (par[ 0] + par[ 1]) * 0.5f;
00642     par[ 0] =  par[ 0];
00643 }
00644 
00645 static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34)
00646 {
00647     float power[34][PS_QMF_TIME_SLOTS] = {{0}};
00648     float transient_gain[34][PS_QMF_TIME_SLOTS];
00649     float *peak_decay_nrg = ps->peak_decay_nrg;
00650     float *power_smooth = ps->power_smooth;
00651     float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
00652     float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
00653     float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
00654     const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
00655     const float peak_decay_factor = 0.76592833836465f;
00656     const float transient_impact  = 1.5f;
00657     const float a_smooth          = 0.25f; //< Smoothing coefficient
00658     int i, k, m, n;
00659     int n0 = 0, nL = 32;
00660     static const int link_delay[] = { 3, 4, 5 };
00661     static const float a[] = { 0.65143905753106f,
00662                                0.56471812200776f,
00663                                0.48954165955695f };
00664 
00665     if (is34 != ps->is34bands_old) {
00666         memset(ps->peak_decay_nrg,         0, sizeof(ps->peak_decay_nrg));
00667         memset(ps->power_smooth,           0, sizeof(ps->power_smooth));
00668         memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
00669         memset(ps->delay,                  0, sizeof(ps->delay));
00670         memset(ps->ap_delay,               0, sizeof(ps->ap_delay));
00671     }
00672 
00673     for (n = n0; n < nL; n++) {
00674         for (k = 0; k < NR_BANDS[is34]; k++) {
00675             int i = k_to_i[k];
00676             power[i][n] += s[k][n][0] * s[k][n][0] + s[k][n][1] * s[k][n][1];
00677         }
00678     }
00679 
00680     //Transient detection
00681     for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
00682         for (n = n0; n < nL; n++) {
00683             float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
00684             float denom;
00685             peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
00686             power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
00687             peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
00688             denom = transient_impact * peak_decay_diff_smooth[i];
00689             transient_gain[i][n]   = (denom > power_smooth[i]) ?
00690                                          power_smooth[i] / denom : 1.0f;
00691         }
00692     }
00693 
00694     //Decorrelation and transient reduction
00695     //                         PS_AP_LINKS - 1
00696     //                               -----
00697     //                                | |  Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
00698     //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
00699     //                                | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
00700     //                               m = 0
00701     //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
00702     for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
00703         int b = k_to_i[k];
00704         float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
00705         float ag[PS_AP_LINKS];
00706         g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
00707         memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
00708         memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
00709         for (m = 0; m < PS_AP_LINKS; m++) {
00710             memcpy(ap_delay[k][m],   ap_delay[k][m]+numQMFSlots,           5*sizeof(ap_delay[k][m][0]));
00711             ag[m] = a[m] * g_decay_slope;
00712         }
00713         for (n = n0; n < nL; n++) {
00714             float in_re = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][0] -
00715                           delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][1];
00716             float in_im = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][1] +
00717                           delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][0];
00718             for (m = 0; m < PS_AP_LINKS; m++) {
00719                 float a_re                = ag[m] * in_re;
00720                 float a_im                = ag[m] * in_im;
00721                 float link_delay_re       = ap_delay[k][m][n+5-link_delay[m]][0];
00722                 float link_delay_im       = ap_delay[k][m][n+5-link_delay[m]][1];
00723                 float fractional_delay_re = Q_fract_allpass[is34][k][m][0];
00724                 float fractional_delay_im = Q_fract_allpass[is34][k][m][1];
00725                 ap_delay[k][m][n+5][0] = in_re;
00726                 ap_delay[k][m][n+5][1] = in_im;
00727                 in_re = link_delay_re * fractional_delay_re - link_delay_im * fractional_delay_im - a_re;
00728                 in_im = link_delay_re * fractional_delay_im + link_delay_im * fractional_delay_re - a_im;
00729                 ap_delay[k][m][n+5][0] += ag[m] * in_re;
00730                 ap_delay[k][m][n+5][1] += ag[m] * in_im;
00731             }
00732             out[k][n][0] = transient_gain[b][n] * in_re;
00733             out[k][n][1] = transient_gain[b][n] * in_im;
00734         }
00735     }
00736     for (; k < SHORT_DELAY_BAND[is34]; k++) {
00737         memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
00738         memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
00739         for (n = n0; n < nL; n++) {
00740             //H = delay 14
00741             out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][0];
00742             out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][1];
00743         }
00744     }
00745     for (; k < NR_BANDS[is34]; k++) {
00746         memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
00747         memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
00748         for (n = n0; n < nL; n++) {
00749             //H = delay 1
00750             out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][0];
00751             out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][1];
00752         }
00753     }
00754 }
00755 
00756 static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
00757                     int8_t           (*par)[PS_MAX_NR_IIDICC],
00758                     int num_par, int num_env, int full)
00759 {
00760     int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
00761     int e;
00762     if (num_par == 20 || num_par == 11) {
00763         for (e = 0; e < num_env; e++) {
00764             map_idx_20_to_34(par_mapped[e], par[e], full);
00765         }
00766     } else if (num_par == 10 || num_par == 5) {
00767         for (e = 0; e < num_env; e++) {
00768             map_idx_10_to_34(par_mapped[e], par[e], full);
00769         }
00770     } else {
00771         *p_par_mapped = par;
00772     }
00773 }
00774 
00775 static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
00776                     int8_t           (*par)[PS_MAX_NR_IIDICC],
00777                     int num_par, int num_env, int full)
00778 {
00779     int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
00780     int e;
00781     if (num_par == 34 || num_par == 17) {
00782         for (e = 0; e < num_env; e++) {
00783             map_idx_34_to_20(par_mapped[e], par[e], full);
00784         }
00785     } else if (num_par == 10 || num_par == 5) {
00786         for (e = 0; e < num_env; e++) {
00787             map_idx_10_to_20(par_mapped[e], par[e], full);
00788         }
00789     } else {
00790         *p_par_mapped = par;
00791     }
00792 }
00793 
00794 static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34)
00795 {
00796     int e, b, k, n;
00797 
00798     float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
00799     float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
00800     float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
00801     float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
00802     int8_t *opd_hist = ps->opd_hist;
00803     int8_t *ipd_hist = ps->ipd_hist;
00804     int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
00805     int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
00806     int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
00807     int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
00808     int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
00809     int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
00810     int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
00811     int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
00812     const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
00813     const float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
00814 
00815     //Remapping
00816     memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
00817     memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
00818     memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
00819     memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
00820     memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
00821     memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
00822     memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
00823     memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
00824     if (is34) {
00825         remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
00826         remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
00827         if (ps->enable_ipdopd) {
00828             remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
00829             remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
00830         }
00831         if (!ps->is34bands_old) {
00832             map_val_20_to_34(H11[0][0]);
00833             map_val_20_to_34(H11[1][0]);
00834             map_val_20_to_34(H12[0][0]);
00835             map_val_20_to_34(H12[1][0]);
00836             map_val_20_to_34(H21[0][0]);
00837             map_val_20_to_34(H21[1][0]);
00838             map_val_20_to_34(H22[0][0]);
00839             map_val_20_to_34(H22[1][0]);
00840             ipdopd_reset(ipd_hist, opd_hist);
00841         }
00842     } else {
00843         remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
00844         remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
00845         if (ps->enable_ipdopd) {
00846             remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
00847             remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
00848         }
00849         if (ps->is34bands_old) {
00850             map_val_34_to_20(H11[0][0]);
00851             map_val_34_to_20(H11[1][0]);
00852             map_val_34_to_20(H12[0][0]);
00853             map_val_34_to_20(H12[1][0]);
00854             map_val_34_to_20(H21[0][0]);
00855             map_val_34_to_20(H21[1][0]);
00856             map_val_34_to_20(H22[0][0]);
00857             map_val_34_to_20(H22[1][0]);
00858             ipdopd_reset(ipd_hist, opd_hist);
00859         }
00860     }
00861 
00862     //Mixing
00863     for (e = 0; e < ps->num_env; e++) {
00864         for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
00865             float h11, h12, h21, h22;
00866             h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
00867             h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
00868             h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
00869             h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
00870             if (!PS_BASELINE && ps->enable_ipdopd && b < ps->nr_ipdopd_par) {
00871                 //The spec say says to only run this smoother when enable_ipdopd
00872                 //is set but the reference decoder appears to run it constantly
00873                 float h11i, h12i, h21i, h22i;
00874                 float ipd_adj_re, ipd_adj_im;
00875                 int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
00876                 int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
00877                 float opd_re = pd_re_smooth[opd_idx];
00878                 float opd_im = pd_im_smooth[opd_idx];
00879                 float ipd_re = pd_re_smooth[ipd_idx];
00880                 float ipd_im = pd_im_smooth[ipd_idx];
00881                 opd_hist[b] = opd_idx & 0x3F;
00882                 ipd_hist[b] = ipd_idx & 0x3F;
00883 
00884                 ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im;
00885                 ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im;
00886                 h11i = h11 * opd_im;
00887                 h11  = h11 * opd_re;
00888                 h12i = h12 * ipd_adj_im;
00889                 h12  = h12 * ipd_adj_re;
00890                 h21i = h21 * opd_im;
00891                 h21  = h21 * opd_re;
00892                 h22i = h22 * ipd_adj_im;
00893                 h22  = h22 * ipd_adj_re;
00894                 H11[1][e+1][b] = h11i;
00895                 H12[1][e+1][b] = h12i;
00896                 H21[1][e+1][b] = h21i;
00897                 H22[1][e+1][b] = h22i;
00898             }
00899             H11[0][e+1][b] = h11;
00900             H12[0][e+1][b] = h12;
00901             H21[0][e+1][b] = h21;
00902             H22[0][e+1][b] = h22;
00903         }
00904         for (k = 0; k < NR_BANDS[is34]; k++) {
00905             float h11r, h12r, h21r, h22r;
00906             float h11i, h12i, h21i, h22i;
00907             float h11r_step, h12r_step, h21r_step, h22r_step;
00908             float h11i_step, h12i_step, h21i_step, h22i_step;
00909             int start = ps->border_position[e];
00910             int stop  = ps->border_position[e+1];
00911             float width = 1.f / (stop - start);
00912             b = k_to_i[k];
00913             h11r = H11[0][e][b];
00914             h12r = H12[0][e][b];
00915             h21r = H21[0][e][b];
00916             h22r = H22[0][e][b];
00917             if (!PS_BASELINE && ps->enable_ipdopd) {
00918             //Is this necessary? ps_04_new seems unchanged
00919             if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
00920                 h11i = -H11[1][e][b];
00921                 h12i = -H12[1][e][b];
00922                 h21i = -H21[1][e][b];
00923                 h22i = -H22[1][e][b];
00924             } else {
00925                 h11i = H11[1][e][b];
00926                 h12i = H12[1][e][b];
00927                 h21i = H21[1][e][b];
00928                 h22i = H22[1][e][b];
00929             }
00930             }
00931             //Interpolation
00932             h11r_step = (H11[0][e+1][b] - h11r) * width;
00933             h12r_step = (H12[0][e+1][b] - h12r) * width;
00934             h21r_step = (H21[0][e+1][b] - h21r) * width;
00935             h22r_step = (H22[0][e+1][b] - h22r) * width;
00936             if (!PS_BASELINE && ps->enable_ipdopd) {
00937                 h11i_step = (H11[1][e+1][b] - h11i) * width;
00938                 h12i_step = (H12[1][e+1][b] - h12i) * width;
00939                 h21i_step = (H21[1][e+1][b] - h21i) * width;
00940                 h22i_step = (H22[1][e+1][b] - h22i) * width;
00941             }
00942             for (n = start + 1; n <= stop; n++) {
00943                 //l is s, r is d
00944                 float l_re = l[k][n][0];
00945                 float l_im = l[k][n][1];
00946                 float r_re = r[k][n][0];
00947                 float r_im = r[k][n][1];
00948                 h11r += h11r_step;
00949                 h12r += h12r_step;
00950                 h21r += h21r_step;
00951                 h22r += h22r_step;
00952                 if (!PS_BASELINE && ps->enable_ipdopd) {
00953                     h11i += h11i_step;
00954                     h12i += h12i_step;
00955                     h21i += h21i_step;
00956                     h22i += h22i_step;
00957 
00958                     l[k][n][0] = h11r*l_re + h21r*r_re - h11i*l_im - h21i*r_im;
00959                     l[k][n][1] = h11r*l_im + h21r*r_im + h11i*l_re + h21i*r_re;
00960                     r[k][n][0] = h12r*l_re + h22r*r_re - h12i*l_im - h22i*r_im;
00961                     r[k][n][1] = h12r*l_im + h22r*r_im + h12i*l_re + h22i*r_re;
00962                 } else {
00963                     l[k][n][0] = h11r*l_re + h21r*r_re;
00964                     l[k][n][1] = h11r*l_im + h21r*r_im;
00965                     r[k][n][0] = h12r*l_re + h22r*r_re;
00966                     r[k][n][1] = h12r*l_im + h22r*r_im;
00967                 }
00968             }
00969         }
00970     }
00971 }
00972 
00973 int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
00974 {
00975     float Lbuf[91][32][2];
00976     float Rbuf[91][32][2];
00977     const int len = 32;
00978     int is34 = ps->is34bands;
00979 
00980     top += NR_BANDS[is34] - 64;
00981     memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
00982     if (top < NR_ALLPASS_BANDS[is34])
00983         memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
00984 
00985     hybrid_analysis(Lbuf, ps->in_buf, L, is34, len);
00986     decorrelation(ps, Rbuf, Lbuf, is34);
00987     stereo_processing(ps, Lbuf, Rbuf, is34);
00988     hybrid_synthesis(L, Lbuf, is34, len);
00989     hybrid_synthesis(R, Rbuf, is34, len);
00990 
00991     return 0;
00992 }
00993 
00994 #define PS_INIT_VLC_STATIC(num, size) \
00995     INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size,    \
00996                     ps_tmp[num].ps_bits, 1, 1,                                          \
00997                     ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
00998                     size);
00999 
01000 #define PS_VLC_ROW(name) \
01001     { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
01002 
01003 av_cold void ff_ps_init(void) {
01004     // Syntax initialization
01005     static const struct {
01006         const void *ps_codes, *ps_bits;
01007         const unsigned int table_size, elem_size;
01008     } ps_tmp[] = {
01009         PS_VLC_ROW(huff_iid_df1),
01010         PS_VLC_ROW(huff_iid_dt1),
01011         PS_VLC_ROW(huff_iid_df0),
01012         PS_VLC_ROW(huff_iid_dt0),
01013         PS_VLC_ROW(huff_icc_df),
01014         PS_VLC_ROW(huff_icc_dt),
01015         PS_VLC_ROW(huff_ipd_df),
01016         PS_VLC_ROW(huff_ipd_dt),
01017         PS_VLC_ROW(huff_opd_df),
01018         PS_VLC_ROW(huff_opd_dt),
01019     };
01020 
01021     PS_INIT_VLC_STATIC(0, 1544);
01022     PS_INIT_VLC_STATIC(1,  832);
01023     PS_INIT_VLC_STATIC(2, 1024);
01024     PS_INIT_VLC_STATIC(3, 1036);
01025     PS_INIT_VLC_STATIC(4,  544);
01026     PS_INIT_VLC_STATIC(5,  544);
01027     PS_INIT_VLC_STATIC(6,  512);
01028     PS_INIT_VLC_STATIC(7,  512);
01029     PS_INIT_VLC_STATIC(8,  512);
01030     PS_INIT_VLC_STATIC(9,  512);
01031 
01032     ps_tableinit();
01033 }
01034 
01035 av_cold void ff_ps_ctx_init(PSContext *ps)
01036 {
01037 }

Generated on Fri Sep 16 2011 17:17:32 for FFmpeg by  doxygen 1.7.1